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Abstract

A two-component fluid consisting of a lubricating fluid (LF) that covers a rough

solid surface (surface decorated by periodic array of identical pillars) and a test fluid

(TF) as a nanodrop over LF is considered. A horizontal external perturbative force

is applied to TF and the density functional theory is used for the treatment of the

system. The concepts of advancing and receding contact angles as well as of leading

edges of the drop are revisited. Three different definitions of the contact angles

are analyzed and the most plausible selected. The contact angles are calculated as

functions of drop size and magnitude of the perturbative force. For small drops,

both angles change nonmonotonously with increasing perturbative force. For larger

drops, the advancing contact angle has the tendency to increase and the receding

contact angle to decrease with increasing force. The sticking force which maintains

the drop equilibrium in the presence of an external perturbative force is determined

as function of the contact angles. It is shown that this dependence is similar to that

for a drop on a rough solid surface in the absence of LF. A critical sticking force,

defined as the largest value of the perturbative force for which the drop remains at

equilibrium, is determined.

1 Introduction

In paper [1], a nanodrop located on the smooth surface of a solid possessing hidden rough-

ness was considered on the basis of the density functional theory (DFT). One of its goals

was to use a microscopic approach to describe (qualitatively) the experimental results
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[2]-[9] regarding the slipping of a nanodrop on a SLIPS (slippery liquid-infused porous

surface). The main feature of SLIPS, which is interesting for practical applications, is

the extremely small inclination angle at which the drop starts to slip along the surface

of the lubricating liquid. This angle remains small both for large (θ > 90◦) and small

(θ < 90◦) contact angle θ of the drop. The lubricating fluid, that covers in those ex-

periments the rough solid surface, was modeled in Ref. [1] by a nonuniform second solid

material possessing a smooth surface which generated, together with the rough substrate,

an interaction potential acting on the drop of the test fluid (TF). Even though this ap-

proximation changes considerably the original system, it led to reasonable values for the

slipping angle (the inclination angle of the surface when slipping begins).

In the present paper, a more realistic model consisting of a lubricating fluid (LF) that

covers the rough surface of a substrate and a nanodrop of TF located onto LF is examined

using the two-component DFT. A perturbative external force Fτ acting on the molecules

of TF is added in the horizontal direction. This force is balanced by a sticking force Fst

which maintains the drop equilibrium. Schematically, the considered case is sketched in

Figure 1 where, for simplicity, the nonuniformities of TF and LF are not indicated.

Such a model which, to our best knowledge was never considered microscopically, has

several new features compared with the traditional one-component liquid drop on a solid

surface. First, the latter is surrounded by a vapor of the same fluid which has a much

smaller density compared to that of the drop. For this reason, the vapor-liquid interaction

plays a minor role in the formation of the drop. In the present model, the environment of

the drop includes a low density mixture of TF and LF around the upper part of the drop

3

Page 3 of 31 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



Figure 1: Schematic representation of a drop of the test fluid (light gray area), lubricating fluid (darker

gray area), and rough substrate (black area). Fτ is the horizontal perturbative force and Fst is sticking

force which maintains the drop equilibrium.

(which has a negligible role in the formation of the drop) and a dense LF beneath the

drop. The interaction between the latter part of LF and TF is responsible for the drop

shape and location. In this case, the bottom part of the drop profile is not planar and this

rises questions about the definition of the contact angle between the nanodrop and LF

and the location of the leading edges of the nanodrop. (Note, that the drop has no direct

contact with the solid and interacts with it indirectly via the LF). Another feature is that

the contact between the nanodrop and LF occurs in the region of the LF-TF interface, i.e.

in the region where the densities of LF and TF are nonuniform both in the vertical and

horizontal directions with respect to the solid substrate. For this reason and because the

thickness of LF-TF interface is comparable with the size of the drop, additional difficulties

arise in the definition of the contact angle.

The goal of the present paper is to examine microscopically the new kind of systems

using reasonable definitions of the quantities which characterize the drop of TF located
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on LF. In Sec. 2, the system is defined in more details including the interaction potentials

and the basic equations for the fluid density distributions. In Sec. 3, the drop profile is

calculated, contact angles are defined and the results of the calculation of the contact

angle and sticking force are provided along with their discussion.

2 The system and basic equations

2.1 The system

2.1.1 Geometry

The three components involved in our considerations are presented in Figure 2. The first

component is the rough substrate of constant density ρs, its roughness being modeled

by regular arrays of pillars of height hp, width dp and distance between pillars ∆p. All

distances between surfaces are measured between the centers of the molecules of their

first layer. The pillars are infinite in the y-direction (normal to the plane of the figure).

The second component, the lubricating fluid (LF), forms a nonuniform layer of liquid-like

density on the surface of the substrate. Outside this layer, the LF is present in small

amounts as a mixture with TF. The last component is the test fluid (TF) which forms a

two-dimensional (cylindrical) drop extended in the y-direction. Outside the drop, TF is

present in small concentrations as a mixture with LF. Evidently, a small amount of LF is

also present in the drop, and a small amount of TF is present in the LF layer.

The upper boundary of the system is located at the distance hu from the upper surface
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Figure 2: Schematic representation of the considered system which consists of a solid (substrate and

pillars) of constant density (black area) covered by the lubricating fluid (lighter area), and the drop

of the test fluid (light area). The lengths dp, hp, and ∆p are the pillars width, height, and distance

between pillars, respectively, Lx = dp + ∆p is the width of the unit cell used in the calculations. All

distances between surfaces are measured between the centers of the molecules forming the first layers

of the corresponding surfaces. The x-axis passes through the centers of the molecules of the lubricating

fluid located next to the upper surface of pillars.
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of the pillars and is treated as a hard wall (not shown in Figure 2). Because of the low

densities of TF and LF close to the upper boundary, the influence of the latter on the

state of the system is neglected. The system is periodic in the x-direction with period Lx,

with the number of molecules of LF and TF per Lx constant (closed system).

It is supposed that there is no symmetry breaking in the y-direction and that the

density distributions (FDDs) of LF (ρ1(r)) and TF (ρ2(r)) are uniform in this direction

and non-uniform in the x- and h-directions, hence ρi(r) ≡ ρi(x, h) (i = 1, 2).

2.1.2 Interaction potentials

It is supposed that the spherical molecules of LF and TF interact via a truncated Lennard-

Jones potential

φij(r) =


























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


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∞, r ≤ σij

4ǫij

[

(

σij

r

)12
−

(

σij

r

)6
]

, σij < r ≤ rij,cut

0, r > rij,cut

(1)

where i and j take the values 1 and 2 for LF and TF, respectively, r is the distance between

the centers of a pair of interacting molecules, and rij,cut = 3σij is the cutoff distance. In

eq 1, σij and ǫij are the hard core diameters and energy parameters, respectively. The

molecules of TF and LF interact also with the rough solid (substrate plus pillars) of

constant density which is considered as the source of an external potential which has the

same form as eq 1 with no upper bound for the radius of the fluid-solid interactions. For

these interactions, the hard core diameters σij and interaction parameters ǫij should be
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replaced with σis, and ǫis, respectively, the subscript s indicating the solid.

It is also assumed also that each molecule of TF is exposed to a constant external

perturbative force fτ which acts in the negative direction of the x- axis.

As a result, the net external potential, Unet,ext(x, h) has the form

Unet,ext(x, h) = U1s(x, h) + U2s(x, h) + Ue(x) (2)

where Uis(x, h) (i = 1, 2) are potentials due to TF-solid and LF-solid interactions, respec-

tively and Ue(x) = fτx is the potential due to the external perturbative force. For more

details, one can see the Supplementary Material. Note that at equilibrium, the magnitude

of the sticking force Fst = fτNd where Nd is the number of molecule of TF in the drop.

(Both Fst and Nd are calculated per unit length of the drop in y-direction.)

2.1.3 Selection of the parameters

Below, all lengths will be provided in units of TF-TF hard core diameter, σ ≡ σ22. In

this units, the geometrical characteristics of the system were selected as follows: hp = 3,

dp = 2, ∆p = 6, Lx = 24, and hu = 16.

The hard core diameters of all intermolecular interactions were considered equal (σ11 =

σ22 = σ12 = σ1s = σ2s ≡ σ = 3.405Å).

The energy parameters of the potentials of the fluid-fluid interactions have the values

ǫ11/kB = ǫ22/kB ≡ ǫ/kB = 119.76K, and ǫ12 = 0.5ǫ, where kB is the Boltzmann constant.

For the fluid-solid interactions the energy parameters were selected as ǫ1s = 4ǫ and ǫ2s = 0,

respectively. The TF-solid interaction is neglected because of the large distance between
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the drop and solid due to the presence of LF. The selected interaction parameters ǫ11, ǫ22,

and ǫ12 provided the immiscibility of the two components, hence the existence of a drop

of TF. In addition, the value employed for the energy parameter ǫ1s allows the lubricating

fluid to wet the solid completely forming a liquid layer that covers the pillars. The number

density of the solid was taken ρs = 1.92× 1028m−3 and the masses of the molecules of TF

and LF were m1 = m2 = 6.63 × 10−26kg. The temperature was selected T = 87.3K.

2.2 The Euler-Lagrange equations for the fluid density distri-

butions

The density distributions ρi(r) (i = 1, 2) are calculated using the density functional ap-

proach formulated by Rosenfeld [10]. As shown in Refs. [11]-[14] , the density functional

theory, developed originally for open systems (grand canonical ensemble), can be also

applied to closed systems (canonical ensemble). The only restriction, which is fulfilled by

the present calculations, is the number of molecules to be sufficiently large. A detailed

discussion regarding the applicability of the canonical ensemble DFT can be found in

Ref. [15].

The total Helmholtz free energy Ftot[ρ1(r), ρ2(r)] can be expressed as the sum of an

ideal gas free energy, Fid[ρ1(r), ρ2(r)], an excess free energy Fex[ρ1(r), ρ2(r)], and a free

energy F1s[ρ1(r)] + F2s[ρ2(r)] due to the interactions between fluids and solid. Minimiza-

tion of the Ftot[ρ1(r), ρ2(r)] leads to a system of two Euler-Lagrange equations for the

FDDs ρi(x, h) (i = 1, 2)

9
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log[Λ3
i ρi(r)] − Qi(r) = λi/kBT, (i = 1, 2) (3)

where Λi = hP /(2πmikBT )1/2 is the thermal de Broglie wavelength of the molecules of

component i, hP is the Planck constant, T is the absolute temperature, mi is the molecular

mass of component i, Qi(r) is a functional of the densities ρi(r) and λi is a Lagrange

multiplier arising because of the constraint of fixed average density of component i in the

system

ρi,av =
1

Vi

∫

Vi

drρi(r) (4)

where Vi is the volume of the system accessible to component i.

Using eqs 3 and 4, the Lagrange multipliers can be rewritten in the form

λi = −kBT log

[

1

ρi,avViΛ
3
i

∫

Vi

dreQi(r)

]

. (5)

By eliminating λi between eqs 3 and 5, one obtains two integral equations for the FDDs

ρ1(x, h) and ρ2(x, h) which can be solved by numerical iterations.

The details of the derivation of the Euler-Lagrange equation and of the numerical

procedure used for their solutions are provided in the Supplementary Material.

3 Results and discussion

Below, five specific cases, Cm (m = 1, ..., 5), are considered which differ from each other

by the average number densities ρi,av (i = 1, 2) and, as a consequence, by the numbers

10
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Table 1: Average number densities ρ1,av and ρ2,av of LF and TF, respectively for five

considered cases

Case C1 C2 C3 C4 C5

ρ1,avσ
3 0.175 0.211 0.211 0.211 0.250

ρ2,avσ
3 0.075 0.075 0.105 0.120 0.075

of molecules of TF and LF in the system. In Table 1, the dimensionless values, ρi,avσ
3

(i = 1, 2), are listed for all five cases. The results obtained for each of these cases will

be used below to analyze the characteristics of the drop for various thicknesses of LF and

various sizes of the drop.

3.1 Density distributions of the test and lubricating fluids and

the drop profile

In Figure 3, various FDDs of TF and LF are presented for the case C3 and for fτ =

1.36 × 10−15N. Because of the nonzero horizontal perturbative force, the drop location

is displaced to the left of the middle of the pillar. For this reason, LF and TF densities

at the left hand side of the drop is slightly (not detectable by eye) different from those

on the right hand side, so the drop is slightly asymmetric. Figure 3a, presents the two-

dimensional FDD of TF calculated using eq 3. The white dashed solid line in this figure

represents the profile of a drop which was obtained using a procedure similar to that for a

drop on a solid surface (see e.g. Ref. [1]). According to that procedure, the drop profile is

defined as a line along which the local density of TF ρ2(x, h) is constant and equal to the

11
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Figure 3: Various FDDs of TF and LF for the case C3 and fτ = 1.36 × 10−15N. (a) and (d) Two-

dimensional density distributions of TF and LF, respectively. The cross in panel (a) indicates the location

of the maximum density of TF inside the drop. The white lines indicate the drop profile; (b) TF density

distributions along the horizontal lines at the distances 2.5 (solid line), 5.0 (dashed), and 8.0 (dotted)

from the upper surface of the pillars. (c) TF density distributions along the vertical lines passing through

the point of maximum density of TF (solid line) and midway between pillars (dashed line). Curves in

panels (e) and (f) represent similar FDDs as in (b) and (c) for LF.
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TF density at the location of the equimolar dividing surface of a horizontal FDD ρ2(x, h0)

at some distance h0 from the upper surface of the pillars, by considering this FDD as

that of a planar vapor-liquid interface. In the present paper, the horizontal FDD was

taken along the line passing through the location of the maximum TF density (cross in

Figure 3a). In this case, the density ρ2,div of TF on the dividing surface is ρ2,divσ
3 = 0.336.

After the profile is determined, other characteristics of the drop, such as, for example, the

number of molecules in the drop (drop size) can be calculated [16].

Several examples of one-dimensional density distributions of TF along the horizontal

and vertical lines are presented in Figures 3b and c, respectively, in the region of the

drop location. The points on each curve represent the locations of the drop profile for the

corresponding one-dimensional FDD. All presented FDDs are slightly asymmetrical with

respect to the vertical line passing through their maximum. For the horizontal FDDs,

this asymmetry is due to the presence of pillars and external force fτ , and for vertical

FDDs to the increasing distance from the solid.

Similar density distributions for LF are displayed in Figures 3d,e,f. One can see that

LF penetrates into the drop, its density decreasing with increasing distance from the

drop surface. However, the fraction of LF molecules inside the drop is about 4.7% of the

total number of molecules in the drop. This fact justifies the neglect of the action of the

external perturbative force on the molecules of the lubricating fluid.

Let us note that in all considered cases only the stable nanodrops were analyzed. In

the absence of an external force, those drops are centered on the pillars. The drops which

are centered between neighboring pillars were metastable (had greater free energy than

13
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Figure 4: Dimensionless density distribution (ρ(x, h)σ3) of the test fluid for a smooth solid surface at

ρ1,avσ3 = 0.211, ρ2,avσ
3 = 0.120, and ǫ12/ǫ22 = 0.6. The black line in this figure represents the drop

profile obtained by the procedure described in Sec. 3.1.

the stable ones) at fτ = 0 and unstable at fτ 6= 0. Other solutions of Euler-Lagrange

equations were not found.

3.2 Contact angle

Due to the nonplanar shape of the bottom part of the drop and, as a result, the absence

of a fixed reference surface (such as, e.g., the surface of the solid), the definition of leading

edges of the drop and the contact angle which the drop makes with the reference surface is

not straightforward and unique. To make a reasonable choice, let us consider for simplicity

the specific case of a nanodrop on the surface of a lubricating fluid that covers a smooth

solid surface. The density distribution of the test fluid in such a system is presented in

Figure 4. Below, several possibilities are examined regarding the reference line with

which the profile (or its extension) intersects to form an angle which can be considered

as the contact one.
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Figure 5: (a) Density distribution of the lubricating fluid along the vertical line passing through the

point of maximum density of the test fluid in the drop. At points A and B, the density of LF has liquid-

like and vapor-like values, respectively. (b) Fictitious density distribution of the lubricating fluid which

was used to find the equimolar dividing surface.

Definition 1: Similar to the drop profile, the surface of the lubricating fluid can be

considered as the line along which the density of LF is a constant equal to the density of

LF on the dividing surface of a particular one-dimensional density distribution of LF. The

latter distribution is considered to be along the vertical line passing through a point inside

the drop where the density of the test fluid has a maximum. Because of the oscillating

behavior of the LF density close to the wall (see Figure 5a), a special procedure to find

the dividing surface which separates the vapor and liquid phases, should be developed. In

the present case, we select the part of the FDD between points A and B (see Figure 5a)

and replace the actual FDD with one presented in Figure 5b. (At points A and B, the

density of LF has liquid-like and vapor-like values, respectively.) This FDD is used to

find the location of the equimolar dividing surface and the density of LF at that location.

In Figure 6, the drop profile and the defined surface of LF (solid curve beneath the

drop) are presented. One can see that the drop profile and the surface of LF do not
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Figure 6: Microscopic (θm) and apparent (θa) contact angles according to Definition 1. The surface

of the lubricating fluid (LF) (the solid curve beneath the drop) is obtained using the LF density on the

dividing surface for one-dimensional density distribution of LF along the vertical line passing through

the center of the drop (point of maximum density of the test fluid).

intersect and this can be interpreted that between the drop and the surface of LF there

is a thin layer of a low density mixture of TF and LF. The reference line was selected as

the horizontal line which far from the drop coincides with the surface of the lubricating

fluid. This line is presented as the dashed one in Figure 6. After the reference line is

introduced, one can define two types of contact angles which characterize the nanodrop.

The first, θm, which can be called microcontact angle [17], is defined using the part of

the drop profile in Figure 6 in the vicinity of the reference line (see the left hand side of

Figure 6). The second, the apparent contact angle θa, is defined using a circular extension

of the upper part of the drop profile (see right hand side of Figure 6).

Definition 2: Similar to Definition 1, the surface of the lubricating fluid can be consid-

ered as a line of constant density. However, this density is selected as the density of LF

16
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Figure 7: Microscopic (θm) and apparent (θa) contact angles according to Definition 2. The surface

of the lubricating fluid (LF) (the solid curve beneath the drop) is obtained using the LF density at the

lowest point of the drop profile.

at the location of the lowest point of the profile. The micro- and apparent contact angles

obtained according to this definition are presented in Figure 7.

Definition 3: Another possible definition of the contact angles is to consider that the

reference line passes through a characteristic point of the drop. As such a point, one can

select, for example, the point inside the drop where the density of TF has a maximum (see

Figure 8). In this case, the microscopic and apparent contact angles practically coincide

(θm = θa = θ).

For a smooth solid surface, the contact angles obtained for a nanodrop in the system

with ρ1,avσ
3 = 0.211, ρ2,avσ

3 = 0.120 and various values of ǫ12 are provided in Table 2.

One can see that different definitions provide very different values of the contact angles.

Even though the first definition appears to be the most natural one, we will select

below Definition 2. The reason is that the practical realization of Definition 1 is not

17
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Figure 8: Contact angle θ according to Definition 3. The cross indicates the point where the density

of TF has a maximum. The surface of the lubricating fluid (LF) (the solid curve beneath the drop) does

not participate in forming θ.

18

Page 18 of 31Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



Figure 9: FDD of LF for the case C3 and fτ = 1.36× 10−15N. The dot indicates location of the lowest

point of the drop profile and the thick line represent the line of constant density of LF passing through

this point. The magnitude of the fluid density is provided in dimensionless form as ρ2(x, h)σ3.

straightforward because of the uncertainty in the selection of point A on the actual density

profile (see Figure 5 that leads to uncertainty in determining the location of the equimolar

dividing surface. Definition 3 does not take explicitly into account the presence of LF and

for this reason seems to be inappropriate.

It is obvious that the microcontact angle depends stronger on the TF-LF interactions

than the apparent one. For this reason, below only the microcontact angle will be used.

Let us consider the application of Definition 2 to a rough surface using as an example

case C3. For this case, FDD of LF is presented in Figure 9. The dot in this figure

provides the location of the lowest point of the drop profile and the thick line represents

the line of constant density of LF passing through this point. The part of this line far

from the drop is almost straight and its extension will be used as the reference line for

the definition of the leading edges and advancing (θ1) and receding (θ2) contact angles in

the way illustrated in Figure 10. In the latter figure, the reference line is represented by

the dashed line and points A and R indicate the locations of the advancing and receding
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Figure 10: FDD of LF for the case C3 and fτ = 1.36×10−15N and profile of the drop of TF (closed white

line) along with the reference line (dashed line) defined as noted in the text. θ1 and θ2 are considered as

advancing and receding contact angles and points A and R as locations of the leading edges of the drop.

leading edges of the drop.

Following the definition of contact angle, the dependence of θ1 and θ2 on the size of

the drop and on the magnitude of the perturbative force were calculated.

In Table 3, the contact angles and sizes of the drop are presented for cases fτ = 0,

fτ = 1.36×10−15N and ρ1,avσ
3 = 0.211. In all cases, the magnitudes of the contact angles

decrease with increasing drop size. In previous papers [1, 18] in which a drop in contact

with a rough surface was considered, such a dependence of the contact angle was explained

by the change of the location of the leading edges of the drop with respect to the potential
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Figure 11: Drop profiles (closed lines) and profile of the potential (in arbitrary units) generated by a

rough solid (thick line). The solid, dashed, and dotted profiles correspond to drops with Nd = 8.8, 19.8,

and 24.9, respectively. The dots and arrows indicate the locations of the leading edges of the drop and

the forces on them due to the interaction with the solid, respectively.

of the liquid-solid interactions. In the system considered in the present paper, the drop

has no direct contact with the solid and the molecules of TF do not interact with the solid

(ǫ2,s = 0). The solid affects the drop indirectly through its interaction with LF, the latter

interacting with the molecules of TF. The largest contribution to this interaction comes

from the molecules of LF closest to the drop. The larger the density of those molecules,

the greater is the net TF-LF interaction.

In Figure 11, three drop profiles corresponding to drops of different sizes at fτ = 0 are

presented along with the locations of the leading edges of the drop defined as described

above. The thick line represents the behavior of the potential (given in arbitrary units)
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Figure 12: Calculated advancing (points) and receding (squares) contact angles as functions of external

perturbative force for cases C2 (a), C3 (b), and C4 (c). The lines are guides for eye.

generated by the rough solid in the vicinity of the drop. The magnitude of the potential

has its largest value located above the middle of the pillar (note that the potential is

negative). The calculations show that the LF density behaves similar to the potential

and, hence, the behavior of LF - drop interaction is also similar to that of the potential.

With increasing size of the drop, the leading edges are displaced to the region of weaker

horizontal interaction forces (which are defined by the horizontal component of the gradi-

ent of the interaction potential and are represented by the arrows in the figure) between

TF and LF. The decrease of those forces favors the increase of the bottom area of the

drop and the decrease of the contact angle.

In Figure 12, the dependencies of the advancing and receding contact angles on the

magnitude of the perturbative force fτ is presented for cases C2, C3 and C4. As
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expected, in all cases, the difference between θ1 and θ2 increases with increasing fτ . For

larger drops (cases C3 and C4), the receding angle θ2 has the tendency to decrease with

increasing fτ while the advancing angle θ1 has the tendency to increase. For smaller drops,

the dependence of the contact angles on fτ is not monotonous.

3.3 Sticking force

As discussed in Ref. [1], where a drop on the smooth surface of a second solid material

(SSM) covering a rough solid was examined, the microscopic origin of the sticking force

acting on the drop of TF is the external potential generated by the rough solid, which

is nonuniform both in the horizontal and vertical directions. In the case considered in

the present paper, the role of SSM is played by a lubricating fluid which interacts with

the rough solid and with TF. The former interaction is responsible for the nonuniformity

of LF which, in turn, generates a nonuniform potential acting on the drop. (One should

note, that the interaction of TF with the solid in not taken into account in the present

paper because it is negligible compared to that between LF and TF).

If, in the presence of an external perturbative force fτ , the drop remains in mechanical

equilibrium, the sticking force per molecule, fst ≡ Fst/Nd, is equal to fτ (fst = fτ ). The

largest value of fτ at which the drop remains in equilibrium (the solution of the Euler-

Lagrange equations eq 3 does exist) is equal to the so called critical sticking force fst,c per

molecule of the drop. Several values of the force fst,c along with the net critical sticking

force per unit length in the y-direction Fst,c are provided in Table 4.

Figure 13 represents the calculated sticking force as function of δ ≡ cos θ2 − cos θ1 for
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different sizes of the drop and the same thickness of LF (cases C2 (points), C3 (squares),

and C4 (diamonds)). The lines are the best linear fits passing through the origin. The

results are in agreement with the expression for a drop on a planar solid surface based on

classical thermodynamics

Fst = Cγlv(cos θ2 − cos θ1) (6)

where C is a constant dependent on the drop shape, and γlv is the liquid-vapor surface

tension [19, 20] which predicts a linear dependence of the sticking force on δ. (Note, that

our previous study of a nanodrop on a rough surface in the absence of a lubricating fluid

[1, 21] also provided a linear dependence between those two quantities.) Because for a

macroscopic drop γlv as well as C (for a cylindrical drop) are constant the slope of the

line does not depend on the size of the drop, and the sticking force is independent of the

drop size. However for a nanodrop, one can see from Figure 13, that the slope of the

dependence of Fst on δ decreases with increasing drop size (see Table 4 for drop sizes). In

terms of macroscopic thermodynamics, such a behavior may be caused by the dependence
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Figure 13: Dependence of the sticking force on δ = cos θ2 − cos θ1 for the cases C2 (solid line), C3

(dashed), C4 (dotted). The points, squares, and diamonds present results of calculations. The lines are

the best linear fits passing through the origin.

of γlv on the distance from the upper surface of the pillars because of the dependence of

the density of LF vapor on this distance.

In Figure 14 the best linear fits for the sticking force as function of δ are presented

for different thicknesses of LF, which correlate with ρ1,avσ
3 and for the same drop size

(Ndσ = 8.8) (Cases C1, C3 and C5). In this case, the increase of the thickness of the

LF layer results first in a decrease of the slope of Fst vs δ dependence (transition from

case C1 (solid line) to case C3 (dashed line) which is followed by the increase of this slope

(transition from case C3 to case C5 (dotted line).
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Figure 14: Dependence of the sticking force on δ = cos θ2 − cos θ1 for the cases C1 (solid line), C3

(dashed), C5 (dotted). The points, squares, and diamonds present results of calculations. The lines are

the best linear fits passing through the origin. The thickness of the lubricating fluid is the smallest for

case C1 and largest for C5.

26

Page 26 of 31Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



4 Conclusion

In the present paper, a nanodrop on the surface of a lubricating fluid covering a rough solid

surface is considered from a microscopic point of view on the basis of the two-component

density functional theory in the presence of an external horizontal perturbative force. For

such a system, the comparable values of the thickness of TF-LF interface and of the size

of a nanodrop of TF on the surface of LF leads to uncertainty in the definition of the

contact angles (advancing and receding) characterizing the nanodrop. Analyzing several

possible definitions of the drop profile and of the surface of the lubricating fluid, the most

plausible one was selected and the contact angles (advancing and receding) were calculated

for various sizes of the drop as functions of the perturbative force. For smaller sizes, this

dependence has a maximum, while for larger sizes of the nanodrop it is monotonous. This

suggests, that there is a critical size of the drop at which the dependence of contact angles

on the external force transforms from nonmonotonous to monotonous.

The sticking force which maintains the drop equilibrium is equal in magnitude and

opposite in direction to the horizontal external force acting on the drop. It has a linear

dependence on cos θ2 − cos θ1 which is similar to that for a macrodrop. The maximum

possible sticking force (critical sticking force) was calculated as the largest external force

at which the Euler-Lagrange equation has a solution.

It is natural to compare the obtained results with those obtained in Ref. [1] for a drop

on a smooth surface of a solid material covering a rough surface. However because of the

substantial difference of the considered systems and interaction parameters, a quantitative
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comparison is impossible. For this reason, we restrict to a qualitative comparison of the

results obtained in Ref. [1] and in the present paper.

Two main differences between the drop shapes and composition can be mentioned.

A drop of a one-component fluid on the surface of a solid has a flat contact area with

the solid and the fluid density distribution in the vertical direction is oscillatory close

to the surface of the solid (see, for example, Fig. 6 in Ref. [1] and Fig. 5 in Ref. [16]).

In contrast, a drop of a test fluid on the surface of a lubricating fluid has a nonplanar

contact area and a nonoscillating behavior of the TF density distribution in the vertical

direction (see Figures 3c,d and 4 of the present paper). Both differences occur because of

a layering effect which plays a major role in the region of fluid-solid contact and is weak

at a fluid-fluid interface.
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