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Abstract 

Ligand-functionalized nanoparticles capable of selectively binding to diseased versus 

healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene 

therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to 

undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to 

quantitatively determine net surface interactions, binding valency, and selectivity between 

targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein 

density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our 

findings show highly selective binding to diseased cell surfaces can be achieved with multiple, 

weaker affinity targeting ligands that can be further optimized by varying the targeting ligand 

density, ρL. Using the approach developed in this work, nanomedicines can be optimally 

designed for exclusively targeting diseased cells and tissues.  

Introduction 

Targeted nanoparticle drug delivery systems have gained much attention for the 

preferential delivery of medicine to diseased tissues with benefits including reduced damage to 

healthy tissues and significantly lowered dosages. In nanoparticle-based therapies, targeting 

agents can be introduced to the particle surface to allow for specific binding to membrane protein 

receptors with anomalous or over-abundant expression in diseased cells. If a membrane protein is 

exclusively expressed on diseased cells, functionalization with high affinity targets (e.g., 

antibodies) allows for nanoparticles to bind strongly to cells with this protein present.
1, 2

 This 

strategy has been effective for a number of diseases such as arthritis,
3
 cancer,

4
 and multiple 

sclerosis.
5
 However, if the target protein is present at moderate levels on healthy cells, high-

affinity targeting agents lose selectivity due to adherence to both diseased and healthy cells. In 

such situations, recent work has shown that binding selectivity can be recovered by engineering 

nanoparticles with weaker targeting affinity, which require multi-valent binding that can only be 

induced at cell surfaces with abnormally high expression of the target membrane protein. This 

has been demonstrated with targeting of integrins with the reactive tripeptide sequence of 

fibronectin, RGD,
6-8

 and targeting of CD44 with hyaluronic acid (HA)
9-13

 for cancer diagnostics 

and targeted therapies.  

Designing nanoparticles for selective targeted delivery with experimental assays alone is 

challenging and labor intensive due to a variety of possible functionalization strategies. 

Comprehensive models of targeted nanoparticle therapies can provide guidance in choosing 

nanoparticle designs to narrow the parameter space for more efficient screening. Recent 

modeling efforts have aimed to characterize design parameters ranging from ligand binding 

affinity, ligand density, ligand tether length, tether valency (i.e., bi-, tri-, tetravalent tethers), 
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nanoparticle shape, and substrate (cell surface) rigidity.
14-22

 Notably, Frenkel et. al.
23

 developed 

an analytical model of ‘super-selective’ nanoparticle binding which demonstrated how weak, 

multi-valent binding allowed for selectivity for surfaces with high densities of target 

biomacromolecules. Binding affinities between ligands and target membrane proteins have been 

measured experimentally using fluorescence resonance energy transfer (FRET),
24

 nuclear 

magnetic resonance (NMR),
25, 26

 and surface plasmon resonance (SPR).
27-29

 However, these 

indirect, ensemble measurements of ligand-protein association do not directly yield single and/or 

collective molecule binding energetics. In recent work, we have developed formalism to 

calculate KD for an input ligand-receptor interaction potential allowing for realistic 

representations of these systems.
30

 This same technique is applied in this study to represent 

specific target membrane proteins overexpressed on diseased cell surfaces. Few modeling efforts 

have considered using target membrane protein densities representative of both diseased and 

healthy cell populations. In order to design nanoparticles capable of selectively binding to 

diseased cells, it is crucial to also consider the degree of binding of nanoparticles onto healthy 

cells. Quantitative measurements of membrane protein expression have been made using flow 

cytometry for target membrane proteins on healthy and diseased cells
31-34

 and we used these 

experimentally determined values as inputs into our model.  

In this work, Monte Carlo (MC) computer simulations are used to measure the net 

interactions between ligand decorated nanoparticles and membrane proteins on healthy and 

diseased cell surfaces. Parameters most relevant towards the design of targeted drug delivery 

nanoparticles were explored to determine their effect on net surface interactions, binding 

valency, and selectivity for diseased cell surfaces. For example, KD determines how strongly the 

ligand and protein interact which leads to changes in net interactions between nanoparticles and 

cell surfaces. Since weaker binding affinities are most relevant toward selective targeting 

strategies, KD in the µM to mM range were explored. As a representative case, the membrane 

protein CD44, overexpressed in many cancerous cell types,
35-39

 was studied in this work as it has 

been exploited in cancer nanomedicines by surface functionalization with HA as a targeting 

ligand. In order to investigate realistic membrane protein densities for healthy and cancerous 

cells, a range of membrane protein densities were chosen based on flow cytometry measurements 

of CD44 expression on healthy platelets and colon carcinoma cells.
40

 In modeling these highly 

complex biological systems, exploring parameters that closely match those in real systems will 

better demonstrate what is required to design nanoparticles with high selectivity for diseased 

cells and tissues. Using our approach, a design map is constructed that shows the optimal degree 

of functionalization with targeting ligands to achieve selective binding to cancerous versus 

healthy cells and tissues. 

Methods 

Ligand-Membrane Protein Interaction Potential 

 Membrane protein receptors with an effective radius, aR, interact specifically with ligands 

on the particle surface represented as points in space. For the membrane receptor-ligand 

potential, URL, we use the form, 
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   (1) 

where r is the ligand-membrane protein separation, ks is an effective spring constant, UM is the 

receptor-ligand attractive well depth, and δ is the range of the attractive well as given by, 

 
 (2) 

The goal in this work is to model the specific interactions of biomacromolecules in these systems 

with well-defined association equilibria and using the formalism developed in prior work,
30

 KD is 

calculated for each input URL. Hard sphere interactions exist between the remaining components 

in the system. 

Monte Carlo Simulations 

As is illustrated in Figure 1, a 200 nm nanoparticle decorated with ligand receptors 

distributed with equal spacing on its surface was allowed to translate and rotate in 3D above a 

protein receptor functionalized substrate (i.e., cell surface). Generation of ligand configurations 

and execution of nanoparticle rotations is described in detail in our prior work.
30

 Target 

membrane proteins were represented as spheres with radius aR = 5 nm that diffuse in 2D above 

the cell surface with a surface area of 1 µm
2
 and interact specifically with ligands on the particle 

surface as described above (Eq. 1). The radius of the membrane proteins in our study were 

estimated based on the size of the extracellular hyaluronic acid-binding domain of CD44 as 

determined by X-ray crystallography/NMR.
41

 Ligands are placed (aR + δ) normal to the particle 

surface to prevent steric hindering of ligand-membrane protein binding. The particles are 

allowed to equilibrate above the surface for 5 x 10
5
 MC steps and particle-cell surface separation, 

h, is then monitored for 2 x 10
7
 MC steps. Histograms of h sampled, p(h), are constructed and 

potentials of mean force, W(h), are determined with a Boltzmann probability analysis as, 

 

( ) ( ) ( ) ( )0 0/ ln /W h W h kT p h p h− = −      
 

(3) 

where W(h0 = 100 nm) = 0 kT was chosen as the reference state in each case as at this height, 

nanoparticles are outside of range for ligand-receptor mediated bridging interactions with the 

cell. The number of ligand-membrane protein bonds, NB, was monitored in each step and 

histograms were constructed for each sampled binding valency. The fraction of bound particle 

configurations, where NB ≥ 1, was also monitored over the course of each simulation. 

Results & Discussion 
Particle-Cell Net Interaction Potentials  

Nanoparticle-cell interaction potentials were determined for a range of membrane protein 

targets with varying levels of expression. By constructing histograms from the h sampled in each 

case, potential energy profiles can be determined using Eq. (3). In Fig. 2, particle-cell surface 

interaction potentials are shown for fixed particle ligand density, ρL = 1820/µm
2
, and 5 different 

membrane protein surface receptor densities, ρR, over a physiologically relevant range (64/µm
2
 – 

256/µm
2
).

40
 Ligand-membrane protein mediated particle-cell surface interaction potentials are 

then determined at each ρR for KD ranging from 40 – 5200 µM, representative of KD range for 
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CD44-HA,
25

 to determine how affinity for the target membrane protein impacts the effective 

interaction of the particle with the cell. 

In Fig. 2A, net particle-cell interaction potentials are shown at ρR = 256/µm
2
 with KD from 

120-5200 µM. At KD = 5200 µM and 630 µM (black and red circles), the particle has no net 

attractive interactions with the cell surface and at h < 10nm, the particle has a net repulsive 

interaction the cell surface. Repulsive interactions with the cell surface at h < 10 nm (2aR) are 

due to repulsive interactions between the membrane protein receptors and nanoparticle surface. 

At these low binding affinities (UM from 1-2 kT), the effective particle-cell surface attraction 

generated by bonds formed is insignificant in comparison to the net repulsion due to the presence 

of membrane proteins on the cell surface. When the affinity is increased to KD = 460 µM and 120 

µM (green and yellow circles), net attractive particle-cell interactions are induced once the 

receptors come within range of interacting with the membrane proteins at h < 20 nm. The 

attractive well depth increases as a function of binding affinity as ensembles of ligand-membrane 

protein bonds form between the particle and the surface.  

The expression of membrane proteins was decreased to measure these same particle-cell 

surface interactions with levels expected on healthy cells. Net particle-cell interaction potentials 

were determined for ρR = 196/µm
2
 (Fig. 2B), 100/µm

2
 (Fig. 2C), and 64/µm

2
 (Fig. 2D). It is 

again seen at lower binding affinity cases with KD = 5200 µM and 630 µM (black and red), no 

net attraction is generated as one would expect with lowered membrane protein densities. The 

net repulsion due to hard sphere interactions between the particle and surface ligands with the 

membrane proteins decreases in strength as their density on the cell surface decreases. As the 

affinity increases to KD = 460 µM and 120 µM, net attractive interactions are again induced with 

the magnitude of the attractive well depth decreasing as membrane protein density decreases. In 

Fig. 2B and C, potentials are not shown for KD = 40 µM (UM = 5 kT) as the nanoparticle 

remained tightly bound the cell surface the duration of the simulation and interaction potential 

could not be calculated from equilibrium sampling using Eq. 3.  

In Fig. 2C and D, potentials are shown for KD = 40 µM as adequate sampling was 

obtained for these lower membrane protein densities. However, the attractive well depth for this 

case only decreases to ~3 kT at the lowest (healthy) cell expression levels shown which would 

lead to significant association of the particle to the cell. Irreversible binding to the cell surface 

independent of ρR was observed for all cases with KD<40µM. The irreversible binding seen in 

these cases is indicative of very strong net attraction (W<<-5 kT) to both healthy (low ρR) and 

cancer (high ρR) cell surfaces. Due to the strong interactions in these cases, only small height 

fluctuations were observed over the course of the simulation and potential profiles could not be 

quantitatively determined for these cases. Alternative methods such as umbrella sampling can be 

used to determine potential profiles with strong net nanoparticle-cell surface interactions.
30

 In the 

following sections, targeting ligands with higher binding affinity will also be characterized to 

determine their impact on binding valency and selectivity of binding to cell surfaces. 

Particle-Cell Surface Binding Valency: Fixed ρL, Varying KD 

To introduce selectivity for specific cell surfaces, ligand-membrane protein mediated 

interaction potentials can be tailored based on KD and ρR of the target membrane protein. 

Binding valency on the particle scale becomes an important factor in designing particles 

selective to diseased cells with specific membrane protein expression levels. For weaker affinity 

targets with KD in µM range, multiple ligand-membrane protein bonds form in parallel to 
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generate significant net particle-cell attraction as shown in Fig. 2. Fig. 3 illustrates how this 

particle-cell binding valency varies over a range of KD and ρR for nanoparticles with ρL = 

1820/µm
2
. 

 In Fig. 3A-C, representative snapshots are shown from below the particle to show the 

number of bonds present with KD = 120 µM and NL = 229 at varied ρR. This glass-bottom view 

of the particle above the cell surface helps to visualize how particle-cell binding valency changes 

at each membrane surface density. For the membrane proteins (small spheres), a linear 8-bit 

color scale is used to indicate receptor-ligand binding energy, URL, where particles turn from 

white when unbound (URL = 0) to red when tightly bound (URL = UM). When ρR = 64/µm
2
 

shown in Fig. 3A, only a single bond is present between the particle and cell surface. When ρR = 

144/µm
2
 shown in Fig. 3B, multi-valent particle-cell binding is seen with 3 ligand-protein bonds 

formed simultaneously. Particle-cell binding valency further increases at ρR = 256/µm
2
, shown in 

Fig 3C, with 6 bonds present. The binding energy of each bond formed also varies in magnitude 

and is clearly shown in each case with the URL color scale in Fig. 4. The number of bonds and 

distribution of bond energies will ultimately determine the net interaction induced between the 

particle and surface.  

In Figure 3D, the mode of the particle-cell binding valency from all bound particle 

configurations is shown as a function of KD and ρR for more quantitative comparison. The mode 

of binding valency, mode(NB), is the number of bridges most frequently present between the 

nanoparticle and cell during the course of each simulation. This value represents the most likely 

binding configuration sampled by the nanoparticle on the cell surface and clearly shows how 

binding valency changes as a function of KD, ρL, and ρR. For the weakest binding affinities with 

KD from 5200 µM - 460 µM, the particle-cell interactions are largely monovalent which explains 

the weak net particle-cell interactions seen in Fig. 2. At KD = 120 µM, particle-cell binding 

valency transitions from monovalent binding at low membrane protein densities to multi-valent 

binding at higher membrane protein densities. This shift in binding valency explains the 

sensitivity of the net particle-cell interactions to ρR seen in Fig. 3. Multi-valent binding valency 

occurs at all KD > 120 µM on each cell surface independent of membrane protein density. With 

multi-valent particle-cell binding at both healthy and diseased membrane protein expression 

levels, net attractive interactions will be present at all cell surfaces leading to a loss in selectivity.  

Particle-Cell Surface Binding Valency: Fixed KD, Varying ρL  

The valency of particle-cell binding can also be tuned by changing the density of ligands, 

ρR, functionalized on the nanoparticle. This design parameter allows us to engineer nanoparticles 

to selectively bind to cells given a specific KD and ρR. We demonstrate this for a target 

membrane protein with a specific KD = 460 µM and ρR varied from 64/µm
2 

(healthy cells) to 

256/µm
2
 (diseased cells) with nanoparticles functionalized with varying densities of targeting 

ligands, ρL. Fig. 4 shows simulations snapshots to visualize changes in valency for each ρL 

investigated and in Fig. 4A-C with quantitative comparison of all cases in Fig. 4D. 

In Fig. 4A-C, representative snapshots are shown again below the particle with an 8-bit 

linear color scale of URL for all membrane proteins for an example case with ρR = 256/µm
2
. With 

ρL = 810/µm
2
 (Fig. 4A), only a single bond is present between the particle and cell surface. With 

ρL increased to 1820/µm
2 

(Fig. 4B), multi-valent bonding is seen with 2 ligand-membrane 

protein bonds present. When ρL is further increased to 7300/µm
2
 (Fig. 4C), 7 membrane proteins 
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have tightly bound to ligand receptors on the particle. These snapshots clearly visualize how 

changes in ligand density on the nanoparticle surface greatly impact binding valency.  

In Fig. 4D, we quantitatively examine the effects of ρL on particle-cell binding valency 

with cell surfaces with varied ρR. With ρL = 810/µm
2
 and 1820/µm

2
, the particle only binds 

monovalently with the cell surface at all target membrane protein densities. At ρL = 7300/µm
2
, 

we begin to see multi-valent binding that increases as a function of ρR. As ligand-membrane 

protein binding is highly reversible at such high KD, larger numbers of ligands on the 

nanoparticle surface must be present for multiple ligand-receptor bonds to be formed in parallel. 

These results illustrate how binding valency can be tuned with particle design. In order to 

enhance selectivity in these systems, a shift from monovalent to high order, multi-valent binding 

allows for tuning of particle-cell interactions from weak and reversible to strong and irreversible. 

In the next section, we will discuss how nanoparticle design impacts binding and selectivity in 

these systems and what is required for selective targeting. 

Binding vs. Selectivity of Targeted Nanomedicines for Cancer vs. Healthy Cells 

Typically in designing nanoparticles for targeted cancer therapies, a target membrane 

protein is identified that is expressed at abnormally high levels on cancer cells compared to 

healthy cells. Nanoparticles can then be functionalized with a ligand that interacts specifically 

with the target membrane protein to preferentially bind to cancer cells. To measure the strength 

of binding to cancer cell surfaces, the fraction of bound states, θ, is monitored over the course of 

each simulation which is defined as,  

 /bS Sθ =  (4) 

where S is the total number of states and Sb  is the number of states where the nanoparticle is 

bound to 1 or more membrane protein receptors (Nb ≥ 1). θ is inversely proportional to W(h) as 

the fraction of bound states will increase as W(h) decreases (i.e. net attraction increases). While 

W(h) can only be determined quantitatively for certain cases with adequate equilibrium 

sampling,  θ can be calculated for all cases and serves as an order parameter to show the degree 

of nanoparticle binding to the cell surface allowing for comparison across a range of design 

parameters. This allows us to identify repulsive (θ=0), reversible (θ<1) and irreversible (θ=1) 

binding between nanoparticles and cell surfaces based on measured θ. Selectivity, χ, is then 

defined as, 

   (5) 

where the subscripts refer to cancer (C) and healthy (H) cell surfaces where ρR = 256/µm
2 

and ρR 

= 64/µm
2
, respectively. Figure 5 presents two-dimensional (2D) contour maps of specificity and 

selectivity as a function of ρL from 1000-7000//µm
2
 and KD from 10-5000 µM. The data shown 

in Figure 5 summarizes results from a total of 220 simulations and 2D contour maps allow us to 

clearly visualize how changes in ρL and KD impact binding and selectivity in these systems.  

The fraction of bound states, θ, as a function of ρL and KD are shown in Fig. 5A where 

white indicates no binding to the cell surface (θ=0) and red indicates strong binding to the cell 

surface (θ=1). Irreversible binding to cancer cell surfaces is seen for KD < 100µM for all values 

of ρL evaluated and the density of targeting ligands appears to have little effect on net 

nanoparticle-cell surface interactions (inset image, closed red circle). For targeting ligands with 

KD between 100-500 µM, binding at the cell surface becomes more sensitive to changes in ρL. At 
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ρL>3000/µm
2
, high θ values are observed indicating irreversible binding with the cell surface, 

and then transitions to intermediate θ at lower ρL <3000/µm
2
, indicating reversible binding. At 

KD > 500 µM, low θ values are measured indicating ρL within this range of densities is 

insufficient to induce any binding at the cell surface (inset image, closed white circle).  These 

findings are consistent with earlier results to show that more attractive receptor-ligand 

interactions (decreasing URL, KD) or multi-valent binding dependent on  ρL, lead to strong 

adhesion of targeted nanomedicines to the surface of cancer cells. 

Next, the selectivity for cancer versus healthy cell surfaces as a function of ρL and KD are 

shown in Fig. 5B where white indicates low selectivity (χ=1) and blue indicates high selectivity 

(χ=5). At KD < 30 µM, low χ values are observed for all values of ρL and shows changes in ρL do 

not impact selectivity for targeting with these stronger binding affinities. Selectivity becomes 

more sensitive to changes in ρL with KD between 30-200 µM where decreases in ρL lead to 

improvements (i.e., an increase in χ) in selectivity.  At KD > 200 µM, high values of χ are 

observed for all ρL and it again appears to have little impact on selectivity. Overall, these results 

are consistent with our previous findings. Net particle-cell interactions are less sensitive to 

changes in ρL and ρR with targeting ligands of higher binding affinity (KD < 30 µM) where 

multiple ligand-receptor bonds in parallel are not required to induce strong adhesion. The 

requirement of multi-valency on the particle scale becomes clear in the intermediate range of KD 

from 30 to 200 µM and results in increasing χ with decreases in ρL. We find at even lower 

binding affinities that selectivity is relatively high for all values of ρL which may seem counter-

intuitive, but it is important to remember that selectivity is a comparison of binding to healthy 

(low ρR) and cancer (high ρR) cell surfaces. While weak, reversible binding at cancer cell 

surfaces is observed for all ρL at these low binding affinities (Fig. 3A), binding can be further 

reduced at healthy cell surfaces with lower membrane protein density. 

Optimal Design of Selective Targeted Nanomedicines 

The ideal targeted cancer nanotherapy preferentially accumulates at the tumor site which 

requires nanoparticles to be adhesive to cancer cells and non-adhesive to healthy cells. The 

ultimate goal of our study is to design selective targeted nanomedicines with both of these 

qualities as we have discussed above, strong binding (high θ) and highly selective (high χ) to 

cancer cells. To determine optimal targeted nanomedicine designs with both of these properties, 

we introduce an empirically-derived selective targeting parameter, β, defined as, 

 
  (6) 

where θ and χ are normalized to scale from 0 to 1 based on minimum and maximum measured 

values and thus equally contribute to β. The aim of β is to provide a single parameter that 

accounts for both the binding and selectivity of nanoparticle designs, as both of these qualities 

are important to selective targeting. For example, high affinity and significant binding to all 

cells, captured by increases in θ, while important for particle immobilization on cell surfaces 

does not favor selectivity. Multi-valent, weak specific interactions favor high selectivity, 

captured by a large χ. However, this effect works in opposition to significant particle binding 

onto cancer cell surfaces necessary for uptake. As a linear combination of θ and χ, β captures the 

trade-off between these two effects where it suggests an optimal when the two effects balance 
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each other. To illustrate the meaning of β with a few limiting cases, β=-1 indicates high 

selectivity and weak binding to cancer cells, β=1 indicates low selectivity and strong binding, 

and β=0 indicates a balance in binding and selectivity, optimal for targeting cancer cells. A 2D 

contour map of β as a function of ρL and KD is shown in Fig. 6 with a linear spectrum color scale 

from blue when β=-1 to white when β=0, to red when β=1. With this color scheme, we are able 

to clearly distinguish the targeting characteristics of each design. 

With this tri-color scale in Fig. 6, three distinct regimes become apparent in β as a 

function of KD. In the red region of the map (β>0) at higher binding affinities, strong binding is 

induced at both healthy and cancer cell surfaces at all ρL explored in this work which leads to 

low selectivity. Designs in this red region will lead to off-target binding of healthy cell surfaces. 

In the white region of the map (β≈0) at intermediate binding affinities, nanoparticles show 

selective targeting of cancer cells that can be optimized as a function of ρL. In the blue region of 

the map (β<0) at low binding affinities, all cases show high selectivity, but will bind too weakly 

to cancer cell surfaces to accumulate at the tumor site. The trend is graphically shown with Fig. 

6B-D where strong multi-valent binding is exhibited at both healthy and cancer cell surfaces in 

Fig. 6B (red region), multi-valent binding is exhibited at cancerous but not healthy cell surfaces 

in Fig. 6C (white region), and no binding is exhibited to either healthy or cancer cell surfaces in 

Fig. 6D (blue region).  

These findings help to illustrate a few important design considerations for selective 

targeted nanomedicines. Ligands with weak affinity for target membrane proteins are best suited 

for use in selective targeting. Weak affinity targeting ligands with KD on the order of µM require 

multi-valency on the particle scale to induce strong adhesive interactions at cell surfaces. 

Binding valency at diseased versus healthy surfaces can then be directly tuned by functionalizing 

nanoparticles with an optimal density of targeting ligands. Use of these computational screening 

methods for selective targeting can aid design of these systems. Future studies will consider the 

effects of additional design considerations including targeting ligand representation (e.g. polymer 

tethers), ligand valency, and nanoparticle shape to develop more comprehensive models of 

targeted nanoparticle drug delivery systems. We also aim in future work to develop analytical 

expressions to establish relationships between design parameters such as KD, ρL, and ρR and 

simulation/experimental outcomes such as W, θ, χ, and β which will further enhance the 

interpretive and predictive capabilities of this model. 

Conclusion 

Interactions of targeted drug delivery nanoparticles with cell surfaces representative of 

cancerous and healthy tissues are investigated using Monte Carlo Simulations with realistic, 

experimentally verified binding affinities and membrane protein expression levels. By measuring 

interactions of nanoparticles with both cancer cells having abnormal over-expression of target 

proteins and healthy cells expressing normal levels of target proteins, our results show that multi-

valent nanoparticle-cell binding mediated by weak, reversible ligand-membrane protein 

interactions proved the most effective means to engineer nanomedicines with selective binding to 

cancer cell surfaces. While higher binding affinity targets are attractive due to their specificity 

for target membrane proteins, they are most appropriate when only sparse amounts are present 

on healthy cells which is not always the case for many diseases. Using lower affinity ligands to 

target for cancer cells with marked overexpression of target membrane proteins, nanoparticles 

can be designed with the requirement of multi-valency on the nanoparticle scale to induce 
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adhesion to the cell surface leading to much improved selectivity for specific cell populations. 

With this model, design of selective targeting for drug delivery nanoparticles can be optimized 

for specific diseases and designs maps can be generated to identify the optimal density of 

targeting ligands. In future studies, comparisons between the net interactions determined using 

this computational model and experimental measurements of nanoparticle-cell interactions will 

verify the utility of this model and help to identify additional parameters for further refinement 

of our modeling approach. 

Supplementary Information 

Movie showing simulation renderings of targeted (ρL=1820/µm
2
, KD=120 µM) 

nanoparticle selective binding to cancer (ρR = 256/µm
2
) vs. healthy (ρR = 64/µm

2
) cell surfaces. 

Target membrane proteins have linear color scale depending on binding energy ranging from 

white when unbound (URL = 0) to red when tightly bound (URL = UM). 
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Figure Captions 

Figure 1. Schematic of receptor-ligand mediated nanoparticle-cell interactions.   

Figure 2. Particle-cell surface interaction potentials for nanoparticles with targeting ligand 

density, ρL = 1820/µm
2
 and membrane protein density, ρR = 256 µm

2
 (A), 196µm

2
 (B), 100 µm

2
 

(C), and 64 µm
2 

(D) and receptor-ligand dissociation constant, KD = 5200 µM (black), 630 µM 

(red), 460 µM (green), and 120 µM (yellow) and 40 µM (blue).  

Figure 3. Representative snapshots with glass-bottom view beneath nanoparticle with targeting 

ligand density, ρL = 1820/µm
2
 and membrane protein density, ρR = 64/µm

2
 (A), 144/µm

2
 (B), and 

256/µm
2
 (C) and receptor-ligand dissociation constant, KD = 120 µM. Target membrane proteins 

have linear color scale depending on binding energy, URL, ranging from white when unbound 

(URL = 0) to red when tightly bound (URL = UM). (D) Mode binding valency, mode(NB), of 

surface-bound nanoparticle configurations as a function of KD and ρR. 

Figure 4. Representative snapshots with glass-bottom view beneath nanoparticle with targeting 

ligand density, ρL = 810/µm
2
 (A), 1820/µm

2
 (B), and 7300/µm

2  
(C) and membrane protein 

density, ρR = 256/µm
2 

and receptor-ligand dissociation constant, KD = 460 µM. Target membrane 

proteins have linear color scale depending on binding energy, URL, ranging from white when 

unbound (URL = 0) to red when tightly bound (URL = UM). 
 
(D) Mode binding valency, 

mode(NB), of surface-bound nanoparticle configurations as a function of KD and ρL. 
 

Figure 5. Two-dimensional (2D) contour maps of (A) binding to cancer cell surfaces and (B) 

selectivity for cancer versus healthy cell surfaces as a function of targeting ligand density, ρL, and 

receptor-ligand dissociation constant, KD. Binding fraction, θ=θC, is shown on a linear spectrum 

color scale from white when θ=0.01 to red when θ=1 and selectivity, χ=θC/θH, is shown on a 

linear color spectrum scale from white when χ=1 to blue when χ=5. The subscripts refer to 

cancer cell surface, C, where membrane protein density, ρR, is equal to 256/µm
2
 and healthy cell 

surface, H, where ρR = 64/µm
2
. Inset images in (A) are representative snapshots with glass-

bottom view beneath nanoparticle. Representative snapshots from healthy and cancer cell 

simulations are shown in (C) and (D) corresponding to the conditions marked with closed white 

and blue circles shown in (B). 

Figure 6. Two-dimensional (2D) contour map of targeting selectivity for cancer versus healthy 

cell surfaces of targeting ligand density, ρL, and receptor-ligand dissociation constant, KD. 

Selective targeting parameter, β (defined in Eq. 6), is shown on a linear spectrum color scale 
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from blue when β=-1 to white when β=0 to red when β=1. Based on this color scheme, blue 

indicates weak binding and high selectivity, red indicates strong binding and low selectivity, and 

white indicates a balance between binding and selectivity (i.e., optimal for selective targeting). 

Representative snapshots from healthy and cancer cell simulations with a glass-bottom view 

beneath nanoparticles are shown in (B), (C) and (D) corresponding to the conditions marked with 

closed red, white and blue circles shown in (A). 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Binding of targeted drug delivery nanoparticles to healthy and cancerous cells is investigated 

using Monte Carlo Simulations to determine the optimal degree of functionalization with ligands 

for selective targeting. 
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