Nanoscale

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

www.rsc.org/xxxxx

Influence of Electron Storing, Transferring and Shuttling Assets of Reduced Graphene Oxide at the Interfacial Copper Doped TiO₂ p-n Hetero-junction for the Increased Hydrogen Production

Sundaram Ganesh Babu,^a Ramalingam Vinoth,^a Dharani Praveen Kumar,^b Muthukonda V. Shankar,^b ⁵ Hung-Lung Chou,^c Kizhanipuram Vinodgopal,^{d,*} and Bernaurdshaw Neppolian^{a,*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Herein we report a simple, low-cost and scalable preparation of reduced graphene oxide (rGO) supported surfactant-free Cu_2O -TiO₂ nanocomposite photocatalysts by ultrasound assisted wet impregnation method.

- ¹⁰ Unlike the conventional preparation techniques, simultaneous reduction of Cu^{2+} (as in precursor) to Cu^{+} (Cu_2O) and graphene oxide (GO) to rGO is achieved by ultrasonic method without addition of any external reducing agent which is ascertained by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The UV-visible diffused reflectance spectroscopy (DRS) studies (Tauc plot) provide evidence that the loading of Cu_2O tailored the optical band gap of the photocatalyst from 3.21 eV
- ¹⁵ to 2.87 eV. The photoreactivity of the as-prepared Cu₂O-TiO₂/rGO samples is determined *via* H₂ evolution from water in presence of glycerol as a hole (h⁺) scavenger under visible light irradiation. Very interestingly, the addition of rGO augments the carrier mobility at Cu₂O-TiO₂ p-n heterojunction which is manifest from the utterly reduced luminescence intensity of Cu₂O-TiO₂/rGO photocatalyst. Hence rGO astonishingly enhances the photocatalytic activity as compared with pristine TiO₂ nanoparticles (NPs) and
- ²⁰ Cu₂O-TiO₂, by factors of ~14 and ~7, respectively. An utmost H₂ production rate of 110968 µmol h⁻¹ g_{cat}^{-1} is obtained with a 1.0% Cu and 3.0% GO photocatalyst composition which is extremely superior than the previously reported graphene based photocatalysts. Besides, the present H₂ production rate is much higher than that of precious/noble metal (especially Pt) assisted (as co-catalyst) graphene based photocatalysts. Moreover, to the best of our knowledge, this is the highest H₂ production rate (110968
- $_{25}$ µmol h⁻¹ g⁻¹_{cat}) by a graphene based photocatalyst through the splitting of water under visible light irradiation.

Introduction

The increasing energy demand and the undesirable environmental consequences arising from the burning of fossil fuels have led to

- ³⁰ search for renewable and environmentally benign alternative energy recourses.^{1–4} Owing to its high combustion energy and zero emission, hydrogen has always been a primary candidate as a potential fuel.^{5–8} One of the best ways to produce H₂ from renewable sources is water splitting.^{9,10} Honda and Fujishima first
- ³⁵ reported the use of a TiO₂ electrode for water splitting in 1972.¹¹ Following this initial breakthrough, powdered photocatalysts and semiconductor photoelectrodes for water splitting have been extensively studied for renewable energy, applications, recycling polluted water or air, etc.^{12–14} Among the existing methodologies
- ⁴⁰ for H_2 generation, powdered-type photocatalysts are preferable because it requires only light source and a water pool containing photocatalyst powders. This system also offers an interesting opportunity to generate H_2 in a more energy-efficient manner in which the photo-excited electron-hole pairs can be generated by 45 simple electromagnetic irradiation with energy higher that that aff

⁴⁵ simple electromagnetic irradiation with energy higher than that of

the band gap energy. The photogenerated electrons reduce H⁺ ions in the aqueous solution to form H₂.¹⁵⁻¹⁷ Several promising photocatalysts such as TiO₂,¹⁸ Fe₃O₄,¹⁹ KNbO₃ microcubes,²⁰ NiO/NaTaO₃,²¹ Cu₂O,²² GaN:ZnO,²³ La₂Ti₂O,²⁴ and Sr₂Nb₂O,²⁵ 50 have been identified. Nonetheless, the low efficiency of photocatalysis is due to competitive electron-hole recombination. This can be overcome by using efficient electron transport matrices, such as conductive polymer films or high-carrier migrant carbon nanostructures.^{26,27} Since the delocalized 55 conjugated carbon materials like CNTs and graphene are well matched with the photocatalysts in energy level, an intensive interface hybrid effect emerges between these materials, thereby causing rapid charge separation and slow charge recombination in the electron-transfer process.²⁸ Furthermore, it tends to prevent 60 the aggregation of metal nanoparticles (MNPs) during the course of the reaction which is also a prime limitation in photocatalysis.²⁹ So the use of solid supports especially carbonaceous materials is finding greater application in water splitting reaction. For instance, Wang et al. proposed that the 65 photogenerated electrons in the space-charge regions may be

transferred into rGO, while the holes remain on the semiconductor (TiO₂) material, thus retarding the recombination of electrons and holes.³⁰ Similarly, Jia *et al.* proposed that N-doped graphene enhances the photocatalytic activity towards ⁵ water splitting under visible light illumination and they observed the relative order of reactivity for H₂ production was N-

graphene/CdS > graphene/CdS > GO/CdS > CdS.³¹

Although the solid support matrices retard the electron-hole pair recombination, possess high carrier mobility and also prevent

- aggregation, the activity enhancement was not up to the expected level in many systems. For illustration, graphene addition increased the H₂ production rate (1.02 fold) from 195 µmol h⁻¹ to 298 µmol h⁻¹ with Sr₂Ta₂O₇ photocatalyst.³² Likewise, the bare TiO₂ produced 5 µmol h⁻¹ of H₂ while the loading of rGO ¹⁵ increased that to 20 µmol h^{-1.33} On the other hand, in some other
- cases, the activity was inadequate even after loading of graphene. Nanocomposites of TiO₂ (Degussa P25) supported over hydrothermally reduced GO produced 75 μ mol h⁻¹ of H₂ under UV light irradiation.³⁴ TiO₂-MoS₂/graphene was used as an UV
- ²⁰ active catalyst and the H₂ generation was found to be 165 µmol h⁻¹. GO wrapped amine functionalized TiO₂ was used for the production of 0.8 µmol h⁻¹ of H₂.³⁵ Li *et al.* demonstrated photocatalytic H₂ production using TiO₂ decorated over graphene nanosheets which in turn generated 160 µmol h⁻¹ g⁻¹_{cat} of H₂.³⁶
- ²⁵ Clearly, considerable improvements in terms of activity are necessary to fully exploit graphene based photocatalysts in water splitting. Herein, we report Cu₂O-TiO₂/rGO photocatalyst with phenomenal water splitting ability. To the best of our knowledge this is the highest H₂ production rate reported so far using a
- ³⁰ graphene supported photocatalytic system and also it is worth to mention here that ~7 fold enhancement was observed with the loading of rGO.

Results and Discussion

Powder X-ray diffraction

- ³⁵ The phase purity and crystallinity of the synthesized photocatalysts (TiO₂ NPS and Cu₂O-TiO₂/rGO) was investigated using powder X-ray diffractometer, as shown in Fig. 1. The phase pure anatase TiO₂ NPs (calcined at 400 °C for 2 h) was literally matched with the JCPDS card number 21-1272.³⁷ But a
- ⁴⁰ significant change in anatase phase TiO₂ took place after it calcined at a higher temperature (500 °C for 5 h) during the synthesis of Cu₂O-TiO₂/rGO photocatalyst. The additional peaks at 2θ angles of 27.61, 35.68, 41.48, 44.32 and 56.75° in Cu₂O-TiO₂/rGO corresponds to the (110), (101), (111), (210) and (110)
- ⁴⁵ plans of rutile TiO₂ (JCPDS card number is 89-0555). It is widely known that the particular proportion of mixed phase TiO₂ (anatase and rutile, P-25 TiO₂ as an example) has always showed better photocatalytic performance rather than individual faceted TiO₂.³⁸ The weight percentage ratio of anatase to rutile phase
- ⁵⁰ according to peak area [with respect to the (101) plane at $2\theta=25.52^{\circ}$ of anatase phase and (110) plane at $2\theta=27.61^{\circ}$ of rutile phase] was found to be ~74:26 which is an advantage of the present photocatalyst for the enhanced performance. This anatase and rutile ratio is almost similar to P-25 Degussa TiO₂ as a bench
- ⁵⁵ mark commercially available photocatalysts. Further the decrease in peak width as compared to the pristine TiO₂ NPs inferred the crystalline nature of the Cu₂O-TiO₂/rGO photocatalyst. Besides, the diffractogram of Cu₂O-TiO₂/rGO

exhibited the peaks at the angles of 29.58, 36.23, 42.52, 52.60, 59.66, 73.35 and 77.79 accorded to the (110), (111), (200), (211), (220), (311) and (222) planes which confirmed the presence of Cu₂O (JCPDS card number is 77-0199).³⁹ This provides clear evidence for the reduction of copper precursor during ultrasound irradiation, from Cu²⁺ to Cu⁺ (Cu₂O).

65 Fig. 1 Powder X-ray diffraction patterns of pristine TiO₂ NPs and Cu₂O-TiO₂/rGO photocatalysts.

UV-vis diffuse reflectance spectra

The UV-vis absorbance spectra recorded in diffuse reflectance mode and Tauc's plots of TiO₂ NPs, Cu₂O-TiO₂ nanocomposite 70 and Cu₂O-TiO₂/rGO photocatalyst are depicted in Fig. 2. It is clearly seen from Fig. 2a that the absorption edge of pure TiO_2 NPs is at 386 nm corresponding to the band gap energy of 3.21 eV (Fig. 2b), whereas the band gap energy for Cu₂O loaded TiO₂ NPs is at 2.87 eV. The red shift of absorption edge from 386 nm 75 (for TiO₂ NPs) to 431 nm (for Cu₂O-TiO₂) is due to the Cu₂O. But addition of rGO had no effect on the absorption edge which is expected because rGO serves as a high carrier migrant solid support for the Cu₂O-TiO₂ nanocomposite. In addition, a shoulder in the absorption spectra was observed for both Cu₂O-TiO₂ and 80 Cu₂O-TiO₂/rGO which is due to interface charge transfer (IFCT) from TiO₂ valance band (VB) to Cu₂O and can be found around 450 nm.⁴⁰ The DRS results clearly demonstrate that Cu₂O loading shifts the absorption edge of TiO₂ NPs into the visible region, which in turn decreases the band gap energy and thereby 85 improves and extends the photo-absorption and photocatalytic performance of TiO₂ NPs into the visible region.

Fig. 2 (a) UV-vis absorbance (recorded in DRS mode) spectra and (b) Tauc plots of TiO_2 NPs, Cu_2O - TiO_2 and Cu_2O - TiO_2/rGO .

SEM-EDS

To study the surface morphology and to determine the weight percentage of Cu and Ti in the Cu₂O-TiO₂/rGO photocatalyst, field emission – scanning electron microscope (FE-SEM) and ⁵ energy dispersive spectroscopy (EDS) analysis were performed (Fig. 3). A homogeneous distribution with almost spherical shaped Cu₂O-TiO₂ nanocomposites can be seen from the SEM images, as depicted in Fig. 3a. The purity of Cu₂O-TiO₂/rGO photocatalyst is confirmed by EDS analysis (Fig. 3b) and the ¹⁰ corresponding wt% results are listed in the table (inset of Fig. 3b).

Fig. 3 (a) SEM image of Cu_2O -Ti O_2/rGO and (b) EDS spectrum [inset: Wt% table].

TEM

- Further confirmation of particle size and uniform distribution of ¹⁵ Cu₂O-TiO₂ nanocomposites over rGO layer was investigated using transmission electron microscopy (TEM) analysis, as shown in Fig. 4. As seen from the TEM images (Fig. 4a and 4b), very small and well dispersed Cu₂O-TiO₂ were anchored tightly onto the surface of rGO layer. The histogram of Cu₂O-TiO₂ (inset
- ²⁰ of Fig. 4b) demonstrates that the Cu₂O-TiO₂ nanocomposites have a fairly broad size distribution ranging from 13 to 21 nm with a peak centered at ca. 16.1 nm. In addition, the crystalline structure of Cu₂O-TiO₂ is noticed clearly in Fig. 4. Furthermore, no free Cu₂O-TiO₂ was found in the background of the TEM ²⁵ images (apart from the rGO layer), which confirmed the complete
- utilization of Cu_2O -Ti O_2 nanocomposites.

Fig. 4 (a) and (b) TEM images of Cu_2O -TiO₂/rGO [inset particle size distribution graph].

30 XPS

XPS analysis was also used to determine the chemical oxidation states of Cu and Ti, and also to analyze the existing oxygen functionalities. Fig. 5a shows the overall spectrum of the catalysts. The presence of peaks at around 284-291, 529-535, 930-960 and

³⁵ 455-468 eV in the overall survey spectrum are due to C 1s, O 1s, Cu 2p and Ti 2p, respectively. Gil et al. reported that the oxygen functional groups (epoxy groups) on graphene oxide act as effective nucleation centers for metal NPs that assist homogeneous decoration as well as improved anchoring of metal $_{40}$ NPs on graphene oxide sheets. ⁴¹ In the present study, the presence of oxygen functional groups on GO results in the homogeneous dispersion as well as better adhesion of Cu₂O-TiO₂ nanocomposites on GO layer (Fig. 4a and 4b).

⁴⁵ Fig. 5 XPS spectra of the Cu₂O-TiO₂/rGO: (a) XPS survey spectrum, (b) high resolution C 1s spectrum, (c) high resolution O 1s spectrum, (d) high resolution Cu 2p spectrum and (e) high resolution Ti 2p spectrum.

The -COOH groups facilitate the linkage Cu₂O-TiO₂ 50 nanocomposites on GO layer by replacing the proton of -COOH.⁴² But on the other hand, the oxygen functionalities retard the carrier mobility of graphene and thereby reduce the photocatalytic activity. Hence it is essential to reduce the oxygen functional groups at-least to an extent following exfoliation or 55 after loading the metal NPs over the graphene layer. High resolution C 1s and O 1s XPS spectra gave an unambiguous picture about the existing oxygen functional groups in the graphene layer of Cu₂O-TiO₂/rGO photocatalyst. For instance, the broad peak of high resolution C 1s spectrum was 60 deconvoluted to five peaks that endorsed the presence of C-OH, C-C, C-O-C, C=O and -COOH (Fig. 5b).⁴³ Utmost reduction of C-OH, C=O and -COOH groups was presumed by considering the meager intense peaks centered at 284.8, 289.4 and 290.8 eV respectively. It was further confirmed by the deconvolution of O 65 1s spectrum which showed only three peaks that devoted to C=O, -COOH and C-O-C functionalities (Fig. 5c).44 The binding energy values of C=O and Cu-O are almost equal and hence the merged broad peak was observed at 530.8 eV. Similarly the peak at 531.4 eV was attributed to the residual -COOH and Ti-O.45

Similarly, the high resolution Cu 2p region showed two major peaks at 933.7 and 953.5 eV which attributed to the Cu $2p_{3/2}$ and Cu $2p_{1/2}$ respectively.⁴⁶ Shake-up satellite peaks are the characteristics for metallic Cu(0) or Cu²⁺ (CuO) because of its d⁹ s configuration in the ground state. Whereas in the case of Cu⁺

- (Cu₂O), the d shell is completely filled (d¹⁰) and hence the screening *via* a charge transfer into the d states is not possible, so the satellite peaks were absent for Cu₂O. The absence of shake-up satellite peaks in Cu 2p region clearly validated the existence of
- 10 Cu₂O which is obtained by the sonochemical reduction of Cu(NO₃)₂.3H₂O precursor (Fig. 5d). 47 Likewise, the high resolution Ti 2p spectrum showed two peaks centered at 459.6 and 465.3 eV which are due to Ti 2p_{1/2} and Ti 2p_{3/2} respectively. It is noteworthy that the values exactly matched with the
- ¹⁵ literatures and substantiated the presence of TiO₂.⁴⁸ Two more additional weak peaks were observed at 459.1 and 463.0 eV which accorded with the Ti–C bond that authenticated the strong adhesion of TiO₂ over rGO surface (Fig. 5e).

Photoluminescence Studies

²⁰ Fig. 6 Photoluminescence spectra of TiO₂, TiO₂/rGO, Cu₂O-TiO₂ and Cu₂O-TiO₂/rGO.

The shift in absorption edge of Cu_2O -TiO₂ compared to bare TiO₂ in the UV-vis diffuse reflectance spectra have already confirmed the formation of Cu_2O -TiO₂ heterojunction. To address the effect ²⁵ of rGO in Cu_2O -TiO₂ heterojunction on electron–hole separation,

- photoluminescence spectra (PL) was employed especially to characterize the recombination probability of bare TiO₂, TiO₂/rGO, Cu₂O-TiO₂ and Cu₂O-TiO₂/rGO photocatalysts. PL spectra in the wavelength of 420–525 nm of these photocatalysts
- ³⁰ are displayed in Fig. 6. All the photocatalysts showed similar PL spectrum with three emission peaks located at 438, 471 and 494 nm. The PL peaks at 438 and 471 nm are owing to the band edge free excitons.⁴⁹ Similarly the excitonic PL signal centered at 494 nm is directly related to surface oxygen vacancies or defects in
- ³⁵ the photocatalysts.⁵⁰ Very importantly, the luminescence intensities of TiO_2/rGO and Cu_2O-TiO_2 photocatalysts were lower than that of pristine TiO_2 , which confirmed the lower electron-hole recombination probability in TiO_2/rGO and Cu_2O-TiO_2 photocatalysts. This unveiled that rGO slow down the

⁴⁰ electron-hole pair recombination in TiO₂/rGO photocatalyst. In particular, because of the electric field associated with Cu₂O-TiO₂ nanocomposties, the electrons and holes were separated by the p-n junctions that resulted in decrease of PL intensity in Cu₂O-TiO₂ photocatalyst.⁵¹ But more interestingly, almost
⁴⁵ negligible luminescence intensity was observed with rGO loaded Cu₂O-TiO₂ photocatalyst which inferred that rGO speedup the carrier mobility at the Cu₂O-TiO₂ p-n heterojunctions. This observation implied its high efficiency in electron-hole separation and hence increased photocatalytic activity.
⁵⁰ Combining the UV-vis DRS results (Fig. 2), the PL studies further confirmed the formation of heterojunctions between TiO₂ and Cu₂O and also disclosed that rGO delayed or almost prevent the electron-hole pair recombination.

Photoluminescence Studies

⁵⁵ To understand the influence of electron storing, transferring and shuttling assets of rGO at the interfacial Cu₂O doped TiO₂ p-n hetero-junction, photoelectrical response of TiO₂, Cu₂O-TiO₂ and Cu₂O-TiO₂/rGO were studied (Fig. 7). It is clearly evident from the photocurrent measurements that the Cu₂O-TiO₂/rGO
⁶⁰ generates higher photocurrent than that of bare TiO₂ and Cu₂O-TiO₂/rGO photocatalyst confirmed the prevention of charge carriers (electron-hole pair) recombination. The stable photocurrent generated with Cu₂O-TiO₂/rGO photocatalyst further endorsed that rGO act as a potent carrier mobile layer at the Cu₂O and TiO₂ heterojunction.

Fig. 7 Photoelectrochemical studies of TiO_2 , TiO_2/rGO , Cu_2O-TiO_2 and Cu_2O-TiO_2/rGO .

Photocatalytic H₂ Production

⁷⁰ In order to understand the specific role of individual components (TiO₂, Cu₂O and rGO) of the proposed photocatalyst, different photocatalysts were tested under identical condition towards the H₂ evolution, as depicted in Fig. 8. The relative order of photocatalytic activity for water splitting was Cu₂O/rGO (5060 ⁷⁵ µmol h⁻¹ g⁻¹_{cat}) < TiO₂ NPs (7786 µmol h⁻¹ g⁻¹_{cat}) < TiO₂/rGO (8226 µmol h⁻¹ g⁻¹_{cat}) < Cu₂O-TiO₂ (16656 µmol h⁻¹ g⁻¹_{cat}) < Cu₂O-TiO₂/rGO (110968 µmol h⁻¹ g⁻¹_{cat}). The results obviously revealed that the activities of the pristine TiO₂ NPs, rGO loaded TiO₂ and rGO loaded Cu₂O were inadequate. However, the presence of co-catalyst (Cu₂O) along with TiO₂ NPs showed comparable activity to some extent. Nevertheless the combination of all the three components was necessary to achieve enhanced activity. Indeed, the effect of rGO on the photocatalyst activity ⁵ was phenomenal which increased the H₂ evolution to approximately 94312 µmol h⁻¹ g⁻¹_{cat}, *i.e.* from 16656 µmol h⁻¹ g⁻¹_{cat} (for Cu₂O-TiO₂) to 110968 µmol h⁻¹ g⁻¹_{cat} (for Cu₂O-TiO₂/rGO). In comparison with recently reported Cu₂O-TiO₂ photocatalyst which produced 18000 µmol h⁻¹ g⁻¹_{cat} of H₂,⁵² the ¹⁰ present photocatalytic system performed in presence of Cu₂O-

 TiO_2/rGO photocatalyst exhibited more than 6 fold enhancement.

Fig. 8 Splitting of water using different photocatalysts.

Effect of co-catalyst

Fig. 9 Effect of Cu loading.

¹⁵ The previous experimental results clearly prove that the presence of all the three constituents (Cu₂O, TiO₂ and rGO) are necessary to attain superior H₂ production. Hence it is very important to optimize the Cu and GO loading. In order to understand the effect of co-catalyst loading, a series of experiments were carried out
²⁰ with different Cu loaded (0, 0.5, 1.0, 1.5 and 2.0) photocatalysts and 3% GO loading was kept constant. Absence of co-catalyst, *i.e.* without Cu loaded catalyst (TiO₂/rGO) generated only meager

amount of H₂ (8226 µmol h⁻¹ g⁻¹_{cat}) which was slightly higher than the pristine TiO₂ NPs (7786 µmol h⁻¹ g⁻¹_{cat}). But the ²⁵ introduction of Cu₂O increased the activity of the photocatalyst. Cu loading was systematically varied in the catalyst and the corresponding H₂ production rates were measured. The results are shown in Fig. 9. The optimum Cu loading was found to be 1.0 wt%.

30 Effect of GO loading

As can be seen from the catalyst optimization results, the role of rGO is very crucial. A \sim 7 fold increase in H₂ production was observed following the addition of rGO i.e. from 16656 (for Cu_2O-TiO_2) to 110968 µmol h⁻¹ g⁻¹_{cat} (for Cu₂O-TiO₂/rGO). The 35 photoluminescence spectra inferred that presence of rGO prevents the electron-hole pair recombination and hence lowest emission intensity was identified with Cu₂O-TiO₂/rGO photocatalyst (Fig. 6). Optimization of the GO loading was also carried out by varying the GO loading from 0-5% with the optimized Cu loaded 40 (1.0%) photocatalyst. These results are shown in Fig. 10. The maximum H₂ evolution rate was obtained with 3 wt% rGO loaded catalyst. Any further increase of rGO loading decreased the H₂ production which might be attributable to the trade-off between the excellent charge transfer capability of rGO and its detrimental 45 effect on light absorption. Since the Cu₂O-TiO₂/rGO photocatalyst with 1.0% Cu and 3% GO loading showed maximum H₂ production efficiency, it was noted as an optimized photocatalyst for the splitting of water to produce H₂ under the present reaction condition.

50 Fig. 10 Optimization of GO loading.

Plausible Mechanism

Based on the observations, and potential energy location of CB and VB of TiO₂ and the energy of CB and VB of Cu₂O, a tentative mechanism for the H₂ production using Cu₂O-TiO₂/rGO ⁵⁵ photocatalyst is shown in Fig. 11.⁵³ The energy of CB of TiO₂ is lower than that of the CB of Cu₂O, so that the former acts as a sink for the photogenerated electrons following illumination of $\ensuremath{\text{Cu}_2\text{O}}$ since the holes move in the opposite direction from the electrons, the photogenerated holes are trapped within the Cu₂O 60 making charge separation more efficient.⁵⁴ This is supported by the photoluminescence studies that the emission intensity of Cu₂O loaded TiO₂ was much lower than that of pristine TiO₂ (Fig. 6). The electron transfer to the CB of TiO₂ is mediated via rGO surface and these electrons are subsequently involved in the 65 reduction of proton (H^+) to produce H_2 . At the same time, the h^+ trapped on the surface of the Cu₂O are scavenged by glycerol (a well known h⁺ scavenger) present in the reaction medium to produce H⁺ which in turn undergoes reduction with the photoexcited electron to produce H₂.55

Fig. 11 Proposed mechanism for the $\mathrm{Cu_2O\text{-}TiO_2/rGO\text{-}catalyzed}$ water splitting reaction.

Fig. 12 Reusability of the Cu₂O-TiO₂/rGO photocatalyst in four 5 successive experimental runs for the photocatalytic water splitting.

In addition to efficiency, sustainability / durability and recyclability are very important for commercial applications of the photocatalyst. To evaluate this, recyclability tests were carried out by evacuating the produced gases at regular intervals for the 10 next cycle and the results are depicted in Fig. 12. A constant and similar H₂ production rate was observed for four cycles. The results revealed that the Cu₂O-TiO₂/rGO photocatalyst can be effectively recycled at least for four times without an apparent decrease in its photocatalytic activity, which clearly illustrated its 15 high stability.

Conclusions

In summary, Cu₂O-TiO₂ nanocomposites over rGO layers are successfully fabricated by simple sonoreduction and subsequent wet impregnation method. The doping of Cu₂O enhances the ²⁰ photocatalytic activity by reducing the band gap energy to the

visible light region. Likewise, the loading of rGO prolongs the lifetime of the photo-generated electron-hole pairs. As in commercial Degussa P25-TiO₂, the TiO₂ NPs in the present Cu₂O-TiO₂/rGO photocatalyst also exist as mixed phases of anatase and rutile with a ratio of ~74:26. The combination of Cu₂O, mixed phase TiO₂ and few layered rGO support r enhances the photoreactivity of Cu₂O-TiO₂/rGO significantly towards H₂ evolution from water. The effect of rGO in the present photocatalytic system is phenomenal which enhances the H₂ ³⁰ generation rate from 16656 µmol h⁻¹ g⁻¹_{cat} (for Cu₂O-TiO₂) to 110968 µmol h⁻¹ g⁻¹_{cat} (for Cu₂O-TiO₂) to 110968 µmol h⁻¹ g⁻¹_{cat} (for Cu₂O-TiO₂) i.e. approximately 7 fold enrichment. More importantly, the catalyst can be recycled for at least four times without a significant loss in its activity.

Experimental Section

35 Materials

purification.

Titanium tetraisopropoxide (TTIP) and glycerol were purchased from Merck India Pvt Ltd. Graphite powder (synthetic, conducting grade, 325 mesh, 99.9995%) was from Alfa Aesar. Cu(NO₃)₂.3H₂O was procured from Loba Chemie Pvt. Ltd. All ⁴⁰ the other chemicals such as NaNO₃, KMnO₄, H₂SO₄ and solvents were used as received from Rankem, India without further

Preparation of GO and TiO₂ NPs

Graphene oxide (GO) was prepared from graphite powder using ⁴⁵ NaNO₃, KMnO₄ and H₂SO₄ by modified Hummers' method.⁵⁶ TiO₂ NPs was synthesized by hydrolysis and peptization of TTIP solution.⁵⁷ In detail, a 250 mL solution of distilled water with pH=3 (adjusted by adding HNO₃) was used as the hydrolysis catalyst. Hydrolysis of TTIP offered a turbid solution which was ⁵⁰ heated up to 60–70 °C for 20 h (peptization). After peptization process, the volume of the solution was reduced to 50 cm³ and a white suspension was produced. The prepared precipitates were washed with ethanol and dried for 3 h at 100 °C, a yellow-white powder was obtained and then it was calcinated at 400 °C for 2 h ⁵⁵ to obtain TiO₂ NPs.

Preparation of Cu₂O-TiO₂/rGO

Cu₂O-TiO₂/rGO photocatalyst was prepared by ultrasonic reduction followed by wet impregnation method.⁵⁵ TiO₂ NPs along with different GO loading (0, 1, 2, 3, 4 and 5 wt%) were ⁶⁰ dispersed into an appropriate concentration of aqueous solution of Cu(NO₃)₂·3H₂O (0, 0.5, 1, 1.5 and 2 wt% of Cu). Then the solution was ultrasonicated for 1 h (low frequency ultrasonic horn operating at 20 kHz from SONICS, Vibra cell, USA). Then the mixture was pre-dried over a hot plate until complete evaporation ⁶⁵ of water and the resultant powder was dried in an oven at 80 ℃ for 12 h and then calcined at 500 ℃ for 5 h.

Characterization Techniques

X-Ray diffraction (XRD) studies were carried out using PANaltical X'pert powder diffractometer using Cu K α radiation ⁷⁰ with an angular range of 10 to 80 °to identify the crystal structure and phases of TiO₂ and Cu₂O in the Cu₂O-TiO₂/rGO photocatalyst. Band gap of the prepared photocatalysts were determined using UV-vis DRS technique using Shimadhzu UV-2600 UV-vis spectrophotometer with a DRS mode. The chemical ⁷⁵ oxidation state of Ti and Cu, and the existing oxygen functionalities of rGO were examined using X-ray photoelectron spectroscopy (XPS) recorded in a Kratos Axis-Ultra DLD spectrometer with Mg-K α radiation. The surface morphology and weight percentage of Cu and Ti in Cu₂O-TiO₂/rGO photocatalyst ⁸⁰ were confirmed by SEM-EDS analysis (FEI Quanta FEG 200 HR-SEM) which operated at 20 kV. JEM-2100 JEOL, Japan, transmission electron microscopy (TEM) with an accelerating voltage of 120 kV was used to analyze the particle size and size distribution of Cu_2O -TiO₂ particles over rGO layer. Image-J software was used to determine size distribution of particles.

Photoelectrochemical studies

- ⁵ Conventional three electrode configuration with a Pt-wire as counter electrode and Ag/AgCl (in saturated KCl) as a reference electrode was used to carry out the photoelectrochemical measurements. Photoelectrochemical data were recorded in a CHI608E electrochemical workstation. A light source of 250 W
- ¹⁰ Xe arc lamp (OSRAM, Germany) was used for photocurrent measurements. A 0.1 M Na_2SO_4 aqueous solution was used as the electrolyte. The working electrode was prepared by mixing the 50 mg of photocatalyst with 150 mL of PEG (mol. wt 400) and 125 mL of ethanol was used to make slurry. Then it was coated on a
- ¹⁵ 2.5×2.5 cm² fluorine-doped tin oxide (FTO) glass substrate with an active area of about 1×1 cm² by doctor-blade method using scotch tape as spacer. It was dried in air and then annealed at 350 °C for 45 min.

Reactor set-up and analysis methods for water splitting

- ²⁰ In a typical procedure, 0.1 mg per mL of Cu₂O-TiO₂/rGO photocatalyst was dispersed in of 5% aqueous glycerol solution taken in a quartz reactor vessel. The mixture was magnetically stirred in the dark condition for 30 min and then evacuated for 30 min followed by 30 min N₂ purging for the complete removal of
- ²⁵ dissolved oxygen. Then it was illuminated under the lamp (Philips HPL-N-250W lamp) and the generated gas was collected at the given interval of time for analysis using an off-line gas chromatograph with TCD detector (Shimadzu GC-2014 with Molecular Sieve/5Å column) using N₂ as a carrier gas.

30 Acknowledgements

We acknowledge financial support from the SERB (SR/FT/CS-127/2011), DST, New Delhi, India. We also acknowledge Prof. Ick Soo Kim (Division of Frontier Fibers, Institute for Fiber Engineering (IFES), National Shinshu University, Ueda, Japan) ³⁵ for TEM and XPS analysis.

Notes and references

^a SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu, India; E-mail: neppolian.b@res.srmuniv.ac.in (B. Neppolian)

⁴⁰ ^b Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India

 $^{\rm c}$ National Taiwan University of Science and Technology, Taipei 106-07, Taiwan

- ⁴⁵ ^d Department of Chemistry, North Carolina Central University, Durham, NC 27707, USA; E-mail: kvinodg@nccu.edu (K. Vinodgopal)
 - 1 M. S. Dresselhaus and I. L. Thomas, *Nature*, 2001, **414**, 332.
- 2 P. V. Kamat, J. Phys. Chem. C, 2007, 111, 2834.
- ⁵⁰ 3 D. Tilman, J. Hill and C. Lehman, *Science*, 2006, **314**, 1598.
- 4 P. V. Kamat, J. Phys. Chem. Lett., 2011, 2, 242.
- 5 J. A. Turner, *Science*, 1999, **285**, 687.
- 6 J. O. Bockris, Int. J. Hydrogen Energ., 2002, 27, 731.
- 7 G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal,
- P. McGinn and P. V. Kamat, *Langmuir*, 2005, **21**, 8487.
- 8 H. J. Kim, S. H. Lee, A. A. Upadhye, I. Ro, M. I. Tejedor-Tejedor, M. A. Anderson, W. B. Kim and G. W. Huber, *ACS Nano*, 2014, 8, 10756.
- 9 S. Shen, C. X. Kronawitter, J. Jiang, P. Guo, L. Guo and S. S. Mao,
- 50 Nano Energy, **2013**, 2, 958.

- 10 D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, *Chem. Soc. Rev.*, 2009, **38**, 1999.
- 11 A. Fujishima, and K. Honda, *Nature*, 1972, **238**, 37.
- 12 H. Pann, and Y. -W. Zhang, *Nano Energy*, 2012, **1**, 488.
- 65 13 B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo and V. Murugesan, J. Hazard. Mater., 2002, 89, 303.
 - 14 H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian and M. Anpo, *Catal. Today*, 2003, 84, 191.
 - 15 A. Kudo and Y. Misekia, *Chem. Soc. Rev.*, 2009, **38**, 253.
- ⁷⁰ 16 Y. Inoue, *Energy Environ. Sci.*, 2009, **2**, 364.
 - 17 H. Tuysuz and C. K. Chan, *Nano Energy*, 2013, **2**, 116.
- 18 M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, *Renew. Sust. Energ. Rev.*, 2007, **11**, 401.
- 19 P. A. Mangrulkar, V. Polshettiwar, N. K. Labhsetwar, R. S. Varma and S. S. Rayalu, *Nanoscale*, 2012, 4, 5202.
- 20 T. Zhang, K. Zhao, J. Yu, J. Jin, Y. Qi, H. Li, X. Hou and G. Liu, *Nanoscale*, 2013, 5, 8375.
- 21 H. Kato , K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
- 80 22 M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondoa and K. Domen, *Chem. Commun.*, 1998, 357.
 - 23 K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2005, **127**, 8286.
- 24 J. S. Lee, Catal. Surv. Asia, 2005, 9, 217.
- 85 25 A. Kudo, H. Kato and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571.
- 26 A. Deshpande, P. Shah, R. S. Gholap and N. M. Gupta, J. Colloid Interf. Sci., 2009, 333, 263.
- 27 P. S. Lunawat, S. Senapati, R. Kumar and N. M. Gupta, *Int. J. Hydrogen Energ.*, 2007, **32**, 2784.
- 28 Q. Xiang, J. Yu and M. Jaroniec, Nanoscale, 2011, 3, 3670.
- 29 X. -J. Lv, S. -X. Zhou, C. Zhang, H. -X. Chang, Y. Chen and W. -F. Fu, J. Mater. Chem., 2012, 22, 18542.
- P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T.
 Rajh and E. A. Rozhkova, ACS Nano, 2014, 8, 7995.
- 31 L. Jia, D. -H. Wang, Y. -X. Huang, A. -W. Xu and H. -Q. Yu, J. Phys. Chem. C, 2011, 115, 11466.
- 32 A. Mukherji, B. Seger, G. Q. Lu and L. Wang, *ACS Nano*, 2011, **5**, 3483.
- 100 33 J. Shen, M. Shi, B. Yan, H. Ma, N. Li and M. Ye, *Nano Res.*, 2011, 4, 795.
 - 34 W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C, 2011, 115, 10694.
- 35 Q. Xiang, J. Yu and M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575.
- 36 N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, L. and H. –M. Cheng, Adv. Funct. Mater., 2011, 21, 1717.
- 37 B. Neppolian, Q. Wang, H. Yamashita and H. Choi, *Appl. Catal. A: Gen.*, 2007, **333**, 264.
- 110 38 D. C. Hurum, A. G. Agrios and K. A. Gray, J. Phys. Chem. B, 2003, 107, 4545.
 - 39 T. Jiang, T. Xie, L. Chen, Z. Fu and D. Wang, *Nanoscale*, 2013, 5, 2938.
- 40 H. Irie, S. Miura, K. Kamiya and K. Hashimoto, *Chem. Phys. Lett.*, 2008, **457**, 202.
 - 41 G. Gil, P. A. A. P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh and J. Gracio, *Chem. Mater.*, 2009, **21**, 4796.
 - 42 S. Shrestha, W. C. Choi, W. Song, Y. T. Kwon, S. P. Shrestha and C. Y. Park, *Carbon*, 2010, **48**, 54.
- 120 43 M. Gopiraman, S. G. Babu, Z. Khatri, K. Wei, M. Endo, R. Karvembu and I. S. Kim, *Catal. Sci. Technol.*, 2013, 3, 1485.
 - 44 M. Gopiraman, S. G. Babu, Z. Khatri, K. Wei, Y. A. Kim, M. Endo, R. Karvembu and I. S. Kim, *J. Phys. Chem. C*, 2013, **117**, 23582.
- 45 B. Chai, T. Peng, X. Zhang, J. Mao, K. Li and X. Zhang, *Dalton* 125 *Trans.*, 2013, **42**, 3402.
 - 46 S. G. Babu, N. Neelakandeswari, N. Dharmaraj, S. D. Jackson and R. Karvembu, *RSC Adv.*, 2013, **3**, 7774.
 - 47 M. Gopiraman, S. G. Babu, Z. Khatri, K. Wei, Y. A. Kim, M. Endo, R. Karvembu and I. S. Kim, *Carbon*, 2013, **62**, 135.
- 130 48 G. M. An, W. H. Ma, Z. Y. Sun, Z. M. Liu, B. X. Han, S. D. Miao, Z. J. Miao and K. L. Ding, *Carbon*, 2007, **45**, 1795.

- 49 B. Liu, X. Wang, G. Cai, L. Wen, Y. Song and X. Zhao, J. Hazard. Mater., 2009, 169, 1112.
- 50 L. Jing, H. Fu, B. Wang, D. Wang, B. Xin, S. Li and J. Sun, *Appl. Catal. B: Environ.*, 2005, **62**, 282.
- 5 51 S. Chu, X. Zheng, F. Kong, G. Wu, L. Luo, Y. Guo, H. Liu, Y. Wang, H. Yu and Z. Zou, *Mater. Chem. Phys.*, 2011, **129**, 1184.
- 52 J. M. Valero, S. Obregon and G. Colon, *ACS Catal.*, 2014, **4**, 3320.
- 53 H. Xu, S. Ouyang, L. Liu, D. Wang, T. Kako and J. Ye, *Nanotechnology*, 2014, 25, 165402.
- ¹⁰ 54 L. Liu, X. Gu, C. Sun, H. Li, Y. Deng, F. Gao and L. Dong, *Nanoscale*, **2012**, *4*, 6351–6359.
- 55 D. P. Kumar, M. V. Shankar, M. M. Kumari, G. Sadanandam, B. Srinivas and V. Durgakumari, *Chem. Commun.*, 2013, **49**, 9443.
- 56 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 15 1339.
- 57 S. Mahshid, M. S. Ghamsari, M. Askari, N. Afshar and S. Lahuti, *Quantum Electron. Optoelectron.*, 2006. 9, 65.