
 

 

 

 

 

 

Dereplication, Sequencing and Identification of Peptidic 

Natural  
Products: from Genome Mining to Peptidogenomics to 

Spectral  

Networks 
 

 

Journal: Natural Product Reports 

Manuscript ID NP-REV-05-2015-000050.R2 

Article Type: Review Article 

Date Submitted by the Author: 22-Sep-2015 

Complete List of Authors: mohimani, hosein; UCSD,  

Pevzner, Pavel; UCSD,  

  

 

 

Natural Product Reports



Dereplication, Sequencing and Identification of Peptidic Natural

Products: from Genome Mining to Peptidogenomics to Spectral

Networks

Hosein Mohimani and Pavel A. Pevzner

Department of Computer Science and Engineering, University of California, San Diego

September 21, 2015

Abstract

While recent breakthroughs in discovery of peptide antibiotics and other Peptidic Natural
Products (PNPs) raised the challenge of developing new algorithms for their analysis, the com-
putational technologies for high-throughput PNP discovery are still lacking. We discuss the
computational bottlenecks in analyzing PNPs and review recent advances in genome mining,
peptidogenomics, and spectral networks that are now enabling the discovery of new PNPs via
mass spectrometry. We further describe the connections between these advances and the new
generation of software tools for PNP dereplication, de novo sequencing, and identification.
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1 Introduction

The golden age of antibiotics, that started in the 1940s, was followed by a decline in the pace of
antibiotics discovery in the 1990s1. However, antibiotics and other natural products (including
immunosuppressive, antiproliferative, herbicidal, insecticidal, fungicidal and antiparasitic drugs)
are again in the center of attention as exemplified by the recent discovery of teixobactin2,3. Recent
launch of the Global Natural Products Social (GNPS) Molecular Networking project4 (the first
large community project in natural product discovery) brought together over a hundred laboratories
that have already generated over a billion mass spectra of natural products. While these spectra
represent a gold mine for future antibiotics discovery (over 70 million of them are publicly available),
their interpretation remains a challenging computational problem.

While first computational methods for analyzing mass spectra of small molecules were devel-
oped in the 1960s5–8, three decades before their proteomics counterparts9,10, computational mass
spectrometry of small molecules is often viewed as a more complex (and less mature!) field as com-
pared to computational proteomics11,12. See12–16 for recent reviews of computational approaches
to analyzing small molecules. Depending on their building blocks, natural products are classified
into a variety of chemical classes that include Peptidic Natural Products (PNPs), the focus of this
review. Starting from penicillin, PNPs have an unparalleled track record in pharmacology: many
antibiotics, antiviral and antitumor agents, immunosuppressors, and toxins are PNPs.

While recent breakthroughs in PNP discovery2,17,18 raised the challenge of developing new
algorithms for dereplication, de novo sequencing and identification of PNPs, the computational
technologies for high-throughput PNP discovery are still lacking. The traditional process of PNP
discovery is to elucidate structure of the compound by chemical assays (such as Nuclear Magnetic
Resonance) and association of the chemical compound to its biosynthetic gene cluster by genome
manipulations. This process is time-intense, laborious, and requires large amounts of highly purified
material. Moreover, rather than discovering novel PNPs, it often rediscovers known PNPs resulting
in wasted efforts.

Recently, mass spectrometry (MS) has become a cheap, fast, and reliable complementary ap-
proach for the traditional PNP discovery techniques19,20. However, compared to traditional appli-
cations of MS in proteomics, application of MS for PNP discovery faces additional computational
challenges due to higher complexity of the compounds and unusual fragmentation patterns. Some
of these challenges are now addressed through genome mining, peptidogenomics, and spectral net-
works:

• Genome mining. Sequencing many bacterial and fungal genomes in the last decade opened
an era of genome mining for PNP discovery. Genome mining refers to using information about
the biosynthetic genes (responsible for synthesizing a PNP) to infer information about the
PNP itself. Discovery of coelichelin in Streptomyces coelicolor was one of the first successes
of genome mining21,22 that was followed by characterization of many PNPs from sequenced
genomes.

• Peptidogenomics. Given a mass spectrum and a peptide database, peptide identification
refers to finding a peptide in the database (or its variant) that generated the given spec-
trum. While peptide database in traditional proteomics consists of known peptides, peptide
databases in peptidogenomics are often dominated by putative peptides derived via genome
mining. Since many PNPs are not directly encoded in genomes, genome mining often fails
to generate the database of putative PNPs that contains the exact amino acid sequence of a
PNP corresponding to a given spectrum. Instead, it produces a database containing an error-
prone template that makes matching spectra against such a template difficult. Therefore,
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popular proteomics tools such as Sequest9 and Mascot10 fail to identify PNPs. Also, identi-
fication of spectra derived from PNPs is more difficult than traditional peptide identification
in proteomics because many PNPs are non-linear peptides with extensive modifications that
generate complex spectra (the standard proteomics tools fail to identify non-linear peptides).

• Spectral networks. Bandeira et al.,23 introduced the concept of spectral networks (also
known as molecular networks18) that reveal spectra of related compounds (without knowing
what these compounds are) using spectral alignment algorithms24,25. Nodes in the spectral
networks correspond to spectra while edges connect spectral pairs, i.e., pairs of spectra that
are generated from related peptides (e.g., peptides differing by a single mutation or a modifi-
cation). Spectral networks enable discovery of novel variants of known PNPs as well as novel
PNP families. Thus, since most PNPs form families of related peptides18), spectral networks
are ideally suited for analyzing PNPs.

PNPs are produced by two types of biosynthetic machineries: Non-Ribosomal Peptide Syn-
thetase (NRP synthetase) 26,27 and Ribosomally synthesized and Posttranslationally modified Pep-
tide synthetase (RiPP synthetase)28,29. NRP and RiPP synthetases produce Non-Ribosomal Pep-
tides (NRPs) and Ribosomally synthesized and Posttranslationally modified Peptides (RiPPs),
respectively. NRPs are widely distributed and biomedically important natural products that are
not directly inscribed in genomes but instead are encoded by NRP synthetases using non-ribosomal
code30. In addition to standard amino acids, NRPs often include non-proteinogenic amino acids
such as ornithine. Known NRPs include hundreds of non-proteinogenic building blocks and some
NRPs like kutznerides31 are build entirely from non-proteinogenic amino acids. Since the non-
ribosomal code remains poorly understood, accurate prediction of PNPs from NRP synthetases
remains challenging.

While RiPPs are encoded in the genome, the genes encoding RiPPs are often short making
it difficult to annotate them (short genes often evade gene prediction methods32,33). Moreover,
RiPPs often have many unusual Post Translational Modifications (PTMs) making it difficult to
identify them via MS. Heavily modified peptides with more than two blind modifications often
evade identification algorithms such as InsPecT25 and MODa34 designed for discovery of unexpected
PTMs.

Analysis of over 1000 bacterial genomes from the Joint Genome Institute (JGI) database re-
vealed that 71% of them harbor at least one RiPP protein family (Pfam) domain and 69% harbor
at least one NRP synthetase Pfam domain17. Recent analysis of 830 Actinobacteria genomes re-
vealed that Actinobacteria encodes thousands of potential drug leads35. These and other studies18

suggest that we only saw a tip of the iceberg with respect to PNP discovery and raise the challenge
of developing new methods for PNP discovery.

Understanding how PNP biosynthetic machineries work is a prerequisite to genome mining and
peptidogenomics that involve two steps; predicting the candidate gene clusters responsible for the
synthesis of a PNP and connecting them to their chemical products by MS. However, connecting
biosynthetic gene clusters to their products is a non-trivial task since the rules defining how a
gene cluster specifies its products remain poorly understood. For example, the existing tools for
predicting NRPs from NRP synthetases remain error-prone. The transition from a gene cluster
to its product becomes particularly difficult in the case of modifications involved in maturation of
PNPs. For example the gene cluster for coelichelin (NRP synthetase) was elucidated in 200021,
but coelichelin itself (NRP) was sequenced only in 200522.

Below we review recent advances in genome mining, peptidogenomics, and spectral networks
(section 2) and further describe PNP dereplication (section 3), PNP sequencing (section 4),
and PNP identification (section 5). We remark that, in difference from dereplication (that reveal
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known PNPs or their variants), PNP sequencing and identification may reveal previously unknown
PNPs. Figure 1 illustrates various approaches to PNP discovery.

Figure 1: Three computational approaches to PNP discovery.

2 Genome mining, peptidogenomics, and spectral networks

2.1 Genome mining for PNPs

Genome mining tools for identification of NRP synthetase gene clusters and prediction of NRPs
they produce include ClustScan36, NP.searcher37, NRPSpredictor38, NRPSpredictor239, and anti-
SMASH40–42. For polyketide synthetase gene cluster predictors see 43–47. Figure 2 illustrates how
NRP genome mining tools work. Medema et al.48 recently developed Pep2Path genome mining tool
that works for both NRPs (NRP2Path) and RiPPs (RiPP2Path) by matching peptide sequence tags
in the spectra against the biosynthetic gene clusters that have the highest likelihood of generating
PNPs containing these tags.

NRP synthetases are formed by an array of distinct modular sections, each of which is respon-
sible for incorporation or modification of a single amino acid into the final NRP. Minimum of three
domains are required for each NRP synthetase module, adenylation domain (A-domain), peptidyl
carrier domain (PCP-domain) and condensation domain (C-domain). The A-domain is responsible
for picking the specific amino acids that are to be incorporated into the NRP. Hundreds of different
A-domain specificities have been classified, each one recruiting a specific amino acid. This allows
us to determine the sequence of the putative NRP by looking at the order of A-domains along the
assembly line and assigning a specific amino acid to each A-domain using the non-ribosomal code.
However, since the non-ribosomal code is still poorly understood, the tools for defining specificities
of A-domains remain error-prone. These tools often use profile Hidden Markov Models (HMMs)
to align conservative amino acids within each A-domain (red amino acids in Figure 2(b)) against
previously analyzed A-domains. The constructed alignment reveals variable amino acids within
A-domains (purple amino acids in Figure 2(b)) that define the non-ribosomal code. The genome
mining tools further use various machine learning technique to derive the amino acid in the NRP
defined by the non-ribosomal code.

RiPPs are classified into more than 20 classes (such as lanthibiotics, thiopeptides, cyanobactins,
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lasso peptides, and many others) based on structural and biosynthetic commonality49. Various
software tools for RiPP genome mining have been reviewed in50. BAGEL, a genome mining tool for
bacteriocins, revealed 150 putative lanthipeptide gene clusters51,52. ThioFinder, a genome mining
tool for thiopeptides, predicted 53 novel thiopeptide producing gene clusters53. Recent genome
mining studies predicted 79 lasso peptides54 and 27 cyanobactin-producing Anabaena strains55.
Development of RiPP genome mining tools is tied to construction of databases of known RiPPs,
such as Bactibase, a database of 177 bacteriocins56 or a bacteriocin database51,52 consisting of
483 bacteriocins (236 class I, 160 class II and 93 class III as of August 2015). Other examples
include Thiobase, a database of 39 thiopeptides53, and MIBiG, a natural product structure and
biosynthetic gene cluster repository with over 169 RiPPs from different classes42. Availability of
these databases for diverse RiPP classes speeds up development of novel machine learning techniques
aimed at genome mining for RiPPs50.

AntiSMASH is one of the most popular genome mining tools for analyzing both NRPs and RiPPs
as well as polyketides. AntiSmash pipeline includes the following steps : (i) genes are extracted or
predicted from the genome using Glimmer332, (ii) biosynthetic gene clusters are identified using
profile HMMs, (iii) biosynthetic gene clusters are annotated (iv) the core chemical structure of
natural products are predicted based on the annotated gene clusters. Optionally, comparative
analysis of the biosynthetic gene clusters can be done using ClusterBlast40.

(a)

(b)

Figure 2: (a) Predicting NRPs based on NRP synthetase analysis using tools such as NRPSpredictor239

and antiSMASH40. The following domains are shown: A-domains (red), PCP-domains (green), C-domains
(blue), methylation domains (yellow), and thioester domains (purple). Note that different modules of the
same NRP synthetase can appear in different frames. (b) Extracting signature sequences (non-ribosomal
code) from A-domains (only a short segments of the A-domains are shown). Various A-domains have
conserved residues (shown in red) that enable their accurate multiple alignment using profile HMMs. The
non-ribosomal code postulates that certain amino acids in the resulting multiple alignment (shown in purple)
define a single amino acid in the NRP loaded by this domain. The three A-domains shown here define 8
amino acid signatures LTKVGHIG, VGEIGSID, WMFAAVL corresponding to amino acids Asp, Orn, and
Val, respectively. The 8 amino acid signature shown here represent a simplified representation of the non-
ribosomal code, e.g., NRPSpredictor2 uses longer signatures to predict amino acids for each A-domain.
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2.2 Peptidogenomics of PNPs

The key difficulties in peptidogenomics are that (i) many PNPs are non-linear peptides, (ii) many
PNPs (all NRPs) are not directly encoded in the genomes, (iii) even when a PNP is encoded in
a genome (all RiPPs), they often have many modifications making it difficult to identify them
using standard MS/MS searches, and (iv) many PNPs are encoded in the alphabet of 100s building
blocks rather than in the alphabet of 20 proteinogenic amino acids. Also, many PNPs fragment
poorly due to multiple complex modifications and multicyclic structure. For example, spectra of
RiPPs often feature very few peaks making it nearly impossible to identify them using conventional
MS/MS database search tools.

Kersten et al., 201117 discovered many novel PNPs using a manual peptidogenomic approach
for connecting PNPs to their biosynthetic genes and matching them against mass spectra. However,
the manual peptidogenomics approach to PNP discovery, while useful57, is somewhat limited in
analyzing large spectral datasets (such as LC-MS/MS datasets from bacterial extracts) and complex
patterns of modifications. Moreover, this approach relies on identifying long peptide sequence tags
(4-5 amino acids) to reduce the search space48. Such long tags are often not available for multicyclic
peptides such as lanthipeptides or for NRPs with non-standard amino acids. Also, since the manual
approach does not provide estimates of statistical significance (a pre-requisite for analyzing large
spectral datasets) an automated peptidogenomics software tool is needed.

Peptidogenomics is based on comparison of experimental spectra with the theoretical spectrum
of a PNP. Various bond disconnection algorithms58–64 generate a list of bonds between atoms in a
compound (excluding hydrogens) and assign them the breakage score based on the likelihood of each
bond being disconnected. The theoretical spectrum is constructed from masses and breakage scores
of all substructures resulting from bond disconnections. Tools such as MetFrag59 attempt to explain
the peaks in the experimental spectrum using the likely substructures formed by disconnecting some
bonds. The alternative machine learning approaches use large collections of MS/MS spectra for
learning the rules governing MS/MS fragmentation process65–67. Alternative approaches to bond
disconnetction algorithm have also been suggested65–68.

Theoretical spectra of PNPs are formed by disconnecting only amide bonds (rather than all
bonds)69,70 (see Figure 3). Since the number of fragmented substructures grow quadratically
with the PNP length (under the assumption that at most two amide bonds are disconnected),
theoretical spectra of PNPs have large number of masses making it difficult to analyze them since
only a fraction of these masses have counterparts in the experimental spectra. In spite of this
complication, some studies used general metabolite dereplication tools to successfully dereplicate
PNPs35.

A Peptide-Spectrum Match (PSM) is a pair of a peptide and a spectrum with the same precursor
mass (up to an error δ). In the context of PNP discovery, a PSM score is often defined as the number
of peaks shared between a theoretical spectrum and an experimental spectrum. Given a spectrum,
a peptide that forms a PSM with the highest score against this spectrum (among all peptides in a
peptide database) is reported as a potential annotation of the spectrum.

It is well known in the context of traditional proteomics that PSM scores often poorly correlate
with statistical significance of PSMs such as p-values71. This observation is greatly amplified for
non-linear peptides since scoring PSMs formed by non-linear peptides is currently more primitive
than scoring PSMs formed by linear peptides due to the lack of a large learning sample of PSMs
formed by non-linear peptides.

To address this challenge, Ibrahim et al., 201370 proposed additional statistical measures to dis-
tinguish between correct and erroneous PSMs formed by PNPs in their iSNAP approach. Mohimani
et al.,72 developed the MS-DPR algorithm for computing p-values of PSMs formed by arbitrary
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PNPs. MS-DPR addresses the problem of deciding whether a given spectrum was generated by
a linear, cyclic, or branch cyclic peptide since it enables evaluation of statistical significance of
peptides with diverse structures72 (see Figure 4).

(a) (b)

Figure 3: (a) Generating the theoretical spectrum of a cyclic (tyrocidine) and (b) branch cyclic (daptomycin)
peptides. Only four out of 9 · 10 = 90 (9 · 10 +4 · 2= 98) theoretical peaks in tyrocidine (daptomycin) are shown.
For a cyclic PNP of length n, the theoretical spectrum contains n(n − 1) masses. For a branch cyclic PNP with a
cycle of length n and a branch of length m, the theoretical spectrum contains n(n− 1) + 2m masses.

2.3 Spectral networks of PNPs

Spectral networks allow one to enlarge the set of identified PNPs (and sometimes get rid of in-
correctly identified PNPs) by analyzing multiple spectra to simultaneously dereplicate, sequence,
or identify related unknown peptides. The advantage of this approach (as compared to analyzing
individual spectra) is that finding peptides that simultaneously explain all spectra in a spectral
network may result in more accurate spectral interpretations. Thus, an individual PSM deemed
statistically insignificant may become reliable in the context of multiple related PSMs revealed by
a spectral network (and vice versa). Since most PNPs form families of related peptides, spectral
networks can be used to reveal relationships between different spectra without knowing the amino
acid sequences corresponding to these spectra.

Given a set of peptides P1, . . . Pm, their peptide network is a graph with nodes P1, . . . Pm, and
edges connecting two peptides if they differ by a single amino acid modification. Figure 5 (a)
shows the peptide network for nine variants of tyrocidine, a family of NRPs from Bacillus brevis73.
For example, peptide 1 (tyrocidine B1) in this network (red node) is connected to four peptides
differing from tyrocidine B1 by a single modification: tyrocidine A1 (peptide 2), tyrocidine B
(peptide 5), tyrocidine C1 (peptide 8), and a previously unreported peptide with mass 1338.7
(peptide 9). However, it is not connected to peptides 3, 4, 6 and 7 since they differ from peptide
1 by multiple modifications. Six of these nine tyrocidines (1, 2, 3, 5, 7, 8) are contained in the
database of putative NRPs generated by NRPSpredictor2 (without modifications) and three more
differ from these variants by one or two modifications/mutations.

In reality, we are not given peptides P1, . . . Pm but only their spectra S1, . . . Sm. Nevertheless,
one can approximate the peptide network by constructing the spectral network on nodes S1, . . . Sm

where spectra Si and Sj are connected by an edge if they can be aligned against each other using
spectral alignment23,25,75. Figure 5 shows the peptide and spectral networks of nine tyrocidines
and illustrates that the spectral network captures all edges of the peptide network. While the

7

Page 7 of 23 Natural Product Reports



������ ���	��
�	���
����� ���	��
�	���

������ ����� � ��

���� ���� 

���� ���� 

���� ���� 

���� ���� 
���� ���� 
���� ���� 

���� ���� 
���� ���� 

!�"�#� $%&#�'� �

(�#"� ������ ����� � �)

*����+,
����� ���	��
�	���

(�#"� ������ &#�'� ������� $%&#�'� �

!�"�#� ����� � -�

Figure 4: Deciding whether a peptide that produced a spectrum is linear, cyclic or branch cyclic. Given a spectrum,
MS-DPR72 considers various structure assumptions for a peptide that generated the spectrum (e.g. linear, or cyclic,
or branch cyclic), and derives a p-value of PSMs resulting from each such assumption. For each structure, MS-DPR
explores many putative amino acid sequences (shown by different colors) to estimate the p-value. If one of the
structures results in a small p-value (e.g. linear structure with p-value of 0.0001 shown in red), that structure is
accepted as the most likely structure for a given spectrum. Note that even though the linear peptide in this example
has the lowest score, it is the most statistically significant among the three structures. The figure is reproduced
from72 by permission from ACS publications.

peptide and spectral networks in Figure 5 are not identical, their shared edges usually allow one
to interpret the peptides corresponding to the nodes of the spectral network using the spectral
network dereplication algorithm76. The algorithm starts from a node with a known annotation in
the spectral network, and propagates annotations from known to unknown peptides through the
edges of the network.

3 PNP dereplication

PNP researchers face the challenge of maximizing the discovery of new compounds while minimizing
the re-evaluation of already known PNPs. The process of using the information about the chemical
structure of a previously characterized compound to identify this compound in an experimental
sample (without having to repeat the entire isolation and structure-determination process) is called
dereplication. In many cases, a PNP in the new sample is absent in the database of known PNPs,
but its variant is present in this database with a modification. Identification of a PNP from its
variants is called variable dereplication.

8

Page 8 of 23Natural Product Reports



(a)
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1338.7
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(c)

Figure 5: The peptide network (a) and the spectral network (b) of tyrocidines74. The numbers within nodes
represent precursor masses. Edges in the peptide network connect two peptides if they differ by a single
amino acid modification. Shared edges between peptide and spectral networks are shown by thick lines. For
example, peptide 1 (tyrocidine B1) in this network (red node) is connected to four peptides differing from
tyrocidine B1 by a single modification: tyrocidine A1 (peptide 2), tyrocidine B (peptide 5), tyrocidine C1
(peptide 8), and a previously unreported peptide with mass 1338.7 (peptide 9). However, it is not connected
to peptides 3, 4, 6 and 7 since they differ from peptide 1 by multiple modifications. In part (c), annotation
of each node in the spectral network is shown. The spectral network revealed two novel tyrocidine variants
at masses 1294.7 and 1338.7. The figure is reproduced from 74 by permission from ACS publications.

3.1 Dereplication via chemical databases

Development of chemical structure databases such as PubChem77 (≈60 million compounds, as of
August 2015), ChemSpider78 (≈34 million compounds, as of August 2015), mzCloud63 (≈3 thou-
sand compounds), KEGG79 (≈16 thousand compounds), MetaCyc80 (≈10 thousand compounds),
Norine81 (≈1000 compounds), MIBiG82 (≈1200 compounds with biosynthetic gene cluster), and
AntiMarin, the result of a merger between AntiBase and MarinLit databases83 (≈60 thousand com-
pounds) paved the way for development of bioinformatics tools for natural product dereplication.
However, the number of PNPs in these databases remains limited, e.g., AntiMarin contains only
3462 compounds with more than five amide bonds.

Ng et al.,69 proposed the first method for dereplication of cyclic PNPs. Ibrahim et al.,70

proposed an alternative dereplication approach, iSNAP, that is not limited to cyclic NRPs but
extends to branch cyclic and linear peptides.

iSNAP analyzes each spectrum using the following steps: (i) identify all amide bonds for each
NRP in the chemical database, (ii) generate theoretical spectrum for each NRP by cleaving at most
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two amide bonds at a time, (iii) generate PSMs formed by the experimental spectrum and all NRPs
in the database whose mass matches the precursor mass of the spectrum, (iv) score resulting PSMs,
estimate their statistical significance, and report statistically significant PSMs.

3.2 Dereplication via spectral libraries

Since some natural products feature atypical fragmentation patterns84, their experimental spec-
tra have low scores against their theoretical spectra. In such cases, instead of dereplication via
search in chemical databases, researchers search spectral libraries of natural products by comparing
the experimental spectrum of interest against previously identified spectra. Development of large
metabolite spectral databases such as mzCloud63 (≈200 thousands spectra), NIST85 (≈120 thou-
sand spectra), METLIN86 (≈55 thousand spectra), MassBank87 (≈36 thousand spectra), HMDB88

(≈1000 human metabolite spectra), and GNPS spectral library4 (≈1600 natural product spectra)
enabled MS/MS library searches for metabolites84,89–95.

While dereplication via the spectral library search is more accurate than dereplication via
search in a chemical database, the spectral libraries still contain only a fraction of PNPs present
in chemical databases, e.g., as of August 2015, only 81 out of 1607 annotated spectra in GNPS
Molecular Networking dataset4 represented PNPs. Therefore, applications of spectral libraries to
PNP dereplication remain limited. For example, Milman and Zhurkovich96 described dereplication
of toxic NRPs based on a small spectral library consisting of only 263 spectra.

3.3 Dereplication via spectral networks

The spectral network approach to PNP dereplication analyzes connected components of a spectral
network. In contrast to the traditional spectral library approaches that compare spectra with
the same precursor mass, spectral networks reveals relationships between spectra with different
precursor masses thus enabling analysis of PNP variants. As long as there is at least one annotated
spectrum in a connected component of a spectral network, its annotation can be propagated to all
spectra in this connected components23. Ng et al.,69 and Mohimani et al.,74,97 described variable
PNP dereplication algorithms using spectral networks and identified many variants of previously
known PNPs.

Watrous et al.,18, constructed spectral networks of various bacterial extracts and dereplicated
many PNPs using manual analysis of connected components in these networks. Various studies
reported success in utilizing spectral networks for discovery of natural products4,97–108.

For example, Mohimani et al.,97 discovered a lanthipeptide informatipeptin as a doubly charged
ion with mz 1065.5 using RiPPquest algorithm. This PNP belonged to a connected component of
the spectral network and was connected with three doubly charged ions with mz of 929.2, 957.5,
and 1015.1, Comparing the mass shifts between these ions and informatipeptin provided a hint that
these peptides are N-terminal derivatives of informatipeptin. While the three resulting PSMs had
borderline statistical significance and RiPPquest did not report them as significant discoveries, the
fact that they clustered with informatipeptin in the spectral network provided evidence that they
are indeed N-terminal derivatives of informatipeptin (Figure 6).

4 PNP sequencing

While availability of genome sequences enables PNP discovery via genome mining, many PNPs
are produced by difficult-to-cultivate organisms whose genomes are still unknown. If a genome is
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Figure 6: Spectral network analysis leads to variable dereplication of RiPP informatipeptin (shown in orange)
into 3 variant PNP97. Ser → Dha and Thr → Dhb conversions in this lanthipeptide are shown in green and red,
respectively. The figure is reproduced from97 by permission from ACS publications.

unavailable and if the dereplication of a PNP fails, de novo sequencing69,76,109,110 remains the last
resort.

Allmer et. al.111 recently reviewed various approaches to de novo sequencing of linear peptides.
However, while dozens of tools for de novo sequencing of linear peptides have been proposed112–115,
techniques for de novo sequencing of non-linear peptides are still at the early stage of development.
Ng et al.,69, proposed the first algorithm for sequencing of cyclic peptides that however works
only for very well-fragmented spectra. Novak et al.,116 recently developed CycloBranch that takes
advantage of high resolution mass spectrometry to improve the accuracy of de novo sequencing of
cyclic, branched, and branch cyclic peptides.

Mohimani et al.,76 developed multiplex de novo peptide sequencing algorithm for the case when
spectra of multiple related peptides are available. Multiplex peptide sequencing starts from con-
structing the spectral network and identifying clusters of related compounds (connected components
in the spectral network). It further attempts to sequence all compounds in each connected compo-
nent (see Figure 7). In difference from PNP dereplication via spectral networks (when at least one
spectrum in the connected component represents a known compound), de novo PNP sequencing
works even when all nodes in the connected component represent unknown compounds. The advan-
tage of spectral networks for PNP sequencing is that finding PNPs that simultaneously explain all
spectra in a connected component of a spectral network results in a more accurate approach than
sequencing each individual spectrum. When tandem mass spectrometry (MS2) fails to sequence a
PNP, one can attempt multistage (MSn) mass spectrometry and apply multistage de novo peptide
sequencing approach109,117 (see Figure 8).

5 PNP identification

For both RiPPs and NRPs, the PNP identification consists of the genome mining step for detecting
the biosynthetic gene clusters and their putative PNPs, and the peptidogenomics step for identifying
a spectrum that matches one of the putative PNPs and finding modifications in this putative PNP.
Below we describe these steps for RiPP identification and NRP identification.
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Figure 7: The spectral network dereplication algorithm from76 attempts to de novo sequence all spectra in
a spectral network in a coordinated fashion. It starts from a putative interpretation of one of the spectra
(bottom left node) and propagates this interpretation to other nodes using red edges. The propagation
typically fails if the initial putative interpretation is incorrect and succeeds if it is correct. Thus, the prop-
agation process allows one to reject the incorrect initial interpretations. The spectral network dereplication
algorithm generates many putative interpretations of the spectrum and propagate them through the spectral
network in an attempt to decide which one is correct.

5.1 RiPP identification

A RiPP biosynthetic gene cluster usually includes a gene encoding a single core peptide and several
genes encoding modification enzymes that are responsible for conversion of the core peptide to ma-
ture peptide. The standard MS/MS database search tools are limited with respect to identification
of complex RiPPs with more than two modifications. This limitation makes them inadequate for
analyzing such RiPPs as lanthipeptides that often have more than five modifications. Moreover,
even if these tools were able to efficiently search for peptides with more than two modifications,
the resulting PSMs often would not be reported as statistically significant since many RiPPs are
poorly fragmented (due to presence of multicyclic modifications). Since search for multiple variable
modifications is statistically equivalent to the search in a huge virtual database of all modified
peptides, it often results in a high false discovery rate (FDR) even for microbial organisms with
small proteomes118.

Even when the core RiPP sequence is known and the types PTMs in a RiPP can be predicted,
multiple possible PTM sites typically result in thousands of structures that are difficult to ana-
lyze. Due to this complications, computational approaches to RiPP identification did not keep
pace with rapid progress in RiPP discovery in recent years. Cycloquest119, a tool for RiPP iden-
tification, is limited to cyclic peptides with very few modifications. Also, since Cycloquest does
not take advantage of genome mining, it is unable to identify poorly fragmented peptides (e.g.,
lanthipeptides).

Genome mining is crucial for the success of RiPP identification efforts. The statistical sig-
nificance (E-values) of the found PSMs deteriorates with the increase in the size of the protein
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(a) (b)

Figure 8: Illustration of an algorithm for peptide sequencing by multistage mass spectrometry. For each
candidate peptide, multistage peptide sequencing algorithm scores how well each subpeptide is explained by
MSn data109. The figure is reproduced from109 by permission from Wiley publications.

database. Thus, one way to make PSMs formed by poorly fragmented spectra statistically signif-
icant is to reduce the effective size of the protein database. Fortunately, most RiPPs appear in
small windows of ≈20,000 nucleotides around biosynthetic gene clusters, and these clusters can be
identified by searching for conserved biosynthetic enzymes. Thus, limiting the search space to this
small region of the genome has the potential to reduce the E-values of found PSMs by orders of
magnitude thus separating them from false PSMs.

RiPPquest97 is a RiPP database search tool that addresses these complications and uses a more
involved pipeline than peptide identification tools in traditional proteomics (compare Fig. 9(a) with
Fig. 9(b)). While RiPPquest is currently limited to lanthipeptide analysis, it can be extended
to other RiPP classes as soon as (i) it implements a genome mining rational for a specific RiPPs
class, and (ii) it implements a biosynthetic rationale for transforming core into mature peptide for
a specific RiPP class.

Zhang et al.120 recently developed the Hypothetical Structure Enumeration and Evaluation
(HSEE) algorithm for RiPP identification and applied it for identification of the lanthipeptide
prochlorosin. HSEE is based on matching spectra against a collection of hypothetical structures
predicted based on the biosynthetic gene cluster. HSEE generates a theoretical spectrum for each
hypothetical structure and scores structures based on the shared peak count between the theoret-
ical and experimental spectrum. The structure with the highest score is reported as a putative
interpretation of an experimental spectrum.

We illustrate the PNP identification pipeline using RiPPquest97 that includes the following
steps: (i) identifying RiPP synthetases in the genome, (ii) extracting candidate open reading frames
(ORFs) in a window around the gene cluster, (iii) adding proper modifications, (iv) matching
spectra against the database of putative RiPPs and computing p-values of resulting PSMs, and (v)
refining and enlarging the set of identified RiPPs using spectral networks (Fig. 9(b)). Below is a
brief description of RiPPquest pipeline:
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RiPPquest uses genome mining tools such as BAGEL51,52, ThioFinder53), and antiSMASH40–42,121

for identification of RiPP gene clusters. Limiting the search to small windows centered at RiPP
gene clusters decreases the search space by two orders of magnitude as compared to the entire Strep-
tomyces genome. Candidate core peptides are extracted from short ORFs found in these windows,
and transformed to mature peptides according to the biosynthetic enzymes in the gene cluster. In
the case of lanthipeptides, the most essential modifications are dehydration of serine and threonine,
and formation of the lanthionine and methyl-lanthionine bridges49.

Most classes of RiPPs form families of related peptides, making spectral networks helpful in
RiPP analysis18. In particular, spectral networks revealed related lanthipeptides with stepwise
N-terminal leader processing and different dehydration numbers97 (see Fig. 6).

5.2 NRP identification

While genome mining techniques accurately identify NRP synthetases in the genome, accurate
determination of specificities of A-domains remains difficult, especially for non-proteinogenic amino
acids that are common in NRPs. While most NRPs go through modifications such as backbone
macrocylization and addition of fatty acid chains, existing genome mining tools fail to predict
most of these modifications. That is why NRP identification algorithms have to implement a blind
MS/MS search that allows for multiple unexpected modifications and mutations. Blind searches
refer to the case when the set of possible modifications is not restricted (different from typical
searches for PTMs in traditional proteomics). This is a difficult computational problem even in the
case of linear peptides25,34, let alone non-linear peptides.

NRPquest74 uses a genome sequence and a spectral dataset as an input and includes the follow-
ing steps (i) identifying NRP synthetases in the genome, (ii) using non-ribosomal code to construct
the database of putative NRPs generated by each NRP synthetase, (iii) matching spectra against
the database of putative NRPs and computing p-values of resulting PSMs, and (iv) refining and
enlarging the set of identified NRPs using spectral networks (Fig. 10).

NRPquest uses NRPSpredictor239 and antiSMASH40–42 to identify NRP synthetases in the
genome, and to predict the set of all possible amino acids generated by each A-domain. NRPquest
further searches the genome for methylation domain, epimerization domain, and side chain bond
formation domain, and accounts for the corresponding modification in the database of putative
NRPs. Each spectrum is matched against each putative peptide in the database of putative NRPs
using a brute force algorithm that allows for up to two blind modifications. These blind modifica-
tions account for possible inaccurate prediction of specificities of A-domains that are particularly
common for non-proteinogenic amino acids and modifications. Similar to RiPPquest, NRPquest
scores the PSMs using the scoring function from114 and computes p-values using MS-DPR algo-
rithm72.

NRPquest constructs a spectral network23 to refine and enlarge the set of identified PSMs. After
constructing the spectral network, its connected components are extracted and the spectral network
dereplication algorithm from Mohimani et al., 201176 is used for identification of all peptides
represented by spectra forming this connected component. Moreover, the peptide propagation
through the spectral network23,69 allows one to identify peptides with many modifications that
NRPquest missed during blind searches of individual spectra (since blind searches with more than
two modifications are prohibitively time-consuming).
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6 Discussion

Despite the important biomedical applications of PNPs, most pharmaceutical companies are now
focusing on synthetic compounds and do not utilize the biosynthetic capacity of bacteria and
fungi. However, the rise of high-throughput DNA sequencing has revealed a wealth of new PNP
biosynthetic gene clusters in various genomes that exceeds the previous expectations by orders of
magnitude. These new discoveries suggest that there may be a reversal of focus in pharmaceutical
industry that could lead to revival in biomedical applications of natural products. Arguably, one
of the key bottlenecks for accomplishing such a transformation is the shortage of computational
tools for PNP discovery. Here we have reviewed recently developed approaches for PNP discovery
and computational technologies (genome mining, peptidogenomics, and spectral networks) that
enabled these methods. While these approaches have made a rather modest progress towards PNP
discovery, further developments of the algorithms for PNP discovery may enable a systematic and
high-throughput exploration of PNPs.

We described three approaches to PNP discovery with their own merits and limitations: PNP
dereplication, PNP sequencing and PNP identification. For example, while PNP dereplication
requires a chemical structure database to be available and can only identify known compounds and
their variants, PNP identification requires the genome sequence to be available and can identify
new compounds. The fragmentation quality of spectra required for success of these approaches is
vastly different, as they perform searches in vastly different computational spaces.

While the search space for PNP dereplication is usually small, the search space for PNP se-
quencing is very large since it includes all peptides with a given mass. PNP identification, for both
NRPs and RiPPs, has a search space that typically includes under a million putative peptides,
standing in between PNP dereplication and PNP sequencing with respect to the search space.
Thus, while PNP sequencing can succeed only with extremely high quality spectra, PNP identifi-
cation can succeed with a medium quality spectra, and PNP dereplication can succeed even with
poorly-fragmented spectra. Since PNP sequencing using a single tandem mass spectrum rarely
succeeds, researchers have tried to utilize information from multiple spectra / multistage MS to
overcome this limitation23,76,109,117,122.
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Figure 10: NRPquest74 pipeline includes the following steps : (i) identifying NRP synthetases in the
genome, (ii) using non-ribosomal code to construct the database of putative NRPs generated by each NRP
synthetase, (iii) matching spectra against the database of putative NRPs and and computing p-values of
resulting PSMs, and (iv) refining and enlarging the set of identified NRPs using spectral networks. The
figure is reproduced from 74 by permission from ACS publications.
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