
 

 

 

 

 

 

Network pharmacology applications to map the unexplored 

target space and therapeutic potential of natural products 
 

 

Journal: Natural Product Reports 

Manuscript ID: NP-REV-01-2015-000005.R1 

Article Type: Review Article 

Date Submitted by the Author: 20-Apr-2015 

Complete List of Authors: Kibble, Milla; Institute for Molecular Medicine Finland,  
Saarinen, Niina; University of Turku,  
Tang, Jing; Institute for Molecular Medicine Finland,  
Wennerberg, Krister; Institute for Molecular Medicine Finland (FIMM),,  
Mäkelä, Sari; University of Turku,  
Aittokallio, Tero; University of Helsinki, Institute for Molecular Medicine 

Finland 

  

 

 

Natural Product Reports



NPR RSCPublishing 

REVIEW 

This journal is © The Royal Society of Chemistry 2015 Nat. Prod. Rep., 2015, 00, 1-3 | 1 

Cite this: DOI: 

10.1039/x0xx00

000x 

Received 00th January 201x, 

Accepted 00th January 201x 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Network pharmacology applications to map the 

unexplored target space and therapeutic potential of 

natural products  

Milla M. Kibble
a
, Niina Saarinen

b
, Jing Tang

a
, Krister Wennerberg

a
, Sari Mäkelä

b
 

and Tero Aittokallio
a
  

Covering: 2011-2014 

 

It is widely accepted that drug discovery often requires a systems-level polypharmacology 

approach to tackle problems such as lack of efficacy and emerging resistance of single-targeted 

compounds. Network pharmacology approaches are increasingly being developed and applied 

to find new therapeutic opportunities and to repurpose approved drugs. However, these recent 

advances have been relatively slow to be translated into the field of natural products. Here, we 

argue that a network pharmacology approach would enable an effective mapping of the yet 

unexplored target space of natural products, hence providing a systematic means to extend the 

druggable space of proteins implicated in various complex diseases. We give an overview of 

the key network pharmacology concepts and recent experimental-computational approaches 

that have been successfully applied to natural product research, including unbiased elucidation 

of mechanisms of action as well as systematic prediction of effective therapeutic combinations. 

We focus specifically on anticancer applications that use in vivo and in vitro functional 

phenotypic measurements, such as genome-wide transcriptomic response profiles, which 

enable a global modelling of the multi-target activity at the level of the biological pathways 

and interaction networks. We also provide representative examples of other disease 

applications, databases and tools as well as existing and emerging resources, which may prove 

useful for future natural product research. Finally, we offer our personal view of the current 

limitations, prospective developments and open questions in this exciting field. 

 

 

 

1 Introduction 

Natural products have been used for centuries as medicinal 

treatments, for disease prevention and as a source of leads for 

the development of drugs, with pharmacognosy dominating 

rational drug development until the gradual emergence of 

target-based drug discovery over the last fifty years
1
 

2 3
. Since 

the turn of the century, the current paradigm of developing 

highly selective ligands as therapeutics has been challenged 

mainly due to high late-stage clinical attrition rates which can 

be largely attributed to lack of efficacy and clinical safety and 

toxicity
4 5

. Over this same period, the advent of experimental 

‘omics’ technologies and computational modelling of biological 

pathways and molecular interactions (network biology) 

combined with the observation that many approved drugs 

appear to work by modulating multiple nodes of these networks 

(polypharmacology) has resulted in an alternative systems-level 

approach to finding new drug candidates. Instead of looking for 

a single disease-causing gene and drugs which act solely on the 

appropriate individual target, the whole disease network is 

considered with the aim of finding multiple nodes which can be 

modulated via multi-target drugs or drug combinations in order 

to perturb robust disease phenotypes whilst exerting less side 

effects
6
 (thus replacing the concept of a ‘magic bullet’ with one 

of ‘magic shrapnel’
7
). This so-called network pharmacology 

paradigm
8
 invokes the idea that in certain cases, to have an 

effect, drugs must target multiple pathways and/or work 

synergistically with other drugs, potentially reducing side-

effects in the process through, for example, reduced dose of 

individual agents
9
. Through systematic mapping of the target 

interactions behind the globally-measured treatment responses, 

network modelling provides also system-level insights into the 

molecular targets of the lead candidates, which is an essential 

prerequisite for the phenotypic-based drug discovery process3.      

 

Interestingly, the network pharmacology concept naturally links 

back to pharmacognosy. The concept of using mixtures of 

plants (‘botanical drugs’) to cure is very popular in traditional 
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phytotherapy
1
. For example, formulae of Traditional Chinese 

Medicine (TCM) often consist of combinations of herbs where 

multiple active phytochemical components may theoretically 

target multiple targets/pathways. For example, the botanical 

drug PHY906 has been used for more than 1500 years and 

comprises four herbs each with a distinct pharmacological 

profile. Experiments in a mouse model of colon cancer have 

suggested that PHY906 reduces the gastrointestinal toxicity of 

irinotecan-based chemotherapy via multiple synergistic anti-

inflammatory mechanisms
10

. Although utilized in many cases 

for centuries, the mechanism of action of botanical drugs, 

sometimes containing hundreds of potentially bioactive and 

bioavailable constituents, are mostly unknown and often cannot 

be elucidated via conventional biochemical methodologies
11

. 

We argue that a network pharmacology approach would 

naturally lend itself as an unbiased strategy for uncovering the 

overall mode of action of multi-targeted natural products and 

their mixtures, as well as of their combinations with approved 

drugs, such as irinotecan mentioned above. Further, many 

nutraceuticals or other diet-derived agents relevant to cancer 

research are multi-targeted and have been shown to synergize 

with chemotherapeutic drugs and so would likewise benefit 

from a network pharmacology approach
12

. Mapping of the 

spectrum of potential interactions between the agents and their 

cellular targets enables one not only to explore the therapeutic 

potential of natural products but also to better understand their 

potential adverse effects prior to the actual clinical trials, 

thereby de-risking and speeding-up the drug development 

process. 

 

In this review, we survey the recent network pharmacology 

developments and computational tools that have been applied to 

natural product research, with many studies unsurprisingly 

concentrating on examples from TCM. The aim is not to 

present an exhaustive list of examples, but rather to give an 

overview of the representative concepts and strategies applied 

so far, with the ultimate goal of generating hypotheses on the 

efficacy and mechanisms of action of combinations of 

compounds, where at least one compound is natural, in order to 

promote good health, prevent disease and act as effective 

therapeutics with minimal side effects at a personalized level. 

We also point to references of other successful applications and 

methods that could be used in the future for natural product 

research. The current review focuses mainly on in silico 

approaches using in vivo and in vitro transcriptomic drug 

response profiles
13

. However, the computational approaches 

described are also widely applicable to other types of functional 

phenotypic response signatures. For a broader perspective of 

‘omic’ techniques used in systems biology approaches to TCM 

research, the reader is referred to the review article of Buriani et 

al.
14

.  In other studies, Lagunin et al.
15

 and Barlow et al.
16

 

reviewed in silico research into traditional Indian Medicine and 

TCM, respectively, though concentrating mainly on virtual 

screening (VS) and cheminformatics techniques, including 

pharmacophore search, molecular docking, inverse docking and 

QSAR modelling by means of chemical descriptors and 

fingerprints. However, most of these techniques can be given a 

network pharmacology twist by combining them with pathway 

information as described below in the context of the work by 

Zhao et al.
17

. Finally, we give pointers to useful database 

resources for network-based modelling of natural product 

responses.   

 

 

2 Currently known target classes of natural products 

Please insert Figure 1 (double column width) in this section. 

 

Properties of natural products and how these differ from or are 

similar to properties of synthetic drugs have been characterized 

in earlier works; see for example Ramallo et al.
18

 and Clardy et 

al.
19

 and the references therein. Of particular interest have been 

those properties beneficial in drug design. For example, the 

class of natural products termed secondary metabolites that are 

involved in defence and signalling are considered as a good 

starting point for designing new drugs, thus prompting the 

development of a natural product-likeness score for screening 

compound libraries and to assist in designing new lead 

compounds
20

. On the other hand, the more complex natural 

compounds can exhibit a polypharmacology that can be both a 

blessing and a curse, as polypharmacology can lead to adverse 

effects. In general, poor “drug likeness” properties of natural 

products, such as difficulty to synthesize and make analogues, 

and also pharmacological challenges, such as bioavailability, 

have limited the use of natural products in drug discovery.  

 

Despite the known limitations, natural compounds harbour a 

tremendous potential in terms of chemical diversity and 

therefore likely bioactivity diversity. Considering that there are 

around 200,000 known natural compounds, actually only a 

small fraction of them have been tested for biological activity, 

partly due to the fact that many of these chemicals do not exist 

in reasonable amounts as pure substances and are not 

commercially available for researchers to acquire and test in a 

biological assay
21

. For example, of the 150,000 structures in the 

CRC Dictionary of Natural Products 

(http://dnp.chemnetbase.com/), only about 1% of them have 

any biological test results in the MDL Drug Data Report 

database
2
. Similarly, only 1.8% of the 197,201 natural products 

in the Universal Natural Products Database (UNPD) have target 

binding information in BindingDB
22

 or ChEMBL
23

 databases 

(See Table 2 for database references). The critical challenge 

therefore is how to make use of the chemical diversity to reach 

the numerous proteins implicated in complex diseases. 

 

We argue that network pharmacology methods are convenient 

for unbiased investigation of the potential target space of 

natural products, given the fact that many natural products have 

multiple targets
23 24

. The currently known target space of 

natural products is already relatively broad, including e.g. 

enrichment of protein kinases compared to FDA-approved 

drugs (Figure 1), opening up unrealized potential for finding 

new therapeutics acting on as yet untargeted pathways. Taking 

cancer as an example, where only a small fraction of cancer 

drivers can currently be targeted by approved cancer drugs
26

, 

Luo et al.
25

 predicted strikingly that most of the natural 

products target at least one out of 104 cancer-associated protein 

targets, with several natural products having many cancer-

associated targets. Systematic approaches are needed to map 

the yet unexplored target space of natural products, with the 

aim to extend the druggable cancer genome and to provide the 

ingredients for combination treatments to overcome the 

emerging drug resistance. 

 

3 Discovering novel mechanisms of action  
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Network pharmacology methods have been introduced to 

suggest hypotheses on mechanisms of action (MoA) of drugs 

which can then subsequently be tested in vitro and in vivo. Here 

we examine some key representative methods that have been 

applied to single natural products, with potentially multiple 

targets, or compound combinations, where at least one 

component is a natural product. In this section, we deal with the 

case when the object under consideration is a single entity (i.e. 

a known compound or mixture of compounds) and in section 4 

we will consider the case of multiple combinations out of which 

we would like to find the most effective ones. All of these 

methods offer the additional opportunities for drug 

repositioning, i.e. to find new, unexpected uses for natural 

products, which have a well-known safety profile and 

pharmacokinetic profile
27

. There are many more methods 

available which have yet to be applied to natural products and 

some of these are reviewed by Wu et al.
27

. 

 

Connectivity Map –based phenotypic approaches 

 

One popular class of methods uses the Connectivity Map 

(CMap) data. The publicly available CMap data resource
28

, 

produced by the Broad Institute of MIT and Harvard, comprises 

genome-wide gene expression profiles of 1309 small 

molecules, produced upon treatment of the molecule to 

different human cell lines, mainly the prostate cancer cell line 

PC3 and the breast cancer cell line MCF7 (see Table 2 of 

database resources). The database is accompanied by the so-

called CMap tool, which allows users to input a query gene 

expression signature representative of a given phenotype and to 

compare this signature with the reference catalogue of small 

molecule gene expression profiles. If the query signature is 

similar to the transcriptional response profile of a particular 

small molecule, then prior knowledge about the small molecule 

could infer mechanisms of the phenotype. For example, one 

may discover the unknown MoA of a compound via the 

comparison of its gene expression profile to those of small 

molecules of known MoA (see Figure 2 and the accompanying 

illustrative example in the text). Further, if the phenotype of 

interest is a disease, then the inverse similarity of its query 

signature with the gene expression profile of a particular small 

molecule implies that the molecule could act as a therapeutic 

for the disease. 

 

An overall review of the applications of the CMap resource for 

drug repositioning, lead discovery, MoA elucidation and 

systems biology is given by Qu et al.
29

. It should be noted that 

even just for MoA discovery there is an abundance of variations 

on the original method in the CMap tool, which is based on 

Gene Set Enrichment Analysis (GSEA)
30

 as described in the 

landmark CMap paper of Lamb et al.
28

, and several new 

methods have been published subsequent to the aforementioned 

review. Notably, the method of Jahchan et al.
31

 incorporates 

information on both the known targets and enriched pathways 

of the top-scoring small molecules; Laenen et al.
32

 incorporate a 

functional protein association network into their model and Wu 

et al.
33

 incorporate a side effect score based on differential 

expression of essential genes. Further, some novel probabilistic 

methodologies are beginning to emerge
34

 
35 36

 and a new 

combined unsupervised and supervised approach
37

 has also 

been shown to perform well on CMap data. Below, we detail a 

representative set of CMap-related methods applied to natural 

products that are in order of most traditional methods to newer 

variants (see Table 1 for a summary). 

 

Please insert Figure 2 (double column width) in this section, 

preferably on the same page as the following paragraph. 

 

As an illustrative example (see Figure 2), we consider the major 

isoflavone present in soybeans, genistein, which is known to 

inhibit human cancer cell growth
38

. We selected genistein as it 

is a good example of a natural compound with multiple targets 

and with a complicated dose-response profile highly dependent 

on the test system. Especially in the case of oestrogen-

responsive breast cancer, the preclinical settings have poorly 

predicted the outcomes in women. This suggests that genistein 

has targets that are poorly modelled in currently available 

preclinical models of breast cancer. We extracted the 

transcriptional response profiles for genistein in MCF7 and PC3 

cell lines from the CMap database, and a consensus 

transcriptional response across the different experimental 

settings was compared to the transcriptional profiles of the 

other small molecules in CMap using the method of Iorio et 

al.
39

 via the freely available online tool MANTRA
40

. This 

network-level method produces a distance measure to quantify 

the similarity in transcriptional response between small 

molecules, thus mapping a drug-drug network. The known 

targets of the small molecules closest to genistein in the 

network were extracted from ChEMBL and DrugBank using 

the KIBA method
41

 (see Table 2 for database resources). 

Among these targets were PTGS2 (COX-2) and several 

HDACs. Importantly, we validated the PTGS2 target 

experimentally via measurement of downstream PGE2 on both 

PC3 and MDA-MB-231 cells (Figure 2). Subsequently, we 

found literature evidence that genistein is an HDAC inhibitor
42

, 

as well as further literature evidence to support PTGS2 as a 

genistein target
43

. This example demonstrates the power of 

unbiased network-level analyses in predicting the potential 

cellular targets of natural products. 

 

In a similar manner, but using the original CMap tool rather 

than the method of Iorio et al. to measure similarity in 

transcriptional responses, Tiedemann et al.
44

 elucidated the 

mechanism of action of the natural product pristimerin, which 

was of interest having been identified from Spectrum library 

screening as the top-ranked suppressor of cyclin D2 promoter 

transactivation. It was found that the transcriptional response of 

cells treated with pristimerin closely resembles cellular 

responses elicited by proteasome inhibitors, with rapid 

induction of heat shock proteins, activating transcription factor 

3 (ATF3) and C/EBP homologous protein (CHOP). These 

inferred mechanisms for pristimerin were validated in vivo and 

in vitro. In an earlier work, Hieronymus et al.
101

 used a similar 

methodology to generate the hypothesis that celastrol and 

gedunin function as HSP90 inhibitors, and indeed the two 

compounds were shown in vitro to inhibit HSP90 activity and 

HSP90 clients, including the androgen receptor (AR). 

 

Kunkel et al.
45

 produced two unbiased mRNA expression 

signatures of skeletal muscle atrophy, a common and 

debilitating condition that lacks a pharmacologic therapy, and 

used these signatures to query the CMap tool for compounds 

with a signature inversely similar to this disease to identify 

potential small molecule inhibitors of muscle atrophy. Among 

the top hits was ursolic acid, a natural compound enriched in 

apples. Extensive experimental evidence was given there and in 

a subsequent paper
46

 to support the model that ursolic acid 

reduces obesity, glucose intolerance and fatty liver disease by 
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increasing skeletal muscle and brown fat, thus potentially not 

only providing a therapy for skeletal muscle atrophy but also a 

disease preventative solution. Mukherjee et al.
102

 had earlier in 

a similar manner used HuR mRNA dynamics as a quantitative 

response phenotype to be queried against CMap compounds 

and discovered resveratrol to be a candidate effector of HuR 

and T-cell activation, these effects being confirmed 

experimentally in vitro.    

 

Si-Wu-Tang (SWT) is a TCM formula which comprises four 

herbs and at least nine bioactive phytochemicals that has been 

widely used over a thousand years for women’s health, in 

particular for oestrogen-related diseases. Wen et al.
47

 produced 

gene expression profiles of SWT at different doses on MCF7 

cells and used canonical pathway analysis of IPA (Ingenuity 

Pathway Analysis, www.ingenuity.com) to show that 

differentially expressed genes from the high concentration 

SWT treated group are most significantly enriched in several 

cancer signalling pathways, in particular the Nrf2-mediated 

oxidative stress response pathway, which plays an important 

role in cancer prevention. When the same analysis was 

performed selectively for dose-responsive genes (as these are 

most likely to reflect the true pharmacological effect of SWT), 

the Nrf2-pathway was again top of the list prompting the 

authors to suggest that SWT is cancer preventative. The gene 

expression profiles of SWT were then compared to the 1309 

compounds using the CMap tool, with estradiol and some 

chemopreventive compounds amongst the top hits, suggesting a 

potential oestrogen-like and chemopreventive effect. The 

oestrogenic activity of SWT was confirmed in a follow-up 

study
103

 using a cell proliferation assay on MCF-7 (ER-

positive) and MDA-MB-231 (ER-negative) cells and an 

oestrogen-responsive element (ERE) luciferase reporter assay 

in MCF-7 cells. 

 

There are also a few examples where the transcriptional 

response profile to be compared using the CMap tool is 

produced using ex vivo or in vivo experiments, rather than in 

cell lines like in the traditional CMap approach. For instance, 

Cheng et al.
104

 orally administered 15 different TCM formulae 

to mice and produced gene expression profiles using mouse 

kidney and liver tissue samples. The molecular signatures of the 

formulae were then compared with those of molecules in the 

CMap database to highlight potential common effects of these 

formulae. Interestingly, the molecular signatures were also 

compared with the expression signatures of 223 chemical 

treatments obtained from the Environment, Drugs and Gene 

Expression (EDGE) database
105

 to check for potential 

nephrotoxicity.   

 

Hassane et al.
106

 generated a gene expression signature in 

response to treatment of human acute myelogenous leukemia 

(AML) cells in primary culture with parthenolide (PTL), which 

has been shown to ablate AML stem cells as a single agent. 

With a view to discovering targeted therapies for AML stem 

cells, the authors searched for similar signatures in CMap using 

the CMap tool as well as in publicly available gene expression 

profiles deposited into the Gene Expression Omnibus (GEO, 

Table 2),  using a correlation-based metric. Using both 

methods, the natural product celastrol was found as a top hit 

and was shown experimentally to effectively eradicate AML at 

the bulk, progenitor, and stem cell level. Although, to our 

knowledge, there are no studies addressing the question of 

whether MoA predictions are similar across cell line and in vivo 

samples, these studies demonstrate the use of multiple tissue 

types, including those from patient samples, in CMap-based 

methods. The work of Hassane et al. further demonstrates the 

applicability of these methods across expression profiles 

produced at multiple centres, as is the case with the GEO data.  

 

Most of the CMap-based methods employed for natural 

products use the CMap tool to measure the similarity of 

transcriptional responses. However, in addition to the “V-

score” correlation metric used by Hassane et al.
106

, Quan et 

al.
107

 also employed an alternative approach to similarity 

assessment. They use the idea of drug-induced transcriptional 

modules
108 109

 for elucidating the MoA of curcumin and the 

TCM formula Si-Wu-Tang, mentioned above. In particular, 

they used a bi-clustering algorithm to identify so-called gene 

modules in the CMap data matrix, each module consisting of a 

group of compounds with transcriptional changes on a common 

set of genes. Each compound was then assigned a binary vector 

indicating its presence or absence in each of the modules, a 

high similarity between the binary vectors of two compounds 

representing similarity in biological effects for those two 

compounds. The predicted biological effects of curcumin and 

Si-Wu-Tang were supported by literature evidence.    

 

Please insert Table 1 after this point. Please insert Table 2 

wherever suitable after Table 1. 

 

Other functional approaches to MoA elucidation 

 

There are also many other functional phenotype-based 

approaches that do not use the CMap resource. Some of the 

approaches reviewed below do not go as far as suggesting a 

direct MoA, although it may for example be unrealistic to 

expect to be able to de-convolute the mechanism of action of a 

mix of many compounds, as is the case in Shi et al.
48

, where 

individual components themselves are polypharmacologic. 

 

Potts et al.
49

 developed a method called functional signature 

ontology (FUSION) to identify MoA for marine-derived natural 

products, their natural product library being composed of 

extracts from 92 marine-derived bacterial strains and 20 marine 

invertebrates. After adding a natural product fraction, which 

typically consisted of mixtures of two to six compounds, to the 

human colon cancer cell line HCT116, the authors measured 

the gene expression changes on six reporter genes chosen to 

serve as a proxy for the physiological state of the cell. These 

gene expression signatures were then compared to those 

produced by 780 small interfering RNAs (siRNAs) targeting 

human kinases and related proteins and 344 synthetic 

microRNAs (miRNAs) to identify biologically similar genetic 

and chemical perturbations. Euclidean distance was mainly 

used to quantify the similarity between expression profiles and 

hierarchical and neighbour joining clustering of Euclidean 

distance was used to draw neighbour joining trees. This 

analysis produced FUSION maps linking bioactive molecules 

to the proteins and biological processes they engage in cells. 

For example, focusing on autophagy, the authors found that 

metabolites isolated from the Streptomyces bacillaris strain SN-

B-019 induced reporter gene signatures that positively 

correlated with knockdown of Unc-51–like autophagy-

activating kinase1 (ULK1), and experiments confirmed that 

four of the five compounds isolated from the SN-B-019 fraction 

inhibited autophagy. Predicted mechanistic relationships for 

compounds with functional roles in chemotaxis mediated by 
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discoidin domain receptor 2 (DDR2) or activation of the kinase 

AKT were also confirmed experimentally.  

 

PHY906 is a four-herb TCM formula with reported anti-

inflammatory properties that has been used as an adjuvant to 

relieve the side effects associated with chemotherapy. Wang et 

al.
50

 argued that, when attempting to elucidate the mechanism 

of action of PHY906, the overall effects of the herb should be 

investigated in vivo using global transcriptional profiling. Thus, 

the authors examined alterations of the transcriptional program 

induced by PHY906 following its administration as a single 

agent and in combination with irinotecan in a preclinical mouse 

model of colon cancer. The effects were compared to those 

observed in normal mouse tissues (liver and spleen). When 

administered alone, PHY906 had no effect on tumour growth 

and, based on transcriptomic changes in tumour tissues, 

immune-related canonical pathways were suppressed. 

However, PHY906 significantly enhanced the anti-tumour 

activity of irinotecan and this combined treatment in tumour 

tissue activated pro-apoptotic and pro-inflammatory pathways, 

an effect not observed in normal tissues. These results led the 

authors to speculate that PHY906 enhances the anti-tumour 

properties of chemotherapy with irinotecan by imparting a pro-

inflammatory state that is not observed in irinotecan naïve 

cancerous tissue, suggesting a potentially useful dichotomy in 

behaviour for PHY906.  

 

Zhao et al.
17

 considered astragaloside IV (AGS-IV), the main 

ingredient of a herb widely prescribed in TCM for the treatment 

of cardiovascular disorders. There is extensive experimental 

evidence of the cardiovascular-protective effects of AGS-IV, 

however the MoA of this compound is unknown. The authors 

produced 33 key pathways involved in cardiovascular disease 

(CVD) by investigating which pathways are enriched with the 

targets of FDA-approved small molecule CVD drugs using 

pathway enrichment analysis. A flexible ligand-protein inverse 

docking program, INVDOCK, was then applied to the proteins 

in the 33 enriched pathways to find 39 distinct proteins as 

putative targets for AGS-IV, three of which were 

experimentally validated. The authors then proceeded to map 

the putative targets onto a protein-protein interaction network 

of the human genome to find that most of the targets link to a 

single sub-network either through direct interactions or through 

only one intermediate protein. A simulated annealing algorithm 

partitioned this into six topologically compact modules, where 

the targets are arranged around common hub proteins, agreeing 

with previous studies suggesting that weak inhibition of 

multiple targets may be more efficient than potent inhibition of 

a single hub target
51

. Via examination of CVD disease networks 

it was also observed that some of the putative targets are at 

crosstalk sites of multiple pathways, thus potentially allowing 

AGS-IV to intervene in multiple pathways in CVD via a limited 

number of proteins. The authors suggest that AGS-IV produces 

its therapeutic effect via a combination of multiple 

mechanisms, including anti-oxidation, anti-inflammation, 

blocking calcium influx and immune regulation, anti-

thrombosis and vasodilation.  

 

Shi et al.
48

 used a similar type of network approach but for a 

TCM formula Bu-shen-Huo-xue (BSHX), which is composed 

of five herbs, together including 774 known compounds. The 

formula BSHX is frequently used for treating chronic kidney 

diseases (CKD) but its MoA is unknown. First, the known 

targets of the compounds in BSHX and also drug targets related 

to CKD were obtained from various databases, including the 

Therapeutic Target database (see Table 2). Then, the natural 

product compounds were docked to the CDK target proteins 

using AutoDock Vina and a natural product-target network was 

produced. Through analysis of network characteristics, such as 

node degree, potential effective ingredients and their synergistic 

mechanism were putatively identified. In particular, it was 

proposed that BSHX exerts its therapeutic effect by using 

multi-channel network regulation, such as regulating the 

coagulation and fibrinolytic balance, and the expression of 

inflammatory factors, inhibiting abnormal extracellular matrix 

(ECM) accumulation. Tanshinone IIA, rhein, curcumin, 

calycosin and quercetin were proposed to be potential effective 

ingredients of BSHX and their therapeutic effect was validated 

experimentally, with the key finding that the therapeutic effect 

of the combined administration of the five components was 

significantly higher than that of each compound alone, adding 

support to the proposed multi-component and synergistic 

mechanisms of TCM. Indeed, one of the major challenges in 

the modernization of TCM is identifying the active ingredients, 

which either individually or in combination produce the 

therapeutic effects or adverse effects and although we do not 

focus on this particular issue here, we comment that the 

DMIM
52

 methodology introduced below also contributes to this 

active area of research. 

 

4 Predicting effective therapeutic combinations 
 

There is a strong interest in the use of combinations of drugs to 

increase therapeutic efficacy and reduce drug toxicity caused by 

high doses of individual drugs, the rationale being that a 

combination of drugs may target nodes on compensatory 

pathways countering problems such as emerging drug 

resistance. Interestingly, there is evidence to show that the 

synergistic interaction of different bioactive components of 

botanical drugs can contribute to the therapeutic effect and is 

capable of reducing side-effects
53 54 55

, supporting the idea that 

new botanical drugs should be designed as a combination of 

several active components. Further, there is experimental 

support for natural products working with Western drugs to 

enhance the therapeutic effect and/or limit adverse side effects, 

with much research focusing on anticancer treatments
10 56 57

. 

Critically, there are also numerous cases where 

polypharmacologic natural compounds, extracts and 

nutraceuticals interfere with the function of approved drugs58, 

leading to adverse drug interactions. Since there is an 

increasing trend in Western countries towards an integration of 

the traditional Chinese and Western systems of medicine, more 

systematic research into such combinations is timely to ensure 

their safe and effective usage
59

.  

 

In this section, we look at a few selected methods of network 

pharmacology for prioritization of the most therapeutically 

effective combinations of compounds for experimental 

validation in vitro or in vivo. Such computational methods are 

important due to the impracticality of testing all the possible 

drug combinations, even with the availability of robotic drug 

screening infrastructure, as the number of combinations 

increases exponentially with the number of drugs to be 

screened. Again, we illustrate methods already applied to 

natural products, but stress that there are many generically 

applicable methods available to the natural products research 

community that have yet to be applied to this area. These 

methods are reviewed by Wu et al.
27

, Tang et al.
60

 and Sun et 
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al.
61

, where the latter focuses on computational methods for 

high-throughput biological measurements. It should be noted 

that molecular response profiles, such as genome-wide gene 

expression data, for combinations of drugs is currently still 

scarce, though some efforts toward prediction of such response 

profiles have been made
27,62

. An attempt has also been made to 

incorporate side effect prediction and efficacy prediction into a 

single model to predict the overall effect of a combination
62

.  

 

Li et al.
63

 introduced a novel method called NIMS (Network 

target-based Identification of Multicomponent Synergy) to 

assess the synergistic strength of multicomponent therapeutics. 

NIMS combines topological features of the targets of the 

individual compounds in a disease-specific network with a 

measure of the similarity between the phenotypes associated 

with the targets of the individual compounds. The underlying 

hypotheses are that (1) the more important a compound target 

gene is as a network node, the stronger the effect on the disease 

that the compound will produce, (2) if a pair of compounds 

produces synergy then their target genes should be adjacent in 

the disease network, and (3) compounds with independent 

action mechanisms but treating similar diseases may be more 

likely to produce synergistic effect. The method was applied to 

prioritize synergistic combinations among 63 agents including 

61 herbs or herb compounds. Five known synergistic pairs all 

ranked highly based on predicted synergy scores, with two pairs 

in the top three. Initially an angiogenesis network was used. 

However, the method was shown to be relatively robust to the 

choice of background network. As experimental validation, five 

compounds were chosen from the 63 agents and combined 

individually with the anti-angiogenic alkaloid sinomenine to 

investigate synergistic effect in vivo, the experiments producing 

an identical rank ordering of synergistic effect to that predicted. 

In addition, two predicted synergistic agent pairs, sinomenine 

and matrine, and sinomenine and honokiol, respectively, are the 

main constituents of TCM herbal formulae such as Qing-Luo-

Yin and Tou-Gu-Zhen-Feng. In a previous article
52

, the authors 

developed another method called the Distance-based Mutual 

Information Model (DMIM), which uses information from the 

composition of current TCM formulae to try to elucidate the 

combination rule in TCM herbal formulae and to suggest TCM 

compound pairs that may work synergistically to produce anti-

angiogenic effects. As with the methods in Section 3, here too 

both the NIMS and DMIM methods are reliant on the accuracy 

and completeness of the background information; the target 

information of the individual components in the former method 

and knowledge of active components of herbs in the latter.    

 

Zhao et al.
64

 applied a computational optimization algorithm 

based on integer programming that uses as its input single-drug 

efficacies for genetically variant cell subpopulations to predict 

how drug combinations will affect heterogeneous tumours. The 

main assumption in the model, which is nicely illustrated in 

Figure 1 of the original publication, is that commonly used 

combinations of chemotherapeutics act as linear averages of 

each component drug against homogeneous tumours, an 

assumption that was demonstrated in their earlier work
65

. 

Tumour heterogeneity is modelled using engineered RNAi 

based knockdowns. The widely used anti-cancer agent 

vincristine (a natural product) in combination with vorinostat 

was predicted as the optimal treatment for a three-component 

population consisting of the parental Eµ-Myc; p19 Arf −/− 

lymphoma (no shRNA) and subpopulations expressing either a 

Chk2 (a DNA damage checkpoint regulator) or a Bok (a Bcl2-

family cell death mediator) shRNA, with validation being 

performed both in vivo and in vitro. This particular example led 

to the observation that considering a heterogeneous tumour in 

its entirety can result in non-intuitive optimal drug 

combinations containing drugs that are not the best single agent 

for any of the subpopulations.  

 

Hassane et al.
110

 used the CMap tool to search for compounds 

that enhance the therapeutic effect of the plant-derived 

compound parthenolide (PTL), mentioned in Section 3, which 

is a suboptimal anti-AML pharmaceutical. The authors 

hypothesized that compounds with an inversely similar 

transcriptional profile to that of PTL may counteract some of 

the cellular cytoprotective responses of PTL. Inhibitors of PI3K 

and mTOR were significantly enriched in the top hits from 

CMap and accordingly the authors confirmed that, compared 

with single agent treatment, exposure of AML cells to the 

combination of PTL and PI3K/mTOR inhibitors significantly 

decreased viability of AML cells in vitro and reduced tumour 

burden in murine xenotransplantation models. 

 

We conclude this section by commenting that the rich body of 

TCM experience in combined use of herbs may provide an 

excellent model for studying synergistic effects among different 

components and thus be utilized in the evaluation of different 

network pharmacology computational methods
63

. It is also 

critical to validate experimentally the most potent 

computational predictions, either in vitro or ideally in vivo, in 

order to avoid reporting over-optimistic combination results or 

practically unrealistic model predictions. 

 

 5 Conclusions and future directions 
 

Computational tools of network pharmacology are increasingly 

being developed and applied to drug discovery with a view to 

combat problems such as lack of efficacy of single-target 

molecules, side-effects, drug resistance and individual variation 

in treatment response. At the same time, natural products and 

their combinations are commonly multi-targeted with targets 

thought to encompass and exceed the currently limited space of 

targets of FDA-approved drugs, thus holding potential for new 

types of therapeutic opportunities
66

. There are many empirical 

examples of successful therapeutic uses of natural products, in 

particular via TCM formulae, however the lack of knowledge 

of their MoA diminish their scientific validity and thus limit 

adoption in Western medicine. We believe that unbiased 

network pharmacology approaches for uncovering MoA would 

lend themselves well to natural product research. In practice, 

recent developments have been relatively slow to be translated 

into the field. In this review, we have given an overview of the 

successful approaches applied so far to natural products, giving 

also references to approaches applied in a different context.  

The hope is that those involved in natural product research will 

see the usefulness of these computational tools and adopt them 

in their own future work.  

 

There are several critical issues to be addressed with regards to 

applying network pharmacology methods to natural product 

research. Firstly, the prediction of potential side effects of drugs 

is an important part of the drug development process. It is 

known that most drugs come with some side effects and, next to 

lack of efficacy, they are the leading cause of attrition in 

clinical trials of new drugs
4
. Any future predictions of efficacy 

of natural products or combinations thereof should include the 
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prediction and subsequent investigation of potential side 

effects. Recent efforts, a number of which are highlighted by 

Wu et al.
27

, have been made to develop tools to predict side 

effects of drugs. Resources, such as the recent work of Kuhn et 

al.
67

 on the prediction of proteins that elicit side effects are 

equally applicable to the natural product research community. 

To our knowledge, there are, however, no examples of 

computational side effects prediction being applied to natural 

products so far, apart from the work of Cheng et al.
104

 

mentioned in Section 3. Similarly, the evaluation of ADME 

(absorption, distribution, metabolism and excretion) properties 

is important in drug development. However, in silico ADME 

studies have also been slow to make the transition from drug 

development to natural product research
68

. 

 

Secondly, foods contain bioactive compounds that can be 

classified as non-essential nutrients, with evidence of beneficial 

effects on human health
69 70 71 72 73 74 75

. In many cases, the 

therapeutic effect of individual dietary compounds may be 

limited due to low bioavailability or low content in foods
48

. 

However, when combinations of compounds with similar or 

complementary effects are considered, a cumulative effect may 

occur. As an example, when the gene expression profiles of the 

dietary polyphenols apigenin, luteolin and chrysin were 

compared to the expression profiles of all 1309 small molecules 

in the CMap data resource, it was found that the transcriptional 

responses of these three natural compounds were more similar 

to each other than to any other compound in the database. Thus, 

in the diet, there may be multiple compounds producing a 

similar effect, which may be adding up to a therapeutically 

effective dose. Also food components having multiple weak 

targets
76

 may have an important role to play in disease 

prevention and there is scope for the methods described here to 

be used in discovering which dietary compounds, alone or in 

combination, play a part in which preventive / therapeutic 

mechanisms. 

 

Thirdly, for more comprehensive understanding of the 

compounds’ MoA, methodologies incorporating other types of 

functional response profiles, including, for instance, 

proteomics, metabolomics and DNA methylation, as well as 

dynamic or longitudinal data
77

 would broaden the limited view 

captured by the single time point transcriptomic responses 

alone. Such multi-phenotype data resources are emerging, 

notably from community efforts such as the new Library of 

Integrated Network-based Cellular Signatures project (LINCS, 

http://www.lincsproject.org/), which is aiming to provide a 

unique comprehensive reference data resource of cellular 

response signatures to a wide spectrum of small molecule and 

genetic perturbations. LINCS includes, for example, 

biochemical protein binding profiles and various cellular 

phenotypic response profiles in addition to the genome-wide 

transcriptional signatures. Such a data resource should facilitate 

the development of more realistic, systems-level models of 

disease mechanisms and drug action. Some initial case studies 

which have utilized the integrated diverse data sets from 

LINCS are presented in Vidović et al.
78

  

 

Finally, it is important to elucidate the polypharmacological 

behaviour of natural products that does not arise from direct 

binding to specific target proteins, in order to ascertain when 

such indirect effects are beneficial and when detrimental. It has 

recently been suggested that phytochemicals derive much of 

their broad pharmacological effects via cell membrane 

perturbations, rather than through binding to specific proteins
79

. 

Further, several epigenetic responses to treatment with natural 

products have been reported
80

, but the mechanisms by which 

epigenetic changes regulate the pathogenesis and progression of 

diseases such as cancer is still largely unknown. Dashwood et 

al.
81

 put forward the idea that dietary HDAC inhibitors, as weak 

ligands, might subtly regulate the expression of genes involved 

in cell growth and apoptosis. Ehrman et al.
24

 showed that most 

plant compounds tend to have moderate to weak affinities for 

their targets and suggest that they may therefore serve more as 

modulators of target function rather than strong inhibitors. 

Csemely et al.
51

 discussed the possible advantages of low-

affinity multi-target drugs already in 2005. It remains an open 

question whether these types of weak but important 

polypharmacological effects can be captured by the functional 

response data, or whether we need a new type of data to 

elucidate which compounds behave in this promiscuous way. 

More importantly, can these effects and their combinations be 

converted to proven clinical effects to treat diseases? 

 

Please insert Figure 3 (double column width) as close to the 

following paragraph as possible, preferably on the same page. 

 

Figure 3 provides an overview of the CMap data and its 

potential limitations. One possible limitation, highlighted 

already in the original CMap paper,28 is the presence of 

potential batch effect, i.e. the similarity of gene expression 

profiles observed for unrelated stimuli in cells grown or 

processed at the same time (Figure 3A, B). Attempts to remedy 

batch effects have been made, for example, in the methods of 

Iorio et al.39 and Iskar et al.114. Another potential issue with the 

CMap data is that for most compounds there is only one 

replicate per cell line on the main microarray platform used in 

CMap (Figure 3C). This poses some challenges to the statistical 

analysis, such as finding differentially expressed genes for 

these compounds. Knowing which genes are significantly 

differentially expressed for a given compound would help, for 

example, in choosing the appropriate, significance-based cut-

off for the number of genes taken as up- or down-regulated; 

these genes being then used in the signature comparison as part 

of some CMap methods, such as the method of Iorio et al. 39   

 

Of the many network pharmacology computational tools 

already available, it is not at all clear which methods or options 

are the most suited to natural product research. Even for the 

CMap–based phenotypic approaches discussed in Section 3, 

there are a multitude of variations on each stage of the 

approaches, ranging from data pre-processing
28 34 to expression 

signature comparison34 39.  However, it seems that the response 

profiles from natural product and non-natural product 

compounds have relatively comparable expression changes 

(Figure 3D). This knowledge makes it possible to reliably 

compare natural products and other compounds with 

computational approaches that use the FC-measures, like those 

based on the novel probabilistic method of Khan et al. 34 

Similarly, improvements on the original LINCS data analysis 

pipeline have already been proposed
111

. It would be therefore 

important to evaluate how much these different variations affect 

the results, and whether there would be an optimal combination 

of methods and options specifically for natural product 

research.  

 

What is clear though is that although the current methods 

already show great promise, they are still constantly 
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developing. Similarly, the background information which many 

of the methods discussed here depend upon, such as target 

information, protein interaction networks and molecular 

pathways, are constantly being updated and becoming more 

comprehensive and accurate. Drug discovery is moving towards 

a precision medicine treatment approach and it is likely that we 

will see many more personalized approaches to disease 

prevention in the future. A number of critical challenges 

remain, however, including addressing the impact on drug 

response of both target and non-target associated genetic and/or 

epigenetic alterations, along with understanding the effect of 

candidate lead compounds in a specific disease settings and 

appropriate cellular, tissue and organism environments that are 

therapeutically important
82

. As new network pharmacology 

methods become available and we find new ways to integrate 

complementary information from different measurement types, 

it is important that the advances in the field are translated also 

to natural product research in order to tap the huge potential of 

natural products to provide more effective and safe disease 

treatment and prevention applications.  
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Tables  

 

Table 1: Examples of methods used to elucidate MoA of natural products or their combinations 

 

Compound(s) Disease/Phenotype 

and/or MoA 

Method Input data Reference Limitations/ 

Comments 

Pristimerin Myeloma, inhibition 

of proteasome 

chymotrypsin-like 

activity  

CMap tool
28

 to find 

the mechanism of 

action of a given 

compound 

CMap data, 

transcriptional 

response of cells 

treated with 

pristimerin 

Tiedemann et 

al.
44

 

Potential 

limitations of 

the CMap tool 

are discussed 

in the original 

paper of Lamb 

et al. 
28

 Many 

of these 

limitations 

have been 

addressed in 

the more 

recent CMap- 

based 

methods listed 

in Section 3. 

Ursolic acid Skeletal muscle 

atrophy 

CMap tool
28

 to find 

a compound which 

would act as a 

therapeutic for a 

given disease 

CMap data, mRNA 

expression 

signatures of 

skeletal muscle 

atrophy 

Kunkel et al.
45

 A 

representative 

expression 

signature of 

the disease of 

interest is 

required. A 

discussion on 

deriving gene 

expression 

signatures for 

heterogeneous 

diseases is 

given by Chen 

et al. 
112

. 

TCM formula 

Si-Wu-Tang 

(SWT) 

Phytoestrogenic and 

cancer 

chemopreventive 

effect 

CMap tool
28

 to find 

the mechanism of 

action of a mixture 

of compounds 

CMap data, gene 

expression profiles 

of SWT at different 

doses on MCF7 

cells 

Wen et al.
47

 This work 

demonstrated 

the potential 

of CMap 

methods in 

deriving MoA 

for 

combinations 

of compounds. 

15 different 

TCM formulae 

Multiple common 

properties amongst 

the formulae, for 

example anti-

cancer, anti-

inflammatory, and 

CMap tool to 

discover properties 

common to 

multiple formulae. 

CMap data and 

gene expression 

profiles produced 

from mouse kidney 

and liver tissue 

following oral 

Cheng et al.
 

104
  

To our 

knowledge, 

there are no 

studies 

addressing the 

question of 
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antioxidative 

effects. 

administration of 

the different TCM 

formulae to the 

mice. 

whether MoA 

predictions are 

similar across 

cell line and in 

vivo samples, 

which would 

enable the 

extension of 

the methods 

to in vivo 

samples. 

Celastrol Acute myelogenous 

leukemia (AML)  

CMap tool and 

correlation-based 

metric. 

CMap and GEO 

data and gene 

expression 

signature resulting 

from ex vivo 

treatment of 

human primary 

acute myelogenous 

leukemia (AML) 

with parthenolide. 

Hassane et al.
 

106
 

As above 

Curcumin and 

the TCM 

formula Si-Wu-

Tang 

Anti-inflammatory, 

anti-infective, and 

neurological 

regulation for 

curcumin and anti-

neoplastic, 

antibacterial, 

vasodilatation and 

sedative effects of 

Si-Wu-Tang 

Bi-clustering 

algorithm on the 

CMap data matrix 

CMap data and 

transcriptional 

response of cells 

treated with either 

curcumin or Si-Wu-

Tang 

Quan et al.
 107

  One of the few 

CMap-based 

methods 

applied to 

natural 

products 

which does 

not use the 

CMap tool. 

Natural 

product library 

composed of 

extracts from 

92 marine-

derived 

bacterial 

strains and 20 

marine 

invertebrates 

Autophagy, 

chemotaxis 

mediated by 

discoidin domain 

receptor 2 ,  

activation of the 

kinase AKT 

Functional 

signature ontology 

(FUSION) to 

measure the 

similarity between 

gene expression 

signatures 

produced by 

chemical and 

genetic 

perturbations 

Gene expression 

signatures 

produced by 

addition of the 

natural product 

fraction to the 

HCT116 cell line, 

gene expression 

signatures 

produced by siRNAs 

and miRNA mimics. 

Potts et al.
49

 Potential off-

target effects 

of siRNAs
113

  

may influence 

this method. 

However, here 

the results 

were 

experimentally 

validated, 

proving the 

usefulness of 

this approach.    

TCM formula 

PHY906 

Protection against 

chemotherapy-

induced 

intestinal toxicity 

and enhancement of 

anti-tumour activity 

produced by 

chemotherapy 

Statistical analysis 

of differences in 

gene expression 

between different 

treatments and 

analysis of the key 

pathways involved 

using IPA. 

Transcriptional 

changes produced 

upon 

administration of 

compounds both 

individually and in 

combination in a 

preclinical mouse 

model of colon 

Wang et al.
50

 Here the 

transcriptional 

profiles 

produced from 

the in vivo 

experiment 

were not 

compared to 

the CMap cell 
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cancer.  line profiles.  

Astragaloside 

IV 

Cardiovascular 

disease (CVD) 

Inverse docking of 

compound to 

targets in CVD 

associated 

pathways. 

Network analysis 

via a simulated 

annealing 

algorithm 

Targets of FDA-

approved drugs for 

CVD and their 

pathways, protein-

protein interaction 

network of the 

human 

Zhao et al.
17

 This method 

relies on the 

accuracy and 

completeness 

of the disease 

pathway, 

constructed 

using targets 

of FDA-

approved CVD 

drugs, and 

thus might 

miss the new 

pre-clinical 

CVD related 

targets. 

Bushen-Huo-

xue formula 

(BSHX) 

Chronic kidney 

diseases (CKD) 

Docking of 

compounds to CKD 

associated targets. 

Analysis of 

compound-target 

network 

characteristics 

Known targets of 

the compounds in 

BSHX and drug 

targets related to 

CKD  

Shi et al.
48

 Requires 

knowledge of 

the hundreds 

of components 

of the mixture 

formula and 

targets related 

to the disease 

of interest. 

 

Legend for Table 1: We have listed some potential limitations of these methods. However, these concerns are not 

meant to undermine or question the specific methods and results presented, rather to open up discussion on how to 

further improve these methodologies and the reliability and translationability of the results in natural product 

research. 

Table 2: Examples of database resources and their network pharmacology applications 

Legend for Table 2: Representative examples of natural product-specific databases and of more comprehensive 

repositories which include natural products. Sanderson
83

 highlighted arguments for and against natural product-

specific databases. However, with non-specific databases, it is often difficult to determine which compounds are 

natural and which are not. For example, in ChEMBL, one can go to the 'Browse Drugs' tab on the home page and 

search the compounds with criteria 'Natural Product'. However, compounds produced from this search are those that 

have been classified as ‘natural-product derived’ (as opposed to ‘synthetic small molecule’) using a ‘natural product’-

substructure filter. We believe that the addition of a natural product field to non-natural-product-specific databases 

would further enhance natural product research. There are many additional TCM-specific databases, many of which 

are catalogued in Barlow et al.
16

. A comparison of some of these databases, including some potential limitations, is 

also given on the TCMSP website http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.    

 

Database URL/availability/developers Description Example applications 

 

CMap
28

 

 

http://www.broadinstitute.org/cmap/ 

A database of genome-wide gene 

expression profiles produced upon 

treatment of 1309 compounds on 

cancer cell lines. No natural 

product labelling of compounds but 

 

Elucidation of drug 

mechanisms of action 

and drug 
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Publicly available 

Produced by the Broad Institute of 

MIT and Harvard 

includes at least 301 natural 

products (identified via the CRC 

Dictionary of Natural Products). 

repurposing
44

 
45

 
47

 
84

 

 

GEO
115

  http://ncbi.nlm.nih.gov/geo/ 

Publically available 

Run by the National Center for 

Biotechnology Information 

A public functional genomics data 

repository. Tool to mine partial and 

genome-wide signatures of drug 

responses and disease states. 

Prediction of lead 

compounds for a given 

disease
40 106

  

 

ChEMBL
85

 

 

http://www.ebi.ac.uk/chembl 

Publicly available 

Run by the European Bioinformatics 

Institute in Cambridge, UK. 

Database with bioactivity 

measurements for almost 1.5 

million distinct compounds and 

over 10,000 protein targets.  

No natural product label (see 

comment in legend). 

Prediction of drug-

target interactions
86

  

 

Prediction of 

structure-activity 

relationships
87

 

 

canSAR
88

 

 

http://cansar.icr.ac.uk/ 

Publicly available 

Developed at the Cancer Research 

UK Cancer Therapeutics Unit 

Biological, pharmacological, 

chemical, structural biology, 

molecular activity and protein 

network data for over 1 million 

compounds. 

No natural product label. 

 

Identifying novel 

druggable cancer 

targets
26

 

 

Therapeutic 

Target 

Database 

(TTD)
89

 

 

http://bidd.nus.edu.sg/group/TTD/ttd.

asp 

Publicly available 

Developed by the Bioinformatics & 

Drug Design group at the National 

University of Singapore. 

Database with information on 

2,360 known and explored 

therapeutic targets, the targeted 

disease, pathway information and 

the corresponding 20,667 drugs. 

The database also contains 

biomarkers, drug scaffolds, 1,008 

nature-derived agents, 20818 

multi-target agents against 385 

target-pairs, and the activity data 

of 1,436 agents against 297 cell-

lines. List of FDA-approved, clinical 

trial and preclinical nature-derived 

drugs with specific annotation as to 

which are natural products. 

 

Identification of 

patterns in species 

origin of nature-

derived drugs
90

;  

Identification of novel 

cancer drug targets
91

 

 

Universal 

Natural 

Products 

Database 

(UNPD) 

 

http://pkuxxj.pku.edu.cn/UNPD 

Publicly available 

Peking University, China 

 

Database containing 229,358 

natural products. 

To analyse molecular 

descriptors, 

distribution in 

chemical space and 

biological activities of 

natural products and 

compare them to FDA-

approved drugs
23

  

 

Traditional 

Chinese 

 

http://tcm.cmu.edu.tw/ 

 

Chemical information including 2D 

and 3D molecular structures for 

37,170 natural compounds from 

 

Virtual screening for 

compounds of specific 
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Medicine 

(TCM) 

database @ 

Taiwan
92

 

Publicly available  

Developed at China Medical 

University in Taiwan. 

352 TCM ingredients. No target 

information. 

activity 93 

 

Chem-TCM
94

 

 

http://chemtcm.com/ 

Not freely available. However earlier 

version of the database (CHCD) may 

be available from the authors upon 

request 

 

Developed at King’s College London 

in collaboration with the Shanghai 

Institute of Materia Medica. 

Chemical and botanical information 

on 12,070 compounds found in 

approximately 350 Chinese herbs. 

Includes predicted activity against 

41 common Western therapeutic 

targets
24

 and estimated molecular 

activity according to traditional 

Chinese herbal medicine 

categories
95

. 

 

Virtual screening for 

compounds of specific 

activity 
96
 
97
 

 

 

 

Traditional 

Chinese 

Medicine 

Systems 

Pharmacology 

Database and 

Analysis 

Platform 

(TCMSP)
98

 

 

http://sm.nwsuaf.edu.cn/lsp/tcmsp.ph

p  

Publicly available 

Center for Bioinformatics, Northwest 

A&F University, Yangling, Shaanxi, 

China 

 

Information on more than 30,000 

compounds from more than 500 

medicinal herbs, including twelve 

ADME-related properties, known 

and predicted drug targets and 

diseases. Compound-target and 

target-disease networks and tools 

for network visualization and 

analysis.  

 

Drug discovery, 

Mechanisms of action 

and Disease 

Associations
68

 

 

Dictionary of 

Natural 

Products 

(DNP) 

 

http://dnp.chemnetbase.com/ 

Not freely available 

CRC press 

 

A major source of chemical, 

biological, pharmacological and 

toxicological data on natural 

products. 

 

Historical analysis of 

structural novelty of 

natural products
99

  

 

Legends for figures 

Figure 1: Top target families of natural products (top) and FDA-approved drugs (bottom). Targets for 

natural products were obtained from Gu et al.
23

 who extracted all known interactions of the 197,201 

natural products in Universal Natural Products Database (UNPD) for which there is target binding 

information in BindingDB and/or ChEMBL (1.8% of natural products). The target annotations for the FDA-

approved drugs were obtained from the Therapeutic Targets Database (TTD) and the target analysis is of 

the same form as in Overington et al.
100

. For both pie charts, target family allocations were adapted 

manually from those given in the canSAR database
88 

. Unique top target families are labeled for natural 

products (protein phosphatases and glycosyl hydrolases) and for FDA-approved drugs (cytokine receptors 

and isomerases). 
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Figure 2: Pipeline for Connectivity Map methods for discovering unknown mechanisms of action. (1) We 

start with a compound (here, genistein), or mixture of compounds, with unknown MoA. The compound is 

added at a given dose (typically 10 µM) to a particular cell line (eg MCF7 or PC3). (2) The genome-wide 

gene expression response after the perturbation is measured. (3) Genes are ranked according to their 

differential expression upon treatment (i.e. versus the vehicle control) to produce a transcriptional profile 

for the compound (and given dose and cell line).  Some methods then aggregate all profiles for a compound 

to give a consensus gene expression signature for the compound. (4) This signature is then compared to 

signatures of the 1309 drugs in the CMap database via a predefined measure of similarity (see Figure 3 for 

more details of the CMap data). (5) The compounds can then be mapped into a drug network using this 

measure of similarity of transcriptional response as distance, i.e. drugs close together in the network are 

similar in terms of their transcriptional response. Only edges below a certain threshold are shown here.  (6) 

We take the drugs which are closest to our compound of interest (triangle shape nodes, connected through 

red edges) and find out their established MoA from databases such as ChEMBL (so-called ‘guilt-by-

association’). For example, a particular target may be enriched in the targets of neighbouring drugs (here 

PTGS2 is a target of fenoprofen and resveratrol, both coloured blue) or perhaps a certain target pathway is 

over-represented. From this information, we can gain an understanding of possible mechanisms for our 

compound which can be put forward as hypotheses for experimental validation (here, PTGS2 was validated 

as a target for genistein via the measurement of downstream PGE2). For the CMap-based approaches, 

most studies use a similar pipeline, for example, with genistein replaced by pristimerin or SWT. In the work 

by Kunkel et al.
 45

, in effect one replaces the genistein profile with the disease profile of muscle atrophy and 

considers inverse similarity to the CMap compound profiles in step (4); the compounds having the closest 

inverse similarity are then put forward as possible therapeutics for the disease. 

 

Figure 3: The Connectivity Map Database. A: Experiments present in the current Connectivity Map 

database, which were performed in numerous batches over the period of one year (here information for 

the two main cell lines is given). B: An example of the gene expression response of a CMap small molecule, 

here the Fold Change (FC) produced by genistein 10 µM on MCF7 measured in 5 batches using the most 

abundant platform (HT_HG_U133A). The black curve shows the average value over the 5 measurements 

and the grey vertical lines the portion of the top and bottom 1% of the changes (1
st
 and 99

th
 percentiles). C: 

Pie chart of the number of replicates for small molecules on the MCF7 cell line and HT_HG_U133A platform 

in the CMap data. For PC3, the majority of the compounds have just one replicate on this platform (72% of 

the compounds). D: The distribution of the average of the extreme absolute Log�FC changes within the 

98
th

 percentile for all CMap compounds tested on MCF7, demonstrating that both natural product and non-

natural product compound profiles have comparable expression changes. The 98
th

 percentile was chosen 

here since, as expected, for a given compound most genes show very little expression change.   
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