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The contribution of zinc to platelet behaviour during haemostasis 

and thrombosis. 
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Abstract 

Platelets are the primary cellular determinants of haemostasis and pathological thrombus formation leading to myocardial 

infarction and stroke. Following vascular injury or atherosclerotic plaque rupture, platelets are recruited to sites of damage 

and undergo activation induced by a variety of soluble and/or insoluble agonists. Platelet activation is a multi-step process 

culminating in the formation of thrombi, which contribute to the haemostatic process. Zinc (Zn
2+

) is acknowledged as an 

important signalling molecule in a diverse range of cellular systems, however there is limited understanding of the 

influence of Zn
2+

 on platelet behaviour during thrombus formation. This review evaluates the contributions of exogenous 

and intracellular Zn
2+

 to platelet function and assesses the potential pathophysiological implications of Zn
2+

 signalling. We 

also provide a speculative assessment of the mechanisms by which platelets could respond to changes in extracellular and 

intracellular Zn
2+

 concentration. 

 

Introduction 

Zn
2+ 

is the second most abundant trace metal in the human body 

and is a biologically important cation. Approximately 10-15% of 

genes within the human genome encode proteins that utilise Zn
2+

 

as a cofactor. These include transcription factors, enzymes, 

structural and signalling proteins.
1,2

 Vesicular release of neuronal 

Zn
2+

 from presynaptic terminals has been implicated in signal 

transduction, suggestive of a role for Zn
2+

 as a neurotransmitter.
3–6

 

Additionally, elevation of the intracellular Zn
2+

 concentration 

([Zn
2+

]i), as a result of influx or release from intracellular stores, may 

serve as a second messenger. The activities of a number of cytosolic 

proteins such as protein kinase C (PKC), Ca
2+

/calmodulin dependent 

kinase II (CaMKII), insulin receptor activated kinase (IRAK), 

adenylate cyclase, calcineurin, protein tyrosine phosphatases 

(PTPs), caspase 3 and phosphodiesterases (PDEs) are affected by 

Zn
2+

, supporting a role for this cation in the modulation of 

intracellular signalling pathways.
7–20

 Although the involvement of 

Zn
2+

 in haemostatic processes has been the subject of recent 

reviews
21,22

, there is limited understanding of the contributions by 

Zn
2+

 to platelet function during haemostasis and thrombosis. Here 

we consider the current understanding of Zn
2+

 as an extracellular 

agonist and an intracellular signalling modulator in platelets. Given 

the limited information on this subject, we draw on Zn
2+

-responsive 

signalling pathways and cellular processes described in other cell 

types, and assess the mechanism(s) and/or machinery available for 

use by Zn
2+

 in the context of platelet activation. 

 

Platelet Physiology. 
Platelets play a central role in haemostasis and inappropriate 

platelet activation is a major precipitating factor in cardiovascular 

disease.
23

 Engagement of platelet surface receptors with 

thrombogenic extracellular matrix molecules (e.g. collagen and von 

Willebrand factor) or by soluble mediators (including ADP, ATP, 

thrombin and thromboxane A2) leads to platelet activation, 

culminating in stable adhesion to the subendothelium and 

formation of thrombi. This is a highly dynamic process involving 

cytoskeletal rearrangements, granule release and increased affinity 

of integrins for their cognate ligands.
24

 Activation is mediated by 

platelet membrane receptors, including tyrosine kinase-associated 

receptors (such as GpVI and CLEC-2, reviewed in 
25

) and G-protein 

coupled receptors (GPCRs, reviewed in 
26

). Elevation of intracellular 

Ca
2+

 ([Ca
2+

]i), mediated by release from intracellular stores and 

influx through membrane ion channels is a hallmark of platelet 

activation (reviewed in 
27

). The primary endpoint of platelet 

activation is high affinity binding of integrin αIIbβ3 to fibrinogen, 

leading to thrombus formation.
28

 Conversion of fibrinogen to 

insoluble fibrin by thrombin, generated by the coagulation 

pathway, stabilises the thrombus leading to the cessation of 

bleeding. Chronic cardiovascular diseases narrow the arterial 

lumen, reducing blood flow and elevating local shear rates. 

Subsequent atherosclerotic plaque rupture exposes collagens 

which, in conjunction with elevated shear rates, increase the 

propensity for platelet activation.
23,29,30

 Thrombus formation at 

these sites may lead to vessel occlusion or generate emboli, 

elevating the risk of myocardial infarctions and stroke.  

  

Zn
2+

 as a mediator of haemostasis. The first observations of a 

functional relationship between Zn
2+

 and platelet activation were 

made in rats undergoing experimental Zn
2+

 deficiency. These 

studies demonstrated that Zn
2+

-deficient rodents have an increased 

bleeding tendency, more difficult parturition and prolonged tail 

bleeding times
31–34

 . Consistent with a link between Zn
2+

 status and 

platelet function, this bleeding diathesis has been reported in both 

male and female animals
31–33

 and is phenotypically similar to that of 

aspirin treatment.
32

 Interestingly, this phenomenon has also been 

reported in human subjects. Stefanini et al. described two cancer 

patients, one with squamous cell carcinoma and one with non-
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Hodgkin’s lymphoma, with concurrent nutritional Zn
2+

 deficiency 

whom presented with ecchymoses, prolonged bleeding times and 

abnormal platelet aggregation responses.
35

 In both cases, the 

bleeding phenotype was normalised following oral administration 

of zinc sulphate, but returned as a result of discontinued therapy. In 

addition, healthy human volunteers subjected to experimental Zn
2+

 

deficiency display defective platelet aggregation responses to ADP 

and arachidonate.
34

 Again, normal platelet function was returned 

following dietary zinc supplementation. It is also worth noting that 

nutritional Zn
2+

 supplementation promotes platelet reactivity. Marx 

et al. demonstrated that increased dietary Zn
2+

 in rats correlates 

with enhanced platelet responses to sub-maximal doses of collagen, 

ADP, thrombin and adrenaline.
36

 Given that dietary Zn
2+

 intake is 

linked to plasma Zn
2+

 levels
38

, these studies provide evidence for a 

direct association between Zn
2+

 status and platelet reactivity. Thus, 

these data suggest that maintenance of normal dietary Zn
2+

 is 

required for physiological platelet function.  

Zn
2+

-deficiency also impairs rodent platelet aggregation in 

response to multiple agonists.
37,38

 For example, ADP-stimulated rat 

platelets displayed normal primary aggregation responses, but 

failed to undergo secondary activation.
33

 Zn
2+

-deficiency has also 

been shown to reduce platelet reactivity to ADP, thrombin and the 

thromboxane A2 analogue U46619.
38–40

 These studies suggest that 

secondary platelet activation is, in part, mediated by Zn
2+

-

dependent signalling pathways. Interestingly, aggregation in 

response to fluoride and the Ca
2+

 ionophore, A23187 are unaltered 

in Zn
2+

-deficient animals; indicating that aggregatory mechanisms 

are not intrinsically Zn
2+

-dependent.
37,40

 However, platelet 

responses to the PKC-dependent agonist, phorbol-myristate acetate 

(PMA) were impaired as a result of Zn
2+

 deficiency, suggesting that 

Zn
2+

-dependent modulation of platelet reactivity converges on PKC 

activation.
40

 Furthermore, this effect was only apparent when 

exogenous Ca
2+

 was included in the extracellular medium, implying 

a functional link between Ca
2+

 entry and Zn
2+

-dependent activation. 

 

Labile Zn
2+

 is increased at sites of injury. Plasma Zn
2+

 concentration 

ranges ([Zn
2+

]o) from 10 to 20μM, much of which is bound to 

plasma proteins such as albumin (forming a labile, freely-

exchangeable pool) and α2 microglobulin (a non-exchangeable 

pool), leading to a free Zn
2+

 concentration of approximately 

0.5µM.
1,21,41–43

 However, given that Zn
2+

 freely moves between 

albumin and plasma, [Zn
2+

]o may be considerably higher within 

microenvironments of the vascular network. Zn
2+

 is also located in 

the extracellular matrix of dermal and epidermal tissues, thus 

vascular injury gives rise to localised increases of [Zn
2+

]o.
44,45

 In this 

model, Zn
2+

 released from epithelial cells activates Zn
2+

-sensing 

receptors on adjacent cells, promoting wound healing.
46

 [Zn
2+

]o 

increases in the early inflammatory phase of experimental 

wounds.
44,47,48

 For example, within 20 hours of injury in a rat skin 

wound model, Zn
2+

 levels were found to increase in the wound 

margin by 15-20%.
44

 Cells involved in haemostasis (e.g. neutrophils, 

lymphocytes, platelets and erythrocytes) have a high Zn
2+

 content, 

and their recruitment into the wound margin may represent an 

additional mechanism for Zn
2+

 delivery at sties of vascular 

damage.
49

 Within the platelet micromolar concentrations of Zn
2+

 

are stored in the cytosol and α-granules
1,50–52

. Given that platelets 

release Zn
2+

 upon activation
53,54

, labile [Zn
2+

]o is likely to be 

significantly higher within and in the proximity of a growing 

thrombus. Furthermore, in relation to healthy tissues, Zn
2+

 

concentration is approximately six times higher within 

atherosclerotic plaques.
55

 Combined with the exposure of other 

thrombogenic molecules during plaque rupture, elevation of [Zn
2+

]o 

may help to explain platelet hyperreactivity at these sites. 

 

Zn
2+

 modulates platelet function. Zn
2+

 may modulate platelet 

behaviour in a number of ways, for example by acting as an 

intracellular second messenger, a transmembrane signalling agonist 

or by interacting with and influencing membrane receptor activity. 

Given the number of proteins whose activities are sensitive to 

cation concentration, platelet function is likely to be modulated 

following changes of [Zn
2+

]i. Intracellular Zn
2+

 is mostly associated 

with Zn
2+

-binding proteins (i.e. metallothioneins), but is liberated in 

numerous cell systems following changes of redox state.
56

 Although 

present in platelets, the function of endogenous metallothioneins is 

not fully understood.
57

 Experiments using [Zn
2+

]i chelators 

demonstrate a clear role for [Zn
2+

]i during platelet activation. The 

membrane-permeant heavy metal chelator, N,N,N',N'-tetrakis(2-

pyridylmethyl)ethylenediamine (TPEN), has a high affinity for Zn
2+

 

(Kd = 2.6x10
-16

M) and low affinities for Ca
2+

 and Mg
2+

 (Kd = 4x10
-5

M 

and 2x10
-2

M, respectively).
58,59

 TPEN inhibits platelet aggregation 

induced by conventional agonists including ADP, thrombin and 

PMA, although the effect seen with thrombin is restricted to low 

agonist concentrations.
60–62

 TPEN also reduces thrombin-evoked 

[Ca
2+

]i mobilisation, phosphatidylserine externalisation and 

phosphorylation of eIF2a.
63

 In a physiological blood flow model, 

TPEN-treated platelets were unable to activate to a degree 

sufficient for generation of full thrombi.
62

 Whether this effect is due 

to chelation of labile Zn
2+

 or removal of Zn
2+

 from their interacting 

proteins is unclear. Regardless of the underlying mechanism, this 

work suggests an important role for [Zn
2+

]i in platelet activation. 

As discussed above, local plasma [Zn
2+

]o likely increases 

significantly within the vicinity of a growing thrombus. Exogenous 

Zn
2+

 has been shown to activate platelets directly. Incubating 

washed platelets or heparin anti-coagulated PRP with exogenous 

Zn
2+

 causes aggregation in a concentration-dependent 

manner.
60,62,64

 In calcified (2mM CaCl2) washed platelet 

suspensions, maximal aggregation occurred at a concentration of 

around 0.5mM. Increasing Zn
2+

 concentrations above this value 

gave a sub-optimal response.
64

 A magnitude increase in Zn
2+

 

concentration is required to aggregate platelets in PRP;
64

 however, 

this likely reflects the buffering effect of plasma Zn
2+

-binding 

proteins and anticoagulants. Zinc-induced platelet aggregation 

occurs within a physiologically-relevant timeframe, comparable to 

that of the conventional agonists ADP, collagen and thrombin
60–62

. 

Aggregation is biphasic and accompanied by a discernible shape 

change
60,64

, indicating a role for secondary activation by soluble 

agonists and cytoskeletal rearrangements, respectively. Taken 

together, these features of Zn
2+

-induced aggregation are 

reminiscent of those observed by others in response to other 

agonists, suggesting that Zn
2+

 is a bona fide platelet agonist. 

 

Zn
2+

-induced platelet activation is integrin αIIbβ3-dependent. 

Whether Zn
2+

 acts as a transmembrane signaller in a similar manner 

to that reported for synaptic transmission and insulin release
3,65

, or 

modulates extracellular receptor activity directly has not yet been 

fully resolved. Platelet aggregation is mediated by integrin αIIbβ3 

which, upon switching to its high affinity state, is able to bind to 

arginine-glycine-aspartate (RGD) motifs in proteins such as 

fibrinogen and von Willebrand Factor facilitating platelet 

crosslinking.
23

 Conversely, platelet agglutination occurs as a result 

of direct activation of adhesive receptors, without a requirement 

for intracellular signalling.
23

 Integrins transduce signals in response 

to extracellular and intracellular cues via outside-in and inside-out 
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signalling, respectively. Inside-out activation concerns cytosolic 

events that increase the affinity of the receptor for its ligand, 

whereas outside-in signalling coordinates cellular responses to 

ligand binding.
23

 A number of cation binding sites are present on 

both the α and β subunits of integrin αIIbβ3, with Ca
2+

 or Mg
2+

 

association being required for activity. In addition, direct activation 

has been shown in response to exogenous Mn
2+

.
66–69

 Several studies 

using antibodies and small molecule inhibitors of integrin αIIbβ3 

have demonstrated that Zn
2+

-induced aggregation requires inside-

out activation of these receptors.
60,62,64

 Furthermore, in contrast to 

Zn
2+

, Mn
2+

 does not induce platelet aggregation and direct integrin 

αIIbβ3 activation by Zn
2+

, independently of intracellular signalling, 

has yet to be demonstrated.
62,70,71

 Thus, it is unlikely that Zn
2+

-

induced activation is mediated by cellular agglutination. 

 

Potential routes for elevation of [Zn
2+

]i. Recent work suggests that 

exogenous Zn
2+

 is able to gain access to the platelet cytosol.
62

 

Platelets stained with the fluorescent Zn
2+

 indicator, Fluozin-3, gave 

a rapid and sustained increase in fluorescence upon application of 

exogenous Zn
2+

.
62

 However, the mechanism(s) of platelet Zn
2+

 entry 

are unknown. Studies of Zn
2+

 homeostasis by other cell types have 

identified several distinct Zn
2+

 entry pathways, which include Zn
2+

-

permeable transporters, exchangers and ion channels. At present, it 

is unclear whether Zn
2+

-selective ion channels or exchangers exist 

within the human genome. Although, evidence suggests that 

platelets express Zn
2+

 transporters and several non-selective cation 

channels that may facilitate Zn
2+

 transit.  

In many cell types, elevation of [Zn
2+

]i, in response to exogenous 

Zn
2+

, occurs via members of the ZIP (Zrt/Irt-like, Slc39A) family of 

Zn
2+

 transporters, of which fourteen family members have been 

reported
72

. Within the platelet proteome, ZIP7 (SLC29A7) and ZIP3 

(SLC39A3) have been identified
73

; although their expression is yet to 

be verified by Western blotting and functional assays. ZIP3 is a 

plasma membrane Zn
2+

 uptake transporter that is required for 

survival of mammary gland epithelial cells.
74,75

 In a knockout mouse 

model there were no phenotypic defects when fed normal diets, 

but maternal Zn
2+

-deficiency caused abnormal embryonic 

development.
76

 Haemostatic defects were not reported in this 

study.  

A number of membrane-localised non-selective cation channels, 

including voltage gated Ca
2+

 channels, transient receptor potential 

(TRP) channels and ionotropic glutamate receptors have been 

reported to permeate Zn
2+

 in a variety of cellular models.
77,78

 The 

nature of ion channels expressed on the platelet surface has been 

the subject of a recent review.
27

 Here, we limit our discussion to ion 

channels/exchangers known to be expressed by platelets, which 

have shown Zn
2+

-permeability in other cell types and may therefore 

contribute to Zn
2+

 entry. 

Glutamate receptor subunits 1-6 are expressed on platelet 

membranes and glutamate has previously been shown to mediate 

platelet activation through kainate and AMPA receptor 

activities.
79,80

 Platelets and megakaryocytes (platelet precursor 

cells) also express NMDA receptors.
80–84

 Although unable to 

aggregate platelets directly, glutamate potentiates platelet 

responses to agonists including thrombin and thromboxane A2, 

indicating that these channels are functional during platelet 

activation
80

. NMDA and AMPA/kainite receptors are both 

implicated in Zn
2+

 movement in other cell types.
77,85

 Co-treatment 

of neocortical neurones with Zn
2+

 and NMDA results in measurable 

increases of [Zn
2+

]i that are sensitive to NMDA channel blockers.
85

 

Furthermore, addition of AMPA and Zn
2+

 causes elevations of [Zn
2+

]i 

and potentiates Zn
2+

-induced neurotoxicity of cortical neurones.
85–

87
 Whilst glutamate receptors provide a means by which Zn

2+
 can 

enter cells, further work is required to investigate whether this 

constitutes a genuine route for platelet Zn
2+

 entry. Platelets also 

express α7-nicotinic acetylcholine subunits, which form functional 

Ca
2+

 channels.
88

 Additionally, γ- and ε-acetylcholine receptors are 

permeable to Zn
2+

, although acetylcholine-induced whole-cell 

currents are reduced by millimolar Zn
2+

.
89

 However, nicotinic 

cholinergic-evoked currents have not been reported in platelets, 

indicating that these are not likely to be involved in Zn
2+

 entry.
27

 

TRP channels are a superfamily of approximately 30 non-selective 

cation channels, broadly expressed at the plasma membrane of 

mammalian cells.
27

 TRP channels known to be expressed on 

megakaryocytes include, TRPC1, TRPC6, TRPM2 and TRPM7.
90

 Of 

these, TRPC6 and TRPM7 have been shown to be Zn
2+

-permeable. 

TRPM7 is a ubiquitously expressed non-specific cation channel that 

possesses a C-terminal α-kinase domain. These channels are 

constitutively active and four times more permeable to Zn
2+

 than 

Ca
2+

.
78

 TRPM7 contributes to Zn
2+

-induced cytotoxicity in cultured 

mouse cortical neurones.
91,92

 Functionality of these channels was 

determined electrophysiologically using primary rat 

megakaryocytes, and could be blocked by elevating intracellular 

Mg
2+

.
90

 Interestingly, TRPM7 expression on the surface of 

transfected HEK293 cells increases following exposure to shear 

forces.
93

 To date, attempts to detect TRPM7 on platelets using 

commercially available antibodies have been unsuccessful (Taylor, 

unpublished observation). However, should suitable tools become 

available it would be interesting to assess changes of platelet 

TRPM7 expression/function in response to mechanical stimulation, 

which may reflect the effect of elevated shear stress at sites of 

vessel stenosis. TRPC6 channels open in response to diacylglycerol 

(DAG) analogues, decreased membrane PIP2 concentration, protons 

and hyperforin.
27,94,95

 Overexpression of TRPC6 by HEK293 cells 

coincides with an accumulation of [Zn
2+

]i in response to the DAG 

analogue (SAG) and hyperforin.
95,96

 Electrophysiological recordings 

of these cells reported channels that were permeable to both Zn
2+

 

and Ca
2+

.
 95

 Interestingly, a brief report has shown that TRPC6-

deficient mice have a mild phenotype with increased bleeding 

times, associated blood loss and reduced numbers of occlusive 

thrombi in an FeCl3-induced thrombosis model.
97

 It is possible that 

deletion of TRPC6 may affect platelet Zn
2+

 handling, contributing to 

the observed bleeding phenotype.  

The Na
+
/Ca

2+
 exchanger (NCX) represents an additional candidate 

for Zn
2+

 entry into platelets. Although conventionally thought to 

exchange one Ca
2+

 for three Na
+
 in an electronic manner, NCX 

exchangers have also been shown to contribute to Zn
2+

 

movement.
98

 Sensi et al., demonstrated slow benzamil–amiloride-

sensitive increases of [Zn
2+

]i in response to exogenous Zn
2+

 in 

cortical neurones, indicating NCX involvement.
85

 Additionally, NCX 

has been shown to be involved in transepithelial uptake of dietary 

Zn
2+

.
98

 Platelets express three NCX isoforms; NCX1.3, NCX3.2 and 

NCX3.4.
99

 These are known to contribute to platelet Ca
2+

 

homeostasis (forward-mode) in quiescent cells and promote Ca
2+

 

influx (reverse-mode) in activated cells.
100

 Thus, these exchangers 

are an attractive candidate for the regulation and influx of Zn
2+

 

against physiological gradients. 

 

Zn
2+

 release from intracellular stores. Zn
2+

 has been shown to act 

as a second messenger, being released from intracellular stores into 

the cytosol in a manner analogous to that for Ca
2+

. For example, 

transmembrane signalling via Fcε1 receptors gives rise to elevations 

of [Zn
2+

]i from the perinuclear area of mast cells.
101

 Pathways 

leading to the elevation of [Zn
2+

]i via release from stores may 
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represent an alternative mechanism for the regulation of platelet 

activity. However, this has yet to be studied in platelets. 

Intracellular Zn
2+

 homeostasis is principally regulated by members 

of the SLC30A family (ZnTs, reviewed in 
102

). Of these, three 

members exist in the platelet proteome; ZnT1, ZnT5 and ZnT6.
73

 

ZnT1 functions as a Zn
2+

 exporter in cultured neurones.
103

 ZnT5 and 

ZnT6 are predominantly located on the membranes of intracellular 

organelles
104,105

, although, splice variants of ZnT5 have been shown 

to be present on the plasma membrane where they may regulate 

Zn
2+

 transit.
106

 ZnT5 is important in the sequestration of Zn
2+

 into 

vesicles, including insulin-containing secretory vesicles, where Zn
2+ 

is co-released with insulin. ZnT5 activity is dependent upon an 

electrochemical proton gradient and protects cells from glucose-

induced apoptosis by sequestering Zn
2+

 into the Golgi apparatus of 

peritoneal mesothelial cells.
107,108

 Knockout of ZnT5 results in 

osteopenia muscle weakness and male-specific cardiac death.
109

  

ZIP7 is reportedly associated with the membranes of [Ca
2+

]i
 
stores 

of MCF-7 breast cancer cells.
110,111

 These transporters mediate 

release of Zn
2+

 into the cytoplasm in response to membrane 

signalling, akin to PLC-mediated Ca
2+

 release. Given that ZIP7 is 

present in platelets, it is feasible that these transporters may 

perform similar functions. The existence of a Zn
2+

 store in platelets 

will also require verification. It is plausible that the platelet dense 

tubular system, which acts as a Ca
2+

 store, is also a Zn
2+

 pool, in 

which case, co-release of Ca
2+

 via the IP3-receptor and Zn
2+

 via ZIP7 

may occur. Indeed, the gating of structurally related ryanodine 

receptors on the sarcoplasmic reticulum of cardiac myocytes has 

recently been shown to be modulated by [Zn
2+

]i.
112

 At present, the 

relative expression of Zn
2+

 transporters has not been determined 

using biochemical techniques, and given the paucity of 

pharmacological tools available for targeting these channels, 

further research may warrant the use of genetically modified 

organisms or cell lines. However, in spite of these technical 

considerations, it remains important to account for their potential 

contributions to platelet physiology.  

Zn
2+

 ionophores have been used to examine changes in [Zn
2+

]i 

levels from a number of cell types. Low concentrations of the Zn
2+

 

ionophore pyrithione (5µM) do not induce aggregation of washed 

platelets, however, this additional stimulus appears to potentiate 

ADP-induced aggregation.
61

 In our laboratory we find that higher 

concentrations of an alternative Zn
2+

 ionophore, clioquinol (50µM), 

induce sub-maximal aggregation responses (unpublished 

observation). Given that our experiments were conducted in the 

absence of exogenous Zn
2+

, these point to a role for the release of 

intracellular Zn
2+

 in the propagation of platelet activation. 

Liberation of Zn
2+

 from interacting proteins (i.e. metallothioneins), 

which occurs in response to changes of the intracellular redox state, 

has been shown to elevate [Zn
2+

]i in neurones.
113

 Oxidation of thiols 

removes potential binding sites for Zn
2+

 in proteins, liberating them 

for use in active processes. Thus, the redox state of platelets may 

influence the free Zn
2+

 concentration, consequently affecting 

platelet activation. The redox environment is an important 

modulator of platelet function affecting platelet receptor activity 

including integrins, GPVI and P2Y12.
114–117

 Platelet membranes from 

Zn
2+

-deficient rats have a reduced protein sulfhydryl level
118

, 

indicating Zn
2+

-dependent regulation of membrane protein redox 

state. The aggregation defect associated with Zn
2+

-deficiency is 

rectified by treatment with the reducing agent glutathione-S-

transferase (GST), which had no effect on platelets from rats fed 

control diets. Addition of GST to Zn
2+

-deficient platelets enhances 

Ca
2+

 uptake following ADP activation, supporting a role for Zn
2+

 in 

Ca
2+

 entry. Zn
2+

 may act by regulating multimerisation-mediated 

control of protein disulphide isomerase enzyme activity.
119

 

 

The Influence of Zn
2+

 on Platelet Processes 
Zn

2+
-mediated potentiation of platelet activation. In isolation, 

Zn
2+

-induced platelet activation requires supra-physiological 

concentrations.
60,62,64

 However, it is plausible that release of Zn
2+

 

from the endothelium and other blood cells at sites of vascular 

injury may sufficiently elevate [Zn
2+

]o to directly activate platelets; 

particularly within the self-contained environment of a growing 

thrombus protected from rheological conditions. [Zn
2+

]o is reliant 

upon the cellular context. For example, Zn
2+

 release from cortical 

neurones has been suggested to result in local Zn
2+

 concentrations 

of approximately 300µM.
3
 If similar levels of labile Zn

2+
 were 

achieved within a thrombus, it would be sufficient to induce full 

platelet activation. 

Low, sub-activatory Zn
2+

 concentrations potentiate platelet 

activation in response to other agonists. Zn
2+

 potentiates collagen- 

and ADP-induced platelet aggregation.
60,61,64

 Heyns Adu et al., 

demonstrated that whilst stimulation of platelets by 2.8µg/ml 

collagen gave a partial aggregation, inclusion of 100µM Zn
2+

 in the 

suspension was potentiatory and resulted in full aggregation
64

. 

Similar results were observed using ADP as an agonist. The 

potentiating effect on ADP signalling is blocked following TPEN 

treatment. Low concentrations of Zn
2+

 also potentiate ADP-

mediated α-granule release, measured using platelet-released β 

thromboglobulin.
60

 More recently, we have demonstrated that this 

potentiating effect is evident when platelets are pre-incubated with 

30µM Zn
2+

 and challenged with CRP-XL (collagen-related peptide, a 

GpVI ligand), thrombin, U46619 or adrenaline.
62

 Thus, low [Zn
2+

]o 

potentiates agonist-evoked platelet activation, supporting the 

concept of a physiological role for Zn
2+

 in platelet thrombus 

formation. 

 

Mechanism of action of Zn
2+

 in platelet activation. The mechanism 

by which Zn
2+

 induces platelet aggregation has been studied by 

pharmacological targeting of various aspects of platelet signalling. 

Unlike agglutination, platelet aggregation occurs as a result of PKC 

activation which is dependent on [Ca
2+

]i increases following 

mobilisation from stores and also from extracellular sources via 

gated Ca
2+

 channels, exchangers and transporters (reviewed in 
27

). 

Zn
2+

-induced aggregation is inhibited following treatment with 

[Ca
2+

]i chelators such as TMB8 and BAPTA-AM, further indicating 

that Zn
2+

 initiates an intracellular signalling response leading to Ca
2+

 

release.
62,64

 These observations are complicated by the fact that 

commonly used [Ca
2+

]i chelators often have a higher affinity for Zn
2+

 

than Ca
2+

. For example, the Kds of BAPTA for Zn
2+

 and Ca
2+

 are 8nM 

and 160nM respectively.
120

 Hitherto, the impact of Ca
2+

 chelators 

on Zn
2+

-dependent processes has not been considered in platelet 

research. 

In rat platelets, basal [Ca
2+

]i levels are unaffected by dietary Zn
2+

 

deficiency
61

, but agonist-evoked Ca
2+

 rises are impaired following 

stimulation by ADP, thrombin or fluoride.
40,121,122

 This effect was not 

apparent in the absence of extracellular Ca
2+

, indicating that it is 

due to entry of external Ca
2+

, and not an effect on Ca
2+

 store 

release. Such an effect has been reported in epithelial monolayers, 

where exogenously applied Zn
2+

 induced sustained [Ca
2+

]i increases 

that were consistent with P2X channel conductances.
123,124

 

Conversely, Zn
2+

 has been shown to block Ca
2+

 release-activated 

channel currents (ICRAC) in mast cells.
125

 ICRAC, which is attributable to 

the channel Orai1, is a major Ca
2+

 pathway in platelets following 

[Ca
2+

]i release.
27

 Thus, Zn
2+

 may modulate the activity of platelet 
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calcium channels, such as P2X1, and Orai1 to modulate platelet 

responses.  

 

Influence of [Zn
2+

]i on cytosolic kinases. Zn
2+

-induced aggregation 

is blocked by PKC inhibitors, such as staurosporine or Ro31.
60–62

 

PKCs are a family of serine/threonine kinases that are central to 

platelet processes, including granule release, integrin activation and 

cytoskeletal rearrangements (reviewed in 
126

). PKC isoforms are 

metalloenzymes containing cysteine-rich Zn
2+

-binding domains that 

are essential for structural integrity.
8,9,127

 Exogenously applied Zn
2+

 

in the milimolar range increases PKC activity in thymocytes in a 

concentration-dependent manner.
7
 This action appears to be 

specific to Zn
2+

, as incubation of cells with either Cl
-
, SO4

2-
, Ca

2+
 or 

Mg
2+

 had no effect.
7,40,60

 In platelets from Zn
2+

-deficient rats, 

membrane association of PKC is reduced, indicating that Zn
2+

 

contributes to PKC mobility during platelet activation.
40

 Thrombin-

induced PKC activation leads to increased integrin αIIbβ3 

activation.
128

 This mechanism also holds true for Zn
2+

-induced 

activation, as 50µM exogenous Zn
2+

 caused a 2-fold increase in the 

number of active fibrinogen receptors on the platelet surface upon 

ADP-stimulation.
60

  

Dense granules contain molecules such as serotonin, ADP, ATP 

and polyphosphates, whilst α-granules contain haemostatic and 

angiogenic factors.
129

 Thromboxane A2, but not serotonin release, 

has been detected in Zn
2+

-activated platelets.
61

 Although granule 

release was not observed in platelets by electron microscopy, low 

levels of β-thromboglobulin were shown to be released, indicating a 

role for α-granules downstream of Zn
2+

-induced activation.
60

 

Platelet δ-granule release is mediated by PKC in a Ca
2+

- and DAG-

dependent manner.
130,131

 Zn
2+

-induced PKC activation might be 

expected to expedite this process. However, as Zn
2+

 induces α-

granule, but not δ-granule release
60

, PKC activation likely 

potentiates platelet activation via an alternative pathway.  

Autoradiography of platelet proteins following Zn
2+

 treatment 

revealed phosphorylation of a 47kDa protein, that may correlate 

with the PKC-specific substrate pleckstrin.
60

 This protein was also 

phosphorylated following PMA or thrombin treatment. In further 

support of a role for Zn
2+

, these phosphorylation events were 

inhibited by TPEN and potentiated by pyrithione.  

In other cell types, Zn
2+

-induced PKC activation is blocked by 

staurosporine, TPEN and PGE1 (a prostanoid receptor agonist).
7,132

 

Csermely and colleagues reported that the tyrosine kinase inhibitor 

H-7 blocks Zn
2+

-induced PKC activation in T cells, suggesting that 

changes in tyrosine phosphorylation are required for Zn
2+

-induced 

intracellular signalling.
7
 Tyrosine phosphorylation is a key regulatory 

step during signal transduction in platelets. Phosphorylation occurs 

downstream of platelet receptor engagement (i.e. GpVI and CLEC-2) 

and subsequent phosphorylation via Src family kinases and Syk.
133

 

Exogenously applied Zn
2+

 is known to promote tyrosine 

phosphorylation of a number of important signalling proteins in a 

variety of cell systems.
134–137

 Although not directly affected by Zn
2+

, 

Mitogen-activated protein kinase family member (MAPK) activation 

in response to Zn
2+

 has been observed in a number of different cell 

types. For example, ERK becomes activated by Zn
2+

 treatment of 

fibroblasts, neurones and neuroblastoma cells.
137–140

 Transient 

MAPK activation has been demonstrated in platelets in response to 

agonist stimulation and is thought to be involved in regulation of 

integrin activation in flowing blood.
141

 In our laboratory, we have 

utilised tyrosine phosphorylation-specific antibodies to assess Zn
2+

-

dependent changes of platelet protein phosphorylation.
62

 Our data 

demonstrate time-dependent increases in tyrosine phosphorylation 

of a panel of platelet proteins. Interestingly, the pattern of 

phosphorylated proteins differs to that induced by GpVI- and 

thrombin- dependent signalling, suggestive of a novel signalling 

pathway. Further experiments are required to identify the cohort of 

platelet proteins phosphorylated in response to stimulation by Zn
2+

.  

 

Influence of [Zn
2+

]i on cytosolic phosphatases. Platelet activation is 

positively and negatively regulated by a number of protein tyrosine 

phosphatases (PTPs, reviewed in
142

), some of which are strongly 

inhibited by Zn
2+

.
136

 The IC50 values for many of these phosphatases 

closely correlate with cellular labile [Zn
2+

]i (in the nM range), thus 

minor increases in [Zn
2+

]i may inhibit PTPs and support 

phosphorylation. For example, PTP1b, with an IC50 for Zn
2+

 of 17nM, 

is a positive regulator of outside-in integrin signalling in 

platelets.
134,142

 It dephosphorylates inhibitory tyrosines of the β3 

integrin-associated Srk Family Kinase (SFK), thereby promoting 

downstream signalling
142–145

. SHP-1 and SHP-2 have IC50 values for 

Zn
2+

 of 93nM and 1-2µM, respectively.
134,135

 SHP-1 is a positive 

regulator of platelet activation via GpVI-mediated integrin αIIbβ3 

activation, whereas SHP-2 negatively regulates platelet activation 

initiated by GpVI or CLEC-2.
146–150

 PTEN I s another Zn
2+

-sensitive 

phosphatase with an IC50 of 0.59nM. PTEN dephosphorylates PIP3, 

reducing AKT activation resulting in negative regulation of platelet 

aggregation initiated by collagen.
151

 Phosphorylation of AKT in T-

cells is abrogated by Zn
2+

 chelation using TPEN, but induced by 

pyrithione, an effect that was ineffective following siRNA knockout 

of PTEN.
152

 Thus, the activation of PTPs by discrete rises of [Zn
2+

]i 

may play a significant role in Zn
2+

-mediated platelet activation. 

 

Influence of [Zn
2+

]i on the modulation of cyclic nucleotide levels. 

Intraplatelet concentrations of the cyclic nucleotides cAMP and 

cGMP are central to negative regulation of platelet activation.
153

 

Zn
2+

-induced platelet aggregation is inhibited following treatment 

with the Gs-coupled prostanoid receptor agonists PGE1 and PGI2.
62,64

 

This suggests that Zn
2+

 modulates cAMP-mediated inhibition of 

platelet activation. Zn
2+

 has been shown to regulate both adenylate 

cyclase and phosphodiesterase (PDE) activity. For example, in PC12 

cells, forskolin-induced rises of cytosolic cAMP were abolished by 

addition of 300µM Zn
2+

 independently of PDE activity.
19

 

Furthermore, a greater reduction was observed in the presence of 

pyrithione, suggesting that this effect requires elevation of [Zn
2+

]i. 

Other studies suggest that Zn
2+

 alters the conformation of 

adenylate cyclase and impedes cAMP synthesis.
154

 Zn
2+

 also 

modulates cGMP levels via interactions with PDEs.
155,156

 Thus, Zn
2+

-

induced platelet activation may, in part, be regulated by 

interactions with PDEs and adenylate and guanylate cyclases.  

 

Perspectives 
Research into the role of Zn

2+
 in platelet behaviour has been 

limited. This is surprising, given the involvement of Zn
2+

 in platelet 

behaviour as evidenced by work on rodent and human platelets 

following dietary Zn
2+ 

deficiency. There is clear evidence using both 

in vivo and ex vivo assays that dietary Zn
2+

 intake is inversely 

correlated with a bleeding diathesis. The work discussed herein 

indicates that Zn
2+

 is a modulator of platelet function and may 

contribute to pathophysiological thrombus formation. 

Our working hypothesis suggests a model whereby vascular injury 

leads to localised release of Zn
2+ 

from damaged and inflammatory 

cells (Figure 1). These increases of Zn
2+

 potentiate platelet 

activation in response to other agonists, such as exposed 

subendothelial collagen, ADP or thrombin. Autocrine platelet 

activation and adhesion promotes Zn
2+

 release from granules, 

further increasing [Zn
2+

]o. Intracellular Zn
2+

 modulates the activity of 
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a variety of different enzymes, leading to integrin αIIbβ3 activation 

and granule release. Whether Zn
2+

 is also released from intracellular 

stores, analogous to that of Ca
2+

, remains to be seen. Future studies 

are required to further elucidate platelet Zn
2+

 entry pathways, and 

the underlying signalling pathways that contribute to Zn
2+

-induced 

platelet activation. 

 

 
Figure 1. Speculative model of the mechanisms and machinery that are influenced by Zn

2+
 during platelet activation. 

1) Platelets respond to vascular injury by interaction with sub-endothelial matrix proteins (i.e. collagen and VWF), and by activation via 

soluble agonists (i.e. ADP, thrombin and thromboxane A2). 2) Activation leads to Zn
2+

 release from intracellular stores into the platelet 

cytosol, via channels or ZnT transporters, leading to an increased [Zn
2+

]i. 3) [Zn
2+

]i interacts with PKC, upregulating enzyme activity. PKC-

mediated phosphorylation promotes granule release (4) and activation of integrin αIIbβ3 (5), which cross-links platelets via binding of 

fibrinogen, mediating platelet aggregation. 6) Inhibition of cytosolic protein phosphatases by [Zn
2+

]i enhances tyrosine phosphorylation of 

platelet signalling proteins. 7) [Zn
2+

]i activates protein tyrosine kinases (e.g. ERK), which regulate tyrosine phosphorylation events 

downstream of platelet activation. 8) [Zn
2+

]i inhibits adenylate cyclase, thereby reducing cAMP levels and promoting platelet activation. 9) 

Zn
2+

 is released from damaged endothelial cells, sub-endothelial matrix and platelet granules, contributing to a localised increase in labile 

[Zn
2+

]o. 10) Extracellular Zn
2+

 gains access the cytosol via non-selective transporters and cation channels. 11) Zn
2+

 may also interact directly 

with integrin αIIbβ3 altering the activity and regulating platelet/platelet interactions leading to thrombus formation. 
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