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Abstract  1 

Hepatitis C virus (HCV) infection is a worldwide healthcare problem; however, traditional 2 

treatment methods have failed to cure all patients, and HCV has developed resistance to new 3 

drugs. Systems biology-based analyses could play an important role holistic analysis of the 4 

impact of HCV on hepatocellular metabolism. Here, we integrated HCV assembly reactions with 5 

a genome-scale hepatocyte metabolic model to identify the metabolic targets for HCV assembly 6 

and the metabolic alterations that occur between different HCV progression states (cirrhosis, 7 

dysplastic nodule, and early and advanced hepatocellular carcinoma (HCC)) and healthy liver 8 

tissue. We found that diacylglycerolipids were essential for HCV assembly. In addition, the 9 

metabolism of keratan sulfate and chondroitin sulfate was significantly changed in the cirrhosis 10 

stage, whereas the metabolism of acyl-carnitine was significantly changed in the dysplastic 11 

nodule and early HCC stages. Our results explained the role of the upregulated expression of 12 

BCAT1, PLOD3 and six other methyltransferase genes involved in carnitine biosynthesis and S-13 

adenosylmethionine metabolism in the early and advanced HCC stages. Moreover, GNPAT and 14 

BCAP31 expression was upregulated in the early and advanced HCC stages and could lead to 15 

increased acyl-CoA consumption. By integrating our results with copy number variation analyses, 16 

we observed that GNPAT, PPOX and five of the methyltransferase genes (ASH1L, METTL13, 17 

SMYD2, TARBP1 and SMYD3), which are all located on chromosome 1q, had increased copy 18 

numbers in the cancer samples relative to the normal samples. Finally, we confirmed our 19 

predictions with the results of metabolomics studies and proposed that inhibiting the identified 20 

targets has the potential to provide an effective treatment strategy for HCV-associated liver 21 

disorders.  22 

Page 3 of 32 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

 

3 

 

 

Introduction 1 

More than 185 million people (3% of the world population) are infected with the hepatitis C virus 2 

(HCV), which kills approximately 350,000 people every year. HCV infection leads to chronic 3 

hepatitis C, cirrhosis and hepatocellular carcinoma (HCC).
1
 HCV complications have also been 4 

associated with type 2 diabetes
2
 and coronary heart disease.

3
 Although HCV was discovered in 5 

the 1980s
4
, a vaccine is not available because of challenges associated with vaccine development, 6 

including the lack of a cell culture system for studying T cell responses.
5
 The traditional treatment 7 

strategy for HCV is effective in only 50% of patients, and its success depends on genetic 8 

variations of interleukin-28.
6
 Despite success with new interferon-independent HCV therapies

1
, 9 

new treatment strategies for HCV are urgently needed because HCV has developed resistance to 10 

these new anti-HCV drugs.
7
 To overcome these challenges, systems biology-based approaches 11 

can play important roles in understanding the progression of HCV-associated liver disorders
8
, 12 

discovering novel biomarkers to detect HCV infection at an early stage and identifying novel 13 

drug targets for the development of effective treatment strategies.
9, 10

  14 

HCV is the primary cause of HCC in Europe and North America, whereas hepatitis B virus 15 

(HBV) is the primary cause of HCC in Asia and Africa.
11

 Complications in the diagnosis of HCC 16 

at the early stage restrict its treatment.
12

 One of the clinical biomarkers is α-fetoprotein (AFP), 17 

which has a low sensitivity for the detection of HCC caused by viral infections.
13

 Liver biopsies 18 

also play an important role in the early diagnosis of HCC but may lead to major complications, 19 

including pain, bleeding and death.
14

 Therefore, identifying non-invasive biomarkers is important 20 

12
, especially for the diagnosis of the dysplastic nodule stage of HCV.

15, 16
  21 

An alternative to invasive diagnostic tools is the application of HCC biomarkers that may be 22 

identified through the use of omics techniques where control samples are compared with 23 
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pathological samples.
17

 Transcriptomics data have been generated to identify significantly 1 

differentially expressed genes between early HCC and the dysplastic nodule stage.
16

 2 

Metabolomics studies have also been performed to identify metabolic biomarkers and reveal the 3 

molecular mechanisms underlying HCC.
18

 Based on this candidate metabolomics biomarkers that 4 

vary across serum, urine and tissue were identified for detection of HCC at the early stage
19

; 5 

however, to our knowledge, they have not been used in clinical applications.  6 

To understand how the molecular mechanisms within liver tissue change in response to HCV, 7 

genome-scale metabolic models (GEMs) can be used as scaffolds for the integration of omics 8 

data for a specific cell/tissue type and the elucidation of genotype–phenotype relationships.
20-22

 9 

GEMs include the known biochemical reactions that occur in a particular cell or tissue type, and 10 

each reaction is associated with one or more gene(s).
23

 GEM content is annotated from the 11 

literature and bioinformatics databases, such as the KEGG database
24

. These integrative models 12 

enable studies of gene functions using a holistic approach. GEMs can also be used to interpret 13 

high throughput clinical data using the network structure provided by these models.
25

 For 14 

instance, the Reporter Metabolite and Reporter Subnetwork algorithms can integrate 15 

transcriptomics data with GEMs to explore metabolic “hot-spots” between healthy and diseased 16 

states (i.e., metabolic functions that are altered because of different metabolic demands or to 17 

maintain homeostasis).
26

 Additionally, GEMs can be used to identify drug targets for human 18 

pathogens
27, 28

 and cancer
29

 using the antimetabolite concept, which blocks all fluxes around a 19 

particular metabolite.
30

 Recently, a comprehensive GEM for hepatocytes (iHepatocytes2322) was 20 

reconstructed based on HMR 2.0
31

. This GEM includes the contents of the previously published 21 

GEMs for liver tissue and an extensive description of lipid metabolism.
31

  22 

 23 
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Here, we used iHepatocytes2322 to determine the metabolic interactions between HCV and 1 

healthy hepatocytes (Figure 1A). First, we included the reactions associated with the HCV 2 

assembly into iHepatocytes2322 and employed the antimetabolite concept to identify the set of 3 

metabolites that inhibit HCV development. Second, we used the Reporter Metabolite and 4 

Reporter Subnetwork algorithms to integrate transcriptomics data with iHepatocytes2322 to 5 

reveal the molecular mechanisms underlying the progressive HCC stages (cirrhosis, dysplastic 6 

nodule, and early and advanced HCC) caused by HCV infection. Through the Reporter 7 

Metabolite analysis, we found that the metabolic functions (but not the concentration) of the 8 

metabolites keratan sulfate and chondroitin sulfate were significantly changed in the cirrhosis 9 

stage. Moreover, acyl-carnitine metabolism was significantly changed in the dysplastic nodule 10 

and early HCC stages but not in the cirrhosis stage. These identified metabolites may be 11 

considered candidate biomarkers for early HCC and can be measured in the blood or urine. Next, 12 

we applied the Reporter Subnetwork algorithm and found connected reactions involved in the 13 

progression of HCC. Finally, the integration of these target genes with the copy number 14 

variations (CNVs) from The Cancer Genome Atlas (TCGA) revealed that a number of the genes 15 

(i.e., ASH1L, METTL13, SMYD2, TARBP1 and SMYD3) located on chromosome 1q were 16 

amplified. Thus, our study revealed altered metabolism in response to HCC and identified 17 

candidate biomarkers and therapeutic targets. 18 

 19 
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Results  1 

Reconstruction of the iHCV 2 

A GEM can describe how a cell utilizes carbon, phosphate, and nitrogen sources as well as other 3 

autotrophic metabolites, such as amino acids, to form its biomass.
32

 However, a virus do not have 4 

internal metabolism required to build its structure, which contains a DNA or RNA genome and 5 

structural proteins, although its structure may also contain a lipid raft. Thus, the viral structure is 6 

assembled and replicated using the resources of the host. In silico viral models assume that the 7 

virus is a pseudo-metabolite assembled from resources provided by the host model.
33, 34

 These 8 

models contain a number of reactions that describe how viral genomes and proteins are 9 

biosynthesized. For HCV (Figure S1A), a host ribosome requires tRNA to translate the HCV 10 

genome, a single positive-strand RNA sequence, to three structural proteins (the core protein and 11 

envelope glycoproteins E1 and E2), and seven non-structural proteins (p7, NS2, NS3, NS4A, 12 

NS4B, NS5A and NS5B).
35

 The HCV RNA polymerase (NS5B) requires host RNA nucleotides to 13 

transcribe the HCV RNA genome.
36

 Furthermore, HCV requires a host lipid raft
37

. The lipid 14 

composition of HCV particles extracted from the plasma of 36 patients was measured together 15 

with the triglycerolipid (TAG) per apoB and the apoB per HCV RNA
37

 (Table S1). Here, we 16 

assumed that HCV was a generic large metabolite that could be assembled from RNA, structural 17 

proteins and lipids (Figure 1A).  18 

 19 

To construct the HCV assembled reaction (iHCV), we downloaded the JFH1 sequence (a 20 

Japanese HCV genotype 2a strain) from the UniProt web site using the entry ID Q99IB8. We 21 

compiled the nucleotide composition in the HCV genome and the amino acid composition for 22 

each HCV protein. From this information and the lipid composition measurements (Table S1), 23 
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we reconstructed the iHCV containing 13 reactions: ten reactions for the biosynthesis of HCV 1 

proteins, one reaction for HCV RNA genome biosynthesis, one reaction for the HCV lipid 2 

composition and one reaction for the assembly of HCV from the RNA genome as well as for the 3 

apoB and lipid composition (Figure 1A). Finally, iHCV was incorporated into iHepatocytes2322 4 

to generate the HCV liver model. We used the hepatic uptake rates from a mouse study for the 5 

model simulations.
38, 39

 Additionally, we used the uptake rates for remnants of chylomicrons, 6 

very-low-density lipoproteins (VLDLs), low-density lipoproteins (LDLs) and high-density 7 

lipoproteins (HDLs) as 0.0001 mmol/g liver/h.
40

 The updated model is provided in SBML and 8 

Excel format (Supplementary Data 1). 9 

 10 

Diacylglycerolipids (DAGs) are essential for HCV assembly 11 

We used the antimetabolite concept to identify reactions that are essential for HCV assembly. 12 

Antimetabolites are the structural analogs of metabolites, and they are used to block the reactions 13 

that consume their corresponding metabolites (Figure S1B). The functions of antimetabolites can 14 

be simulated using GEMs by maximizing the flux balance analysis (FBA) objective function 15 

(here, HCV assembly) when all of the fluxes using a given metabolite are set to zero.
27

 Agren et 16 

al
41

, Ghaffari et al
29

 and Kim et al
27, 28

 used this method to identify targets for HCC, cancer cell 17 

lines and human pathogens
27, 28

, respectively. Here, we applied this method twice to indicate 18 

when the model can and cannot consume VLDL, HDL and LDL remnants from the extracellular 19 

environment because the HCV lipid compositions are similar to VLDL and LDL
42

 and the 20 

hepatocytes can consume all of these remnants
31

. The antimetabolites included amino acids, 21 

nucleotides and cofactors that are essential for hepatocytes; therefore, we discarded these 22 

antimetabolites. Additionally, when certain metabolites are removed from the model, it is not 23 

possible to find a solution using FBA. We also discarded these metabolites because there were no 24 
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flux distributions to synthesize the essential metabolites for hepatocytes and HCV, such as amino 1 

acids, RNA nucleotides and lipid metabolites. 2 

 3 

Without the uptake of the VLDL, LDL and HDL remnants, we identified 11 sterol metabolites, 4 

such as squalene, 3-dehydrosphinganine, sphinganine, 1,2-diacylglycerol-LD-TAG pool (DAG), 5 

inositol, acyl-CoA and acyl-glycerol. Table S2 contains citations of experimental studies that 6 

have validated these antimetabolites. The structural analogs of these metabolites can be used for 7 

the treatment of HCV-associated liver disorders. Additionally, we identified sn-glycerol-3-8 

phosphate, which is the precursor of the Kennedy pathway required for the de novo biosynthesis 9 

of glycolipids, such as phosphatidate (PA), DAG, TAG from dihydroxyacetone phosphate 10 

(DHAP) and acyl-CoA. Because of the similarity between the HCV lipid composition and 11 

VLDL/LDL
42

, we allowed the hepatocyte model to consume the VLDL, LDL and HDL remnants. 12 

This decision is consistent with that of Saito et al
43

, who reported that HCV assembly was not 13 

affected by the addition of LDL to the growth medium of the Huh 7.5.1-8 cell line when the 14 

squalene synthase gene was downregulated. Our model-based simulations predicted the effect of 15 

consuming the remnants of all of the lipid metabolites, including the metabolites involved in 16 

cholesterol biosynthesis. However, we found that a structural analog of DAG prevented HCV 17 

assembly even in the presence of these lipid remnants. Herker et al
44

 reported that the knockout of 18 

DGAT1 but not DGAT2 reduced HCV assembly, and Hirata et al
45

 reported that downregulation 19 

of SGMS1 and SGMS2 reduced HCV replication; all of the enzymes encoded by these genes use 20 

DAG as a substrate. When we constrained the model to consume the remnants of chylomicrons 21 

that included 90% of the TAGs and the remnants of the VLDL, LDL and HDL, DAG reduced the 22 

HCV assembly by 19%. Based on our model simulations, we observed that targeting DAG 23 
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reduced the HCV assembly even when the hepatocytes consumed the VLDL, LDL and HDL 1 

remnants. 2 

Integrative analysis 3 

The integration of GEMs with transcriptomics data may reveal metabolic alterations in response 4 

to HCV and eventually lead to the identification of candidate biomarkers for the progressive 5 

stages (cirrhosis, dysplastic nodule, and early and advanced HCC). First, we downloaded the 6 

microarray data series GSE6764 from the Gene Expression Omnibus public repository.
46

 The data 7 

set contains gene expression data from liver samples obtained from 10 healthy subjects, 18 8 

cirrhotic patients, 14 dysplastic nodule patients, 17 early HCC patients and 18 advanced HCC 9 

patients. These patients were infected only with HCV, and none of the patients had other hepatic 10 

diseases. We used the PIANO R package
47

 to perform a pairwise comparison of the gene 11 

expression for the cirrhosis, dysplastic nodule, early HCC and advanced HCC samples with that 12 

of the control samples. We also used PIANO to run the Reporter Features algorithm
48

 using Gene 13 

Ontology (GO) Biological Process (BP) terms to reveal the global biological changes in the 14 

occurrence of each stage (Supplementary Data 2).  15 

 16 

We also used the R platform to analyze the CNV, DNA methylation and microRNAs from the 17 

TCGA samples (Supplementary Data 3). These additional omics data may provide further 18 

explanations for the changes in gene expression identified by the Reporter Metabolite and 19 

Reporter Subnetwork analyses. The CNV indicates the genomic regions that present a gain and 20 

loss of DNA.
49

 DNA methylation measures the methylation of CpG-dinucleotides on a genome 21 

scale.
50

 Methylation in the promoter region is negatively correlated with gene expression, 22 

whereas methylation within the open reading frame is negatively or positively correlated with 23 

gene expression.
51, 52

 Finally, the upregulation of microRNAs leads to the downregulation of the 24 
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target gene.
53

 We restricted our analysis to samples classified as tumor degrees I, II, III, and VI 1 

and normal samples (Supplementary Data 4). We used a MATLAB GUI to run the Reporter 2 

Metabolite and Reporter Subnetwork algorithms (See Method section). Our GUI indicated the 3 

metabolites that presented significant (P-value < 0.05) changes in metabolism for the four 4 

different progressive stages (Figure S1C, Supplementary Data 5). We exported the 5 

subnetwork for each stage to graphs saved as an XGMML file that could be opened in Cytoscape 6 

(Figure S1D, Supplementary Data 6). Finally, we merged the CNV analysis with the 7 

reported reactions from the Reporter Subnetwork analysis of the early HCC stage 8 

(Supplementary Data 7).  9 

Keratan sulfate metabolism is altered in the cirrhosis stage 10 

Our results indicated that 17% of the identified Reporter Metabolites were involved in the 11 

biosynthesis and degradation of sulfate proteoglycans. The metabolism associated with keratan 12 

and chondroitin sulfate was significantly changed in the cirrhosis stage, whereas the metabolism 13 

associated with keratan sulfate was significantly changed in the dysplastic nodule and early HCC 14 

stages. The Reporter Features analysis depicts the metabolic changes in the hyaluronan catabolic 15 

process (GO:0030214) in cirrhosis. The non-sulfate proteoglycan hyaluronic acid was 16 

significantly increased in the sera of the HCV patients with cirrhosis compared with that of the 17 

HCV patients without cirrhosis.
54

 Additionally, lumican, which is a member of the family of 18 

keratan sulfate proteoglycans, was elevated in the HCV patients.
55

 In our gene expression data, 19 

lumican (LUM) was upregulated (fold change = 1.23 and adjusted P-value < 0.02) during the 20 

cirrhosis stage. Therefore, we propose that the chondroitin and keratan sulfate levels may be used 21 

as candidate biomarkers for cirrhosis resulting from HCV infection.  22 
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Acyl-carnitine metabolism is altered in the dysplastic nodule stage 1 

Based on the Reporter Metabolite analysis, we found that the metabolism associated with acyl-2 

carnitine was significantly changed in the dysplastic nodule and early HCC stages. Additionally, 3 

we identified O-propanoylcarnitine as a Reporter Metabolite in early HCC and advanced HCC 4 

and O-butanoylcarnitine as a Reporter Metabolite only in advanced HCC (Figure S2). This 5 

finding is consistent with metabolomics studies of serum and tumor samples obtained from HCC 6 

patients. Thus, the oleoylcarnitine, palmitoylcarnitine, linoleic-carnitine and dodecanoylcarnitine 7 

levels are significantly changed in the sera of HCC patients infected with HCV.
56

 O-8 

Propanoylcarnitine (with betaine) has been proposed as a biomarker for the detection of early 9 

HCC.
57

 Our analysis showed that long-chain acyl-carnitine in the endoplasmic reticulum was a 10 

Reporter Metabolite for the dysplastic nodule and early HCC stages (Figure S2). Therefore, these 11 

metabolites could be used as biomarkers for the dysplastic nodule stage based on their levels in 12 

the blood or urine. Our analysis of altered O-propanoylcarnitine levels was supported by 13 

measurements performed in the early HCC stage.
57

 14 

The Reporter Subnetwork analysis showed the role of SLC22A5 in the translocation of acyl-15 

carnitine into the ER. SLC22A5 also transported carnitine from the extracellular space to the 16 

cytosol (Figure 1B) and was upregulated in the early and advanced HCC stages. Next, we 17 

searched for other genes associated with these metabolites. The CRAT gene was downregulated in 18 

the early and advanced HCC stages (Figure 1B). Furthermore, we identified 13 genes involved in 19 

the carnitine shuttle employed in the liver GEM (Supplementary Data 8). SLC22A1, 20 

SLC25A20 and CPT2 were all downregulated in the early or advanced HCC stages, whereas 21 

CPT1A was upregulated only in the advanced HCC stage.  22 
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BCAT1 gene and collagen effect on carnitine biosynthesis 1 

The Reporter Metabolite analysis indicated that carnitine metabolism was changed in the early 2 

HCC stage and gamma-butyrobetaine and 3-hydroxy-N6,N6,N6-trimethyl-L-lysine metabolism 3 

was significantly changed in the cirrhosis stage. This result is consistent with a metabolomics 4 

study by Zhou et al
58

, who reported that the carnitine level was significantly changed in the sera 5 

of HCC and cirrhotic patients compared with healthy subjects and that the carnitine level was 6 

significantly different between the HCC and cirrhotic patients. The authors reported that the 7 

downregulation of carnitine might be related to the essential amino acids lysine and methionine, 8 

which are carnitine precursors; however, our integrative analysis provided another possible 9 

mechanistic explanation for this finding: the upregulation of BCAT1 and PLOD3 and 10 

downregulation of BBOX1 might have an effect on the downregulation of carnitine in early HCC 11 

(see below). 12 

 13 

The Reporter Subnetwork analysis demonstrated the downregulation of BBOX1 (the last gene in 14 

the carnitine biosynthesis pathway) in early and advanced HCC (Figure 1B). The DNA 15 

methylation probes of BBOX1 showed the hypomethylation of the non-CpG island with a delta 16 

beta value = 0.1 in the promoter region (Figure 1C and Figure S3), which may have caused 17 

BBOX1 over-expression, although the gene was downregulated at the RNA level. Therefore, we 18 

searched for a microRNA that targets BBOX1 in the miRanda and TargetScan (release 6.0) 19 

databases. We found hsa-miR-222 (hsa-miR-222-3p in release 7.0) in the target list based on the 20 

network constructed by Gu et al,
59

 who developed a systems biology approach to reconstruct 21 

networks of genes, transcription factors and microRNAs.
59

 This microRNA was reported to be 22 

intensively over-expressed between normal subjects and HCC patients
60

. We found that hsa-miR-23 
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222 was also upregulated in the TCGA samples (Figure 1E). Therefore, the overall expression 1 

of BBOX1 may be affected by the over-expression of hsa-miR-222. 2 

 3 

The Reporter Subnetwork analysis also showed that alpha-ketoglutarate (AKG) was related to the 4 

largest number of downregulated reactions, including that of BBOX1; however, one reaction for 5 

BCAT1 was upregulated in the early and advanced HCC stages. BCAT1 converts branched amino 6 

acids (valine, leucine and isoleucine) and AKG to their corresponding keto-acids and glutamate 7 

and thus affects AKG metabolism. The DNA methylation analysis showed that BCAT1 had a 8 

hypermethylated CpG island within the gene body (Figure 1D and Figure S3). Additionally, 9 

we integrated all of the reactions containing AKG with the observed gene expression 10 

(Supplementary Data 9) and found that only BCAT1 and PLOD3 were upregulated in HCC. 11 

PLOD3 is the precursor of collagen biosynthesis and catalyzes the conversion of the carnitine 12 

biosynthesis precursor [protein]-L-lysine to procollagen 5-hydroxy-L-lysineuses (Figure 1B). 13 

Ura et al
61

 reported that the microRNA hsa-miR-187 targets PLOD3 and found that other genes 14 

were also decreased in HCC relative to chronic hepatitis B and C. Ura et al
61

 evaluated the target 15 

microRNAs predicted using MIRANDA Pro3.0 in liver tissues obtained from 14 HCV and 12 16 

HBV HCC patients against 9 normal liver tissues. Taken together, these results suggest that 17 

PLOD3 upregulation may lead to the depletion of [protein]-L-lysine, which is required for 18 

carnitine biosynthesis, and the downregulation of BBOX1 may lead to the depletion of 19 

synthesized carnitine in early and advanced HCC.  20 
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SAMe metabolism is affected by the amplification of gain regions on chromosome 1 

1q 2 

We identified S-adenosylmethionine (SAMe) and S-adenosylhomocysteine (SAH) as the top 3 

Reporter Metabolites. We also identified SAMe metabolism using the Reporter Subnetwork 4 

algorithm (Figure 2A). SAMe is biosynthesized from methionine and ATP by the methionine 5 

adenosyl transferase genes (MAT1A, MAT2A and MAT2B). MAT1A is significantly 6 

downregulated in early HCC and advanced HCC. The role of SAMe in hepatic diseases and HCC 7 

was reviewed by Lu and Mato.
62

 One explanation for the downregulation of MAT1A could be the 8 

upregulation of the microRNAs hsa-miR-664, hsa-miR-495, and hsa-miR-485-3p.
63

 Yang et al 9 

found these microRNAs by searching for microRNAs targeting MAT1A in miRanda and 10 

TargetScan and validated the key roles of these microRNAs in liver cancer cell lines.
63

 In the 11 

TCGA database, hsa-miR-664 is upregulated in liver cancer samples (Figure 2B). In the second 12 

reaction of SAMe metabolism, SAMe is converted to SAH by a methyltransferase. The Reporter 13 

Subnetwork analysis reported three downregulated genes in the early and advanced HCC stages 14 

related to methyltransferase: GNMT, which converts glycine to sarcosine; SARDH, which 15 

catalyzes the conversion of dimethylglycine to sarcosine; and PEMT, which catalyzes the 16 

conversion of phosphatidylethanolamine to phosphatidylcholine. 17 

 18 

The integration of transcriptomics data with the GEM was used to identify other upregulated 19 

methyltransferase genes that could use SAMe. To identify the highly expressed methyltransferase 20 

genes in the model, we collected the reactions containing SAM and mapped these reactions to 21 

their gene expression profiles and the CNV analysis (Supplementary Data 10). This analysis 22 

identified the genes ASH1L, METTL13, SMYD2, TARBP1 and SMYD3 as upregulated and 23 

amplified. In addition, hsa-miR-664 was amplified and located on the same chromosome (1q) as 24 
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these genes (Figure 2A and Figure 2B). This analysis identified six genes that were 1 

upregulated (SMYD3, ASH1L, SETDB2, SUV420H1, WHSC1 and MLL5) and five genes that were 2 

downregulated (DOT1L, MLL4, MLL, WHSC1L1 and MLL3), and these downregulated genes 3 

were involved in SAMe and carnitine biosynthesis. Kusano et al
64

 reported amplification in 4 

chromosome 1q in 78% of HCC cases, and Skawran et al
65

 reported the upregulation of genes on 5 

chromosome 1q using microarray analysis. Therefore, this amplification could affect SAMe 6 

metabolism. The remaining genes (ASH1L, METTL13, SMYD2, TARBP1 and SMYD3) encode 7 

enzymes that may be involved in alternative uses of SAMe.  8 

 9 

Through the integration of the CNV analysis with the Reporter Subnetwork analysis, we 10 

identified two genes (GNPAT and PPOX) that were amplified and located on chromosome 1q 11 

(Figure 2A and Figure S4). PPOX may lead to an increase in ROS through the heme pathway 12 

because NOX4 is upregulated in advanced HCC (Figure S5A and Supplementary Data 11), 13 

and GNPAT could affect acyl-CoA metabolism as discussed below. 14 

  15 

Finally, the Reporter Subnetwork analysis demonstrated that methionine was linked to SLC7A6. 16 

This gene transports amino acids from the cytoplasm to the extracellular space (and vice versa) 17 

and is associated with major amino acid transport reactions in the model (Supplementary Data 18 

12). The Reporter Subnetwork analysis showed that SLC7A6 increases the cytoplasmic citrate 19 

level by transporting additional citrate from the extracellular space to the cytoplasm (Figure 20 

S5B). This result is consistent with metabolomics studies that observed significantly decreased 21 

citrate levels in the sera of HCC patients.
19

 22 

 23 

 24 
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Role of GNPAT in acyl-CoA metabolism  1 

We identified DHAP and sn-glycerol-3-phosphate as Reporter Metabolites in early and advanced 2 

HCC, and metabolomics studies have shown that n-glycerol-3-phosphate is downregulated in 3 

these stages.
19

 The GPD1 gene, which catalyzes DHAP to glycerol-3-phosphate, was 4 

downregulated in early and advanced HCC, whereas the GPD1L and GPD2 genes were 5 

unregulated in early HCC but upregulated in advanced HCC according to the Reporter 6 

Subnetwork analysis (Figure 3). Furthermore, GNPAT that encodes a peroxisomal enzyme that 7 

catalyzes the conversion of both DHAP and long-chain acyl-CoA to 1-acyl-DHAP, was 8 

upregulated in early and advanced HCC. The CNV analysis showed that GNPAT was amplified 9 

and located on chromosome 1q. Therefore, the upregulation of GNPAT and downregulation of 10 

GPD1 may decrease the amount of DHAP converted to sn-glycerol-3-phosphate in the early and 11 

advanced HCC stages. 12 

Next, we examined the other reactions involved in lipid biosynthesis in the peroxisome and found 13 

that the reaction transporting long-chain acyl-CoA from the cytosol to the peroxisome was 14 

upregulated in early and advanced HCC (Supplementary Data 11). The BCAP31 gene was 15 

upregulated in early and advanced HCC, whereas the other genes associated with this reaction 16 

were upregulated only in advanced HCC. The AGPS gene, which catalyzes the conversion of both 17 

fatty alcohol and 1-acyl-DHAP to 1-alkyl-DHAP, was upregulated only in advanced HCC, 18 

whereas the FAR1 and FAR2 genes were unregulated in early and advanced HCC. In the third 19 

reaction, DHAP reductase converts 1-alkyl-DHAP to lysophosphatidic acid (LPA); however, the 20 

associated gene for this enzyme has not been identified because it is not in sequence databases, 21 

such as UniProt. Our analysis could explain the endogenous biosynthesis of LPA from DHAP in 22 

early and advanced HCC, and the composition of ether lipids in LPA could be altered in early 23 

HCC. Furthermore, our analysis indicated another pathway that consumes acyl-CoA. The 24 
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upregulation of BCAP31 leads to the increased transport of acyl-CoA to the peroxisomes, and 1 

GNPAT can use more acyl-CoA for the synthesis of ether lipids. This pathway may be interesting 2 

because the knock-out of AGPAT1 in mice delayed the occurrence of HCC due to the increased 3 

availability of acyl-CoA.
66

 Furthermore, of the genes that use acyl-CoA, only the AGPAT1 gene 4 

is upregulated (Figure 3).  5 

 6 

Discussion 7 

In addition to playing a role in HCV drug development and new biomarker identification
9
, 8 

systems biology also contributes to viral research.
67

 Here, we demonstrated how the FBA method 9 

combined with the antimetabolite concept could be applied to identify host target metabolites that 10 

impede the HCV assembly reaction. We identified metabolites involved in sterol and sphingolipid 11 

biosynthesis and phosphoinositides, and our results are consistent with that of experimental 12 

studies (Table S2). When we constrained the model to consume LDL, VLDL, and HDL 13 

remnants, we found that the structural analogs of DAG could be used as antimetabolites. We 14 

predicted that targeting the metabolite DAG pool could avoid the effect of consuming these 15 

remnants, whereas targeting all of the other lipid metabolites affects the uptake of these remnants. 16 

 17 

We also integrated transcriptomics data for the progressive stages caused by HCV infection 18 

(cirrhosis, dysplastic nodule, and early and advanced HCC) with the GEM iHepatocytes2322. We 19 

identified acyl-carnitine metabolism as significantly changed in the dysplastic nodule and early 20 

HCC stages. Altered acyl-carnitine levels have also been reported in metabolomics studies.
19

 Our 21 

analysis predicted that acyl-carnitine metabolism was also changed in the dysplastic nodule stage 22 

and provided an explanation for the downregulation of carnitine in early HCC. The upregulation 23 
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of PLOD3 can result in the use of [protein]-L-lysine (the precursor of carnitine) for collagen 1 

biosynthesis, and the downregulation of BBOX1 can reduce the endogenous biosynthesis of 2 

carnitine. Finally, we found that the BCAT1 and PLOD3 genes involved in AKG metabolism 3 

were upregulated only in the early and advanced HCC stages, and this could further reduce the 4 

flux of AKG towards carnitine (Figure 1B). 5 

 6 

Chromosome instability and rearrangement may be factors underlying HCC,
68

 and regions of 7 

chromosome 1q have been reported to be amplified in HCC.
65

 We analyzed the CNV from TCGA 8 

between cancer and normal samples and found that SAMe metabolism was affected by genome 9 

rearrangements on chromosome 1q (Figure 2A). First, hsa-miR-664 is located on chromosome 10 

1q and targets the MAT1A gene
63

 (Figure 2B), which may decrease SAMe. Additionally, the 11 

expression of ASH1L, METTL13, SMYD2, TARBP1 and SMYD3, which encode enzymes that 12 

consume SAMe, was amplified. Our analysis suggests that the GNPAT gene is both amplified and 13 

upregulated, which may explain the downregulation of sn-glycerol-3-phosphate and long acyl-14 

carnitine observed in metabolomics studies.
19

 Taken together, the decrease in long-chain acyl-15 

carnitine could be related to the upregulation of AGPAT1, GNPAT, BCAP31 and SLC25A5. The 16 

first three genes utilize a greater amount of acyl-CoA (Figure 3), whereas SLC22A5 transports 17 

acyl-carnitine into the ER (Figure 1B).  18 

 19 

In conclusion, our integrative analysis of HCV-induced HCC identified new candidate drug 20 

targets and several new candidate biomarkers that required further validation through dedicated 21 
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clinical studies. Importantly, our analysis provides a mechanistic explanation for changes 1 

observed in lipid and carnitine metabolism that are associated with early HCC. 2 

Methods 3 

Flux balance analysis 4 

The GEM includes a list of chemical reactions that can be represented as a stoichiometric matrix 5 

S.
69, 70

 Each row represents a metabolite, and each column represents a flux value for a reaction. 6 

Each element ���, represents the coefficient of metabolite ith in the reaction jth, and the vector V 7 

is a set of all fluxes. FBA maximizes a reaction that refers to a growth or biomass in the steady 8 

state condition (�. �. = 	0).69, 70 In our case, FBA maximizes the HCV assembly reaction 
��
 9 

(Equation 1) where UB and LB are the upper and lower bound values for each flux, respectively. 10 

In the antimetabolite technique, we first determine the set of reactions that has a metabolite as a 11 

substrate or product, and we then set the lower and upper bounds for these fluxes equal to zero. 12 

Finally we solve the FBA problem in Equation 1 and report the change in 
��
 , using the 13 

RAVEN toolbox
71

 with the MOSEK solver (Free Academic License). The metabolite is essential 14 

for the HCV assembly if 
��
 = 0. 15 

��� 
��

�. �.

�. � = 0

� ≤ ��

−� ≤ −��

                                                (1) 16 

 17 

 18 
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HCV transcriptomics data  1 

We used the liver tissue microarray series GSE6764 from the Gene Expression Omnibus public 2 

repository (GEO). The data consist of 75 samples from 48 patients at different states as follows: 3 

normal liver (n = 10), cirrhosis (n = 13), dysplastic nodules (n = 17), early HCC (n = 18) and 4 

advanced HCC (n = 17). The samples were obtained from patients undergoing resection or liver 5 

transplants. The patients had no other liver diseases, including HBV-positive markers, alcohol 6 

consumption history, steatohepatitis, hemochromatosis, and other causes of chronic liver disease. 7 

The samples were classified by expert pathologists according to the criteria of the International 8 

Working Party.
72

 The 10 control samples were collected from patients undergoing resection for 9 

hepatic hemangioma (1), focal nodular hyperplasia (3), adenoma/cystadenoma (2), 10 

neuroendocrine tumor (1), and living donor liver transplantation (1).
16

 11 

We used the R package PIANO
47

 to analyze and normalize the data and identify differentially 12 

expressed genes. We used the false discovery rate (FDR) method to calculate the adjusted P-13 

values and avoid false significance tests resulting from a large number of performed tests.
73

 We 14 

analyzed the differential gene expression in the four different stages (cirrhosis, dysplasia, early 15 

and advance HCC) compared with that of the normal samples.  16 

 17 

Updating the model with transcriptomics data 18 

To include genes that are absent from the model as well as additional genes from the 19 

transcriptomics analysis, we created a graphical user interface (GUI) in MATLAB based on the 20 

RAVEN toolbox
71

 to perform this task and facilitate running both the Reporter Metabolite and 21 

Reporter Subnetwork algorithms (Supplementary Data 13). The Reporter Metabolite 22 

algorithm reconstructs the associations of a metabolite gene and calculates a Z score for each 23 

metabolite using the adjusted P-values of the genes connected to this metabolite (Figure S1C). 24 
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We considered the metabolism of a metabolite to be significantly changed if the P-value was < 1 

0.05. The GUI inputs were as follows: iHepatoceytes2322 as the core model, HMR 2.0 as the 2 

reference model, proteins from a proteomics study of the livers of 15 HCV-infected patients
74

 3 

(Supplementary Data 14), and four files for each independent pairwise comparison. Our GUI 4 

output all of the Reporter Metabolite data into one Excel file, where each stage was stored in a 5 

sheet. The Reporter Subnetwork algorithm used gene expression data to extract the highly 6 

affected subnetworks as a set of metabolic reactions affected by the differentially expressed genes 7 

between two stages (Figure S1D). We used our GUI to remove the highly connected metabolites 8 

(i.e., cofactors, H2O and other metabolites listed in Table S3) from the model. Then, our GUI 9 

uploaded the modified model and the adjusted P-value for each gene in the model for each stage 10 

to the Biomet database, and then the Reporter Subnetwork algorithm was executed ten times. The 11 

GUI selected the best subnetwork with the maximum Z score and exported it in XGMML format 12 

so that it could be opened easily with Cytoscape. Finally, we applied the Reporter Features 13 

algorithm,
48

 which is a gene-set enrichment algorithm that replaces the metabolites uses genes 14 

associated with GO biological process terms and calculates the Z score for a GO term from the 15 

adjusted P-value of the probes associated with this GO term. We used the R package biomaRt to 16 

annotate the probes with their corresponding GO terms and the PIANO function runGSA to 17 

execute the Reporter Features algorithm. To isolate the metabolic GO terms, we used the R 18 

library GO.db to identify all of the biological process children of the “GO:0008152 metabolic 19 

process," which resulted in 9229 metabolic GO terms. We only reported the changed metabolic 20 

GO terms that had “GO:0008152 metabolic process” as the parent and a non-directional P-value 21 

< 0.05. 22 

 23 
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Copy number variation, DNA methylation and microRNA from TCGA  1 

We downloaded the analyzed data with annotations for the liver cancer samples (level 3) for 2 

CNVs, DNA methylation and microRNA from the TCGA web site. For CNVs, we used the 3 

Biomart service to identify the start and end points for Ensembl genes in the HMR 2.0 model. For 4 

each sample mapped to the genome (h19), we assigned the segment mean value to a HMR 2.0 5 

gene that overlapped with a segment. Finally, we selected the genes that had absolute segment 6 

values greater than 0.15 in more than 50% of the cancer samples and average segment_mean 7 

values of the cancer samples that differed from the average segment_mean values of the normal 8 

samples in the non-parametric test (wilcox.test) with a P-value < 0.01
75

. 9 

For DNA methylation, we built two arrays containing the beta value for the probe and the average 10 

beta values for the probes in the island. We calculated the delta beta value as the absolute value 11 

for the difference in the average beta values between the cancer and normal samples. We used 12 

HumanMethylation450 v1.2 from the Illumina web site to annotate the CpG island and gene 13 

names. We used the PIANO package to calculate the adjusted P-values from the t-test. We 14 

selected the probes or the CpG islands with delta beta values ≥ 0.1 and adjusted P-values < 0.05, 15 

and we classified a probe or CpG island as hypomethylated if the average beta value for the 16 

cancer sample was less than the average beta value for the normal sample or hypermethylated if 17 

the average beta value for the cancer sample was greater than the average beta value for the 18 

normal sample. 19 

Finally, for the microRNA analysis, we built an array from the reads per million for each 20 

microRNA
76

 and used the default commands in the edgeR R package to identify the expressed 21 

microRNAs.
77

 22 
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Figure Legends 15 

 16 

Figure 1. Effective approach describing the metabolic alterations for each stage caused by 17 

HCV infection. (A) HCV has three structural proteins: the core and two envelope proteins E1 18 

and E2. HCV contains lipids and the apoE and apoB lipoproteins. The HCV structure is 19 

converted to a biosynthesis reaction, where the coefficients a1, a2, a3, a4 and a5 represent the ratio 20 

of the E1, E2 and core proteins; lipids; and HCV particles to the amount of HCV RNA. This 21 
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reaction is integrated with the hepatic model iHepatocytes2322. The new model can be used to 1 

identify metabolites crucial for HCV assembly via antimetabolites and can be integrated with 2 

transcriptomics studies (GSE6764) using the GEO database to identify significantly changed 3 

metabolites and reactions. Moreover, the genes reported in the Reporter Subnetwork analysis 4 

were mapped with copy number variations of liver cancer from TCGA. (B) Carnitine metabolism 5 

is integrated with gene expression in early HCC. The blue, red and black arrows indicate that the 6 

gene(s) associated with this reaction are downregulated, upregulated and unregulated (adjusted P-7 

value > 0.05), respectively. The reaction is also unregulated if it involves both upregulated and 8 

downregulated genes. (C) Boxplots show the hypomethylated DNA methylation levels for non-9 

promoter CpG islands (NPI) of BBOX1 in the HCC and normal TGCA samples, where the delta 10 

beta value = 0.1 (adjusted P-value < 0.05). (D) Boxplots show the hypermethylated DNA 11 

methylation levels for body CpG islands (BI) of BCAT1 in both the HCC and normal TGCA 12 

samples, where the delta beta value = 0.1 (adjusted P-value < 0.05). (E) Boxplots show the over-13 

expression level of hsa-miR-222 in the HCC and normal TGCA samples (adjusted P-value < 14 

0.05). 15 

 16 

Figure 2. SAMe metabolism is integrated with copy number variations on chromosome 1q 17 

from liver cancer in TCGA. (A) Blue, red and black arrows indicate that the gene(s) associated 18 

with this reaction are downregulated, upregulated and unregulated (adjusted P-value > 0.05), 19 

respectively. The reaction is also unregulated if it involves both upregulated and downregulated 20 

genes. A small red rectangle in chromosome 1q indicates that this gene or microRNA is 21 

amplified. (B) Boxplots show the over-expression level of hsa-miR-664 in the HCC and normal 22 

TGCA samples (adjusted P-value < 0.05). 23 
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 1 

Figure 3. Acyl-CoA metabolism is integrated with gene expression in early HCC. Blue, red 2 

and black arrows indicate that the gene(s) associated with this reaction are downregulated, 3 

upregulated and unregulated (adjusted P-value > 0.05), respectively. The reaction is also 4 

unregulated if it involves both upregulated and downregulated genes. The dashed orange line 5 

indicates that the DHAP reductase gene has not been annotated for human lines. ACS, acyl-CoA 6 

synthase; LPA, lysophosphatidic acid; PA, phosphatidate; DAG, diacylglycerolipids; and TAG, 7 

triglycerolipid. 8 
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