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environment and diet do not offer this essential vitamin the
biosynthetic pathway of folate becomes key for the viability of
active proliferating microorganisms11. Crucially, this biochemical
switch characterises the behaviour of most microbial pathogens
including bacteria12 and parasitic single-cell eukaryotes such as
the malaria parasites8. To combat these pathogens antifolates of
clinical use in medical and veterinary practice target primarily
the following three enzymes: dihydropteroate synthase (DHPS),
dihydrofolate reductase (DHFR) or thymidylate synthase (TS),
while an enzyme of the Shikimate pathway is the target of
the herbicidal glyphosate. Thus, the pharmacological utility
of the extensive range of other enzymes involved in the folate
biosynthesis and utilisation network are still to be fully exploited.

Mainly due to the association its dysregulation has with
cancer folate metabolism has been more intensively studied in
mammals. This experimental work has been used to inform
the assembly of a number of mathematical models of folate
metabolism13–19. In silico mammalian models have been used
to represent in vivo purine biosynthesis20, the kinetics of the
folate cycle in human breast carcinoma cells21, the impact of
vitamin B12 deficiency on the folate cycle13, the influence of
genetic polymorphisms in methylene tetrahydrofolate reductase
and thymidylate synthesis22, the effect of epithelial folate con-
centrations on DNA methylation rate and purine and thymidylate
synthesis23, the high correlation between tissue and plasma
folate and the low correlation between liver and plasma folate16,
and how vitamin B-6 restriction alters one-carbon metabolism
in cultured HepG2 cells19. These mathematical models have all
worthwhile features and have deepened our understanding of the
complex dynamics which underpins the folate cycle in mammals.
However, to our knowledge at present, there is no mathematical
model which has represented microbial de novo biosynthesis as
well as the usage of folate (the folate cycle). Thus, it could be
argued that the microbial biochemical folate system remains less
well understood than its mammalian counterpart.

In this paper we describe the assembly of a mathematical
model of the microbial biosynthetic and usage pathways. This
model is based on the biochemical architecture of a single
celled microorganism, and is underpinned by known enzyme
kinetics. The robustness of our model is based on its capacity
to represent known folate inhibitory profiles as well as its
capacity to predict effective new drug combinatorial profiles.
Furthermore, this model includes folate metabolites recently
identified as being involved in dormancy related persister bac-
teria and illustrates the likely metabolic folate profile of such a
phenotype. Together these features of the model suggest that our
model is a suitable template which could help to exploit novel
aspects of this complex network for new antifolate chemotherapy.

2 Methods

The model proposed here comprises 31 reactions and 51
metabolites. The different reactions are in Table 1 with extended
annotation in Table S1 with the metabolites abbreviated as in

Table S2. The components of our model are informed by the
existing kinetic models briefly described above, and by the most
recent reviews of microbial folate metabolism8,24. Moreover,
a number of microbial metabolic representations that describe
folate related reactions were explored. These pathways are
archived within the KEGG database (Kyoto encyclopedia of genes
and genomes http://www.genome.jp/kegg/) (accessed July
2015)25 which is based on the comparative genomics from the
hundreds of microbial genomes sequenced to date26.

Kinetic parameters were compiled from the enzyme database
BRENDA (accessed July 2015)27 (Tables S3 and S4). Kinetic
parameters for ADCS (reaction 8), for E. coli, were extrapolated
from28. Kinetic parameters for ADCL (reaction 9), for P. fal-

ciparum, were extrapolated from29. The final curated model
consists of reactions reported from all three microbial models E.

coli, S. cerevisiae, and P. falciparum and encompasses a biosynthe-
sis component (the Shikimate pathway leading to the synthesis
of pABA from glycolytic intermediates, the pteridin biosynthesis
pathway from GTP, and the reactions leading to the production of
fully reduced and polyglutamated folate), and an interconversion
cycle of reduced and polyglutamated folate products (Figure 1).
All reactions are listed in Table S1 and all metabolites and their
abbreviations are listed in Table S2. The vectorial assembly of
this model was created with systems biology graphical notation
(SBGN) (http://www.sbgn.org/Main_Page)30 and implemented
in VANTED (Version 2.2.1, http://vanted.ipk-gatersleben.de/)31.
We then converted this biochemical network into a series of
reactions (Tables 1 and S1) and assembled them in Version
4.14.89 of the modelling and simulation software tool Copasi32.
The initial velocity of each reaction is underpinned by a rate law
that depends on the concentrations of the reaction substrates,
products, and co-factors. These rate laws are nonlinear and in
general are described by Michaelis-Menten kinetics (List of ODEs
in electronic supplementary information) for either one, two, or
three substrates assuming a random-order mechanism33. The
following mathematical expressions exemplified the different
Michaelis-Menten equations as used for this model for one
substrate, two substrates, and three substrates33:

v =
Vmax[S]

Km +[S]
(1)

v =
Vmax[S1][S2]

Km1Km2 +Km1[S2]+Km2[S1]+ [S1][S2]
(2)

v =
Vmax[S1][S2][S3]

Km1Km2Km3+Km1([S2]+[S3])+Km2([S1]+[S3])+Km3([S1]+[S2])+[S1][S2][S3]
(3)

v =
Vmax[S1][S2]

Km1Km2(1+
[inh]
Ki

)+Km1[S2]+Km2[S1]+ [S1][S2]
(4)

The equations for reactions that had metabolite modifiers (in-
hibitors) included (see Table 1) are exemplified by Equation (4)
where the concentration of the inhibitory metabolite is taken into
account, together with its affinity constant (Ki), by its effect on
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Table 1 Enzyme reactions as entered in the model. Metabolite abbreviations are detailed in Table S2. The extended reactions as catalogued in KEGG

are listed in Table S1

Reaction Number Reaction description Kinetic descriptor (a)
1 PEP + EP -> DAHP + Pi Rate Law for R1
2 DAHP -> DHQ + Pi Henri-Michaelis-Menten (irreversible)
3 DHQ -> DHSK Henri-Michaelis-Menten (irreversible)
4 DHSK + NADPH -> SK + NADP Mass action (irreversible)
5 SK + ATP -> SKP + ADP + Pi Mass action (irreversible)
6 SKP + PEP -> CVPSK + Pi Rate Law for R6
7 CVPSK -> CM + Pi Henri-Michaelis-Menten (irreversible)
8 CM + Gln -> ADC + Glu Rate Law for R8
9 ADC -> pABA + Pyr Henri-Michaelis-Menten (irreversible)

10 GTP -> DHNTP + formyl; THF (b) Henri-Michaelis-Menten (irreversible)
11 DHNTP -> AHMDHP + HAD + 3Pi Henri-Michaelis-Menten (irreversible)
12 AHMDHP + ATP -> AHMDPP + AMP Mass action (irreversible)
13 AHMDPP + pABA -> DHP + 2Pi Rate Law for R13
14 DHP + Glu + ATP -> DHF + ADP + Pi Rate Law for R14
15 DHF + NADPH -> THF + NADP Mass action (irreversible)
16 THF + Glu + ATP -> THFGlu + ADP + Pi; DHF (b) Rate Law for R16
17 THFGlu + Ser = myTHFGlu + Gly; THF (b) Rate Law for R17
18a Lp + NADH = DLp + NAD+ Rate Law for R18a
18b Gly + DLp = SAmDLp + COTwo Rate Law for R18b
18c SAmDLp + THFGlu = Lp + myTHFGlu + NH3 Rate Law for R18c
19 myTHFGlu + NADPH -> MTHFGlu + NADP; DHF (b) Mass action (irreversible)
20 MTHFGlu + Hcy -> THFGlu + Met Rate Law for R20
21 myTHFGlu + dUMP -> dTMP + DHF; DHF (b) Rate Law for R21
22 myTHFGlu + NADP = meTHFGlu + NADPH; DHF (b) Mass action (reversible)
23 meTHFGlu = fTHFGlu Mass action (reversible)
24 fTHFGlu + ADP + Pi = THFGlu + formyl + ATP Mass action (reversible)
25 fTHFGlu + mtRNA = formylmtRNA + THFGlu Mass action (reversible)
26 fTHFGlu + NADP = THFGlu + COTwo + NADPH Mass action (reversible)
27 DHNTP -> PTHP + Pi Henri-Michaelis-Menten (irreversible)
28 meTHFGlu -> ffTHFGlu Henri-Michaelis-Menten (irreversible)
29 ATP + ffTHFGlu -> ADP + Pi + meTHFGlu Rate Law for R29

(a) See ordinary differential equations in electronic supplementary information. (b) DHF or THF included as modifiers (i.e. inhibitors) as explained in
main text.

3 Results

3.1 Initial examination of the model

Once the initial set of parameters were added to the model we ran
a number of simulations. It was found that the system reached
steady state at approximately 300 minutes (Figures 2 and S1,
and Table S5). Figure 2 captures the steady state values for the
folate cycle. Figure 2A represents the intermediates of the cy-
cle, while Figure 2B represents the products of the cycle, namely
methionine, dTMP and formyl-met-tRNA (fmtRNA). The concen-
trations of the metabolites and the fluxes related to the biosynthe-
sis of folates range over several orders of magnitude as summa-
rized in Table S5. Importantly, the folate pool seems to be stored
mainly as two intermediates: the polyglutamated and fully re-
duced form THFGlu and its intermediate carrying the one-carbon
unit as methenyl (meTHFGlu) (Figure 2A and Table 2). This is an
important finding of the model since neither THFGlu nor meTH-
FGlu are direct cofactors for the anabolic reactions where folates
are involved. On the other hand, the products derived directly
from the folate cycle reactions are represented by methionine at
a concentration of 172 µM and dTMP at a concentration of 45.7
µM. The modified methionyl-transfer RNA (fmtRNA) reaches a
steady state at a much lower level (2.15 µM) than the other prod-
ucts (Figure 2B). From these the only metabolite with a reported
steady state concentration in microorganisms is methionine at a
mean value of 142 µM39 which is close to the value derived from
the simulation of this model (172 µM).

3.2 Modelling the effect of known antifolates

We modelled the effect of inhibiting enzymes by running parame-
ter scans of the Vmax of a given enzyme from the initial Vmax value
entered for that enzyme down to decimal minimal values ap-
proaching zero (0.01 micromoles (Litre)−1(min)−1) to simulate
maximal inhibition (Figure 3). The most commonly targeted en-
zyme by antifolates of clinical use is DHFR. Seven folate interme-
diates (THF, THFGlu, myTHFGlu, meTHFGlu, fTHFGlu, ffTHFGlu
and MTHFGlu) and the three products (Met, dTMP and fmtRNA)
were all affected by the reduction of the Vmax of DHFR (Figure
3). The effect on metabolites present at much lower levels such
as fTHFGlu and fmtRNA is less visible. Importantly, the metabo-
lite concentrations were at their lowest from the point where ap-
proximately a reduction of 90% of the Vmax had been reached.
The methyl carrier MTHFGlu, and both products methionine and
dTMP are at 4% and 10%, respectively, of their initial steady
state concentrations when DHFR was inhibited. The inhibition of
DHPS, another commonly targeted folate enzyme (currently by
using sulfa drugs), affects the levels of THF and myTHFGlu, the
two immediate products of de novo folate biosynthesis and one-
carbon folate metabolism, respectively (Figure S2). Similarly, the
effects of targeting the Shikimate pathway, simulated here by in-
hibiting PSCVT (Phosphoenolpyruvate:3-phosphoshikimate 5-O-
(1-carboxyvinyl)-transferase), target of glyphosate, presented a
similar inhibition profile to that observed for DHPS. The inhibi-
tion of TS on the other hand, was limited to the decline of dTMP
to negligible levels (Figure S2).
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Fig. 2 Steady-state levels of folate cycle metabolites and products. (A)

Describes the behaviour of seven folate cycle intermediates up to 300

minutes. (B) Describes the behaviour of three folate cycle products in

the same period. Abbreviations as in Table S2. The y axis is logarithmic.

3.3 Modelling the effect of known antifolate combination

therapies

Antifolate chemotherapy has been deployed using inhibitors that
target at least two enzymes of folate biosynthesis and usage
pathways and usually work due to a synergistic effect44. The
most common of such combinations is a DHFR inhibitor and a
DHPS inhibitor for the treatment of infectious diseases. Targeting
DHFR and TS has also been used to kill cancerous cells45. The
effects of the combined reduction of the Vmax for DHFR and
DHPS (Figure 4), and DHFR and TS (Figure S3) were simulated.
The response of the two folate products (Met and dTMP) and
the two metabolic intermediates (THFGlu and meTHFGlu) were
used to illustrate the effects of these combined inhibitions. The
inhibition of DHFR and DHPS has an overall effect on all of these
metabolites while the inhibition of DHFR and TS has its main
effect on dTMP, which was significantly reduced (Figure S3).

An important aim of this model was to find new potential
inhibitory combinations that could reduce the levels of folate
metabolites and products which could work more effectively
than the current antifolates. As the model successfully simulated
the known effects of inhibiting DHFR46 (Figure 3), we therefore
decided that it would be logical to investigate the effects of
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Fig. 3 Effect of decreasing the Vmax of DHFR (a primer target for current

antifolates) on the steady-state levels of (A) folate metabolites and (B)

products. Abbreviations as in Table S1 for enzymes and Table S2 for

metabolites. Vmax values in micromoles per litre per time unit in minutes

(micromoles (Litre)−1(min)−1). The Vmax values for each enzyme

corresponds to the values entered for the corresponding reaction (Table

S4). The y axis is logarithmic.

inhibiting DHFR and a second target. Using the levels of dTMP
as an indicator of cell survival, a scan of the Vmax of DHFR
was performed while the Vmax of a second enzyme was set to
negligible levels (0.01 micromoles (Litre)−1(min)−1). Firstly,
we simulated the known synergism of inhibiting both DHFR
and DHPS, which is the most common antifolate combinatorial
chemotherapy against infectious microorganisms. The levels of
dTMP when DHFR was inhibited alone reached the lowest point
(5 µM) when the Vmax for DHFR was just below 1000 micromoles
(Litre)−1(min)−1. When DHPS was also inhibited (Vmax =
0.01 micromoles (Litre)−1(min)−1) the levels of dTMP were
minimal even at high values of DHFR Vmax (2500 micromoles
(Litre)−1(min)−1) (Figure 5A). Therefore, based on this output
we reasoned that the model was suitable for the simulation of
new potential combinations.

It was decided that any other possible combination should be
compared against the combined inhibition of DHFR and DPHS as
illustrated above. Explicitly, the Vmax values at which DHFR ren-
der low levels of dTMP would be above, the same, or below the
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compound. In experimental pharmacology cellular toxicity is
measured as the concentrations of a molecule that affect cell sur-
vival: inhibitory concentrations IC50 or IC90. The type of screen-
ing we believe is worthwhile formulating is that which detects
drugs or compounds that reduce the ICs of an anti-DHFR inhibitor
at the same or lower levels than the known synergistic combina-
tions with anti-DHPS drugs (Figure 5). The difference between
for instance, the IC90 of an anti-DHFR alone and in the presence
of another molecule would be a coefficient. Such a coefficient
can then be used as the exponential of a natural numeric base to
render a positive scale where the point of no effect is one (anti-
DHFR IC90 minus itself produces an exponential zero). Using 2
as the base this scale will show maximum possible effects (strong
additivity or synergy) as an asymptote that approaches two, and
minimal effects (antagonistic) as an asymptote that approaches
zero (Figure 5B). Simply stated the formula is: ∆Anti-DHFR =
2(A−B). Where A is the IC90 of an anti-DFHR acting alone and B
the IC90 of such anti-DHFR in the presence of another inhibitor
at a set concentration. In this in silico model we simulated this
type of assays by running Vmax scans for DHFR while reducing the
Vmax of another of the enzymes of the model to negligible levels
(i.e. 0.01 micromoles (Litre)−1(min)−1). The representation of
the known synergistic effect of an anti-DHFR and an anti-DHPS is
observed under this method as a change of 1.5 in the inhibitory
concentrations of an anti-DHFR (a reduction in its ICs (IC90 or
IC50) of 50%) (Figure 5B). When the same simulation was run
with all other possible targets, significantly, inhibiting enzymes of
the Shikimate pathway (e.g. PSCVT) did not seem to enhance the
effect of inhibiting DHFR alone (observed as a change in the levels
of dTMP). A similar trend was observed when lowering the Vmax

values for SHMT, an enzyme directly involved in the one-carbon
transfer to folates. On the other hand, an effect well above the
reference (set by inhibiting DHPS) was observed when reducing
the levels of the Vmax for FPGS. Inhibiting DHFR was significantly
improved in the latter case with a score approaching 2. An in-
creased efficacy of 100% for an anti-DHFR inhibitor when in the
presence of an anti-FPGS compound (Figure 5B).

3.5 Sensitivity of the system to cell energy and redox status

A question to address in folate metabolism relates to the effect
that the energy status of a cell will have on the biosynthesis and
usage of folate. As it takes four molecules of ATP to produce
a new fully reduced monoglutamated folate (every additional
condensation of a glutamate will cost an extra ATP), the full
biosynthesis of folate ought to be sensitive to the energy status of
the cell. Folate biosynthesis also requires reductive equivalents
in the form of both NADH and NADPH. Recent findings from
experimental work have confirmed that the folate metabolic net-
work has a crucial role to play in maintaining the homoeostasis
of cell biomass47. Depending on the direction of the reactions
of the folate cycle, the folate one-carbon reactions can equally
generate net energy and reductive equivalents (i.e. ATP and
NADPH)48,49. Consequently, there is a need for a framework
that integrates folate metabolism with cell growth and energy
homoeostasis. In the model presented here reducing the levels of
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Fig. 6 Modelling the effect of ATP levels on folate cycle metabolites and

products. Levels of ATP in micromolar. Initial concentration of ATP used

for the model was 963 µM.

ATP to 1% reduced the concentration of most folate metabolites
(Table 2 and Figure 6). The reduction of other substrates such
as glutamine, and NADPH had a similar effect on the folate
pool (Table2). However, changes to ATP and NADPH were most
significant (Figure S5).

We were interested in metabolites whose concentration in-
creased under restrictive energy conditions, as these could be
feedback molecules for the folate biosynthesis and utilisation
pathways. For instance under low ATP the monoglutamated THF
accumulates (Table 2 and Figure 6). Importantly, a similar trend
is followed by 5-formyl-THFGlu (ffTHFGlu: folinic acid). Both
molecules are known to be negative regulators of folate biosyn-
thesis enzymes SHTM and GTPCH-I (8,50). Two other metabo-
lites, SK and SAmDLp, increase to very higher levels (Figure S5).
A synergistic effect by SK with other carbon sources in the pro-
motion of cell growth has been observed in bacteria51. However,
the roles of SK, and SAmDLp, during limited nutrient availability
and low ATP are unknown. Similarly, when the levels of NADPH
decreased among the expected metabolites to become abundant,
THF and DHF are again known regulators of the folate biosyn-
thesis. However, the functions of DHSK, myTHFGlu, and again
SAmDLp, whose concentrations are significantly higher in low
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NADPH (Figure S5), are unknown.

Table 2 Effect of low substrate input in the model. Concentrations

(micromolar) for seven different metabolite intermediates of the folate

cycle and three of the main products of the anabolic reactions were

folates are cofactors (in italics). Column noted as Standard contains the

metabolite concentration values in micromolar at 300 minutes (Figure

2). The other columns denote these values when the concentration of

precursors in the headings drop to 1% of their initial values. Bold fonts

denote incremental changes

Metabolite Standard ATP Glutamine NADPH NADH
THF 7.00E-002 21.67 7.14E-3 7.34E-2 7E-2
THFGlu 592 151 16.46 585 600
myTHFGlu 7.8E-2 1E-2 2.98E-2 8.7E-2 7E-2
meTHFGlu 72.44 3.37 27.38 80.48 65
MTHFGlu 0.99 1.25E-1 3.75E-1 1.36E-2 8.9E-1
fTHFGlu 4.5E-5 1.2E-5 3.16E-5 4.8E-5 4.3E-5
ffTHFGlu 1.4 121.68 6.9E-1 1.49 1.31
dTMP 45.7 7.03 17.27 48.55 40.68
Met 172 25.1 64.23 4.45 153
fmtRNA 2.15 1.93 2.08 2.21 2.12

4 Discussion

Folate metabolism in microbes currently suffers from a paradox.
Although, there is an abundance of experimental information
derived mainly from microbial models such as E. coli and S. cere-

visiae, on closer inspection there is still a lack of understanding
of the regulatory mechanisms which underpin the dynamics of
folate biosynthesis and utilisation. In mammals specific concen-
trations of intracellular and circulating folates are known to have
predictable implications52. In contrast, we lack a quantitative
framework for understanding the relationship between intrinsic
folate levels and microbial cell growth and multiplication53. A
basic initial challenge is to know the intracellular concentration
of intracellular metabolites. Although, there have been efforts
to quantify steady state metabolite content in microbes (e.g. E.

coli)39,54, cofactors such as folates pose inherent difficulty for
detection because they are in sub-micromolar concentrations and
mostly protein-bound. Further complications arise from genomic
driven automatic annotation of the myriad of microbial genomes.
The genotypes of folate biosynthesis enzymes appear to have
local gene variability that have compounding effects on gene
annotation. Nonetheless the architecture of folate biosynthesis
pathways seems evolutionary constrained24,55. Consequently,
the model presented here centres on the metabolic reactions
that are widely regarded as fundamental to a fully biosynthetic
microorganism and attempt to capture a broad set of parameters
that allows us to integrate a systems level overview of microbial
folate metabolism.

The concentration of all folate metabolites and products
represented here reach a steady state. THFGlu and meTHFGlu
represent the main forms of folate in this model under steady-
state conditions. This is a meaningful feature of the model since
THFGlu is the product of the de novo biosynthesis of folate and
meTHFGlu is the product of the condensation of the one-carbon
unit (from serine or glycine) on to THFGlu. Crucially, meTHFGlu
is the substrate for the futile cycle with folinic acid (Figure

1)56. Furthermore, THFGlu is a known regulatory (inhibitor)
metabolite of folate biosynthesis enzymes such as GTPCHI
which catalyses the first reaction of the pteridin biosynthesis
pathway8. It is therefore noteworthy that the model assembled
here demonstrates that these two folate intermediates, with such
essential roles in the known biochemistry of folate utilisation are
the main reservoir of the folate pool.

The combined inhibition of DHFR and DHPS affects the levels
of both of the main folate intermediates THFGlu and meTHFGlu
while the levels of methionine and dTMP do not differ signif-
icantly from the levels observed when inhibiting DHFR alone
(Figures 3 to 5). The combinatorial inhibition of DHFR and TS on
the other hand, has drastic effects on the levels of dTMP mainly
(Figure S3). Importantly, the thymineless death is known as the
mechanism mediating cell toxicity of antifolates57. The profiles
of these inhibitory trends of folate metabolites and products fit
with the fact that anti-DHFR inhibitors are the most effective
antifolate mono-therapy followed only by anti-TS compounds5.
However, it is clear that combinatorial approaches with an
anti-DHFR and a second antifolate further improve the efficacy
of anti-DHFR inhibitors to shut down folate usage reactions58,59.

Accordingly, it was decided to explore combinations of DHFR
inhibitors and a second target. Particularly, targeting enzymes
that are current candidates for antifolate chemotherapy such as
SHMT and FPGS (Figure S4). The best known methods for eval-
uating drug-drug interactions are based on the Loewe additivity
model, visualised by isobolograms and measured by the com-
bination index analysis60. These empirical implementations of
representing drug-drug interactions serve the need for methods
to study cell toxicity. Particularly given that usually, evidence
on the mechanisms of action and interactions of drug-drug and
drugs-targets is lacking. None of these methods however, have
found applicability in high-throughput (HTP) drug screening.
The need to use a range of concentrations for each of the drugs
increases the work load exponentially to levels that defeat the
purpose of screening large chemical libraries. Therefore, drug
additivity is not routinely an aim in HTP drug screening.

This simple method that we decided to use here to represent
antifolate combinatorial inhibition could find use in the search
for chemical hits that complement synergistically the established
effects of inhibitors such as anti-DHFR drugs. Consistently, this
approach shows important trends such as the drastic synergistic
effect of inhibiting polyglutamation of folates on top of the
inhibition of DHFR. An effect that has been demonstrated experi-
mentally in mammalian cell lines61. Somewhat disappointingly
when we used the model to simulate the combinatorial inhibition
of other enzymes such as SHMT and enzymes involved in the
Shikimate pathway, the effects of inhibiting DHFR alone was
not enhanced (Figure 5). Nonetheless, screening large chemical
libraries is arguably a worthwhile strategy to look for drug
additivity, and simple methods such as the one presented here to
measure potential synergistic interactions in HTP projects are a
necessity.
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The finding that folinic acid increases when the level of ATP
is reduced has important implications when considered within
the context of the regulation of the metabolism of microbial cell
growth. Folinic acid is the most chemically stable form of re-
duced folates that seems to function as a metabolic sink for the
folate cycle56. Folinic acid itself is not a substrate for folate util-
ising enzymes, it has to be transformed back into meTHFGlu
by the ATP-driven enzyme 5-formyl THF cyclo-ligase(5-FCL: re-
action 29) before re-entering the folate cycle. Folinic acid has
been given potential roles as a reservoir of cellular folate and as
a regulatory metabolite through the inhibition of a number of
folate biosynthesis enzymes50,56,62. As a potential folate reser-
voir folinic acid is present in high levels (over 70% of the folate
pool) in dormant cellular forms such as plant seeds and fungi
spores56,63, and the overexpression of 5-FCL has been associated
with bacterial dormant phenotypes in liquid culture64 as well as
in biofilms65. Also, inhibiting 5-FCL has been shown to affect
cell growth56,66. Related to the latter, 5-FCL has been described
as a pathogenic factor necessary for antifolate drug resistance in
Mycobacterium67. Thus, folinic acid seems to be part of a sub-
strate cycle with invested value since it is seemingly used for both
cell dormancy as well as actively cell growth. It is possible that
this ATP-driven reaction is used by the folate cycle as an energy
sensor whereby cellular stress and low ATP is sensed by the folinic
acid substrate loop. When conditions are more favourable, activa-
tion of folinic acid restores the flux downstream this futile cycle.
Sensitivity in metabolic regulation is the relationship between the
relative change in enzyme activity and the relative change in con-
centration of a regulator68. As an outlining feature this model
of the folate biosynthesis pathway and the folate cycle substanti-
ates the cited works that propose the 5-FCL reaction as a poten-
tial substrate cycle as part of the regulatory signals of the folate
metabolism.

A kinetic model to detect parameter dependencies can have
limitations. The model outputs are influenced by the accuracy
of the enzymatic kinetic parameters. However, these parameters
have inherent variability due to differences in the experimental
conditions in which they were quantified. Particularly, when as
in this model, the objective was to build a generic construction of
the relevant microbial pathways. We have mitigated against this
limitation by compiling a metabolic network of consensus reac-
tions for folate biosynthesis across species, and the distributions
for a large number of values for the relevant kinetic parameters
from generic databases as well as the literature. Additionally, the
model is well informed by the inclusion of the initial steady state
concentrations for the majority of metabolites from studies on
microbial model organisms which report absolute values using
modern metabolomics techniques. The robustness and accuracy
of this type of model then becomes apparent, as is the case in
this work, by the steady-state values of metabolic products that
agree with the literature data and the predictability of the effects
of local parameter variations. The latter includes the agreement
of the model with the known effects of existing inhibitors.

5 Conclusions

We have assembled a generic mathematical model of microbial
folate biosynthesis and usage. This model is able to reproduce
many of the key biochemical dynamics which underpin folate
metabolism in microorganisms. We acknowledge that the model
has limitations. For instance, model outputs are inexorably dic-
tated by enzymatic kinetic parameters. These parameters have
inherent variability due to differences in the experimental condi-
tions in which they were quantified. Equally relevant to the valid-
ity of the model is that its foundations are based on the general
consensus within the field that these are the accepted reactions
of folate biosynthesis and utilisation. For example, for some reac-
tions such as the initial steps of the pterin biosynthesis pathway
alternative catalytic steps have been proposed69. Nonetheless,
the model is consistent with the biology of folate metabolism and
provides a number of useful biochemical insights as well as re-
sults which have meaningful implications. These include the pre-
sentation of two folate intermediates of the folate cycle, THFGlu
and meTHFGlu, as the main components of the network of fo-
late substrates. The simulation of the inhibition of certain fo-
late enzymes seems to us particularly useful. DHFR stands out as
the most efficacious target to inhibit and any combinatorial ap-
proach should consider including an anti-DHFR. A combination
that results with effects stronger than the benchmark of inhibit-
ing DHPS and DHFR seems to be the inhibition of the polygluta-
mation (FPGS) of folates together with inhibiting DHFR. These
findings could be pertinent for the future development of an-
tifolates. Lastly, and of significant interest this model supports
that the folinic acid biosynthesis loop appears to act as a folate-
mediated regulatory circuit in cell growth. In the future we hope
to use this model to explore this finding in greater depth.
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Chemother., 2008, 52, 2718–2726.

65 D. Ren, L. A. Bedzyk, S. M. Thomas, R. W. Ye and T. K. Wood,
Appl. Microbiol. Biotechnol., 2004, 64, 515–524.

66 M. S. Field, D. M. E. Szebenyi, C. A. Perry and P. J. Stover,
Arch. Biochem. Biophys., 2007, 458, 194–201.

67 S. Ogwang, H. T. Nguyen, M. Sherman, S. Bajaksouzian, M. R.

Jacobs, W. H. Boom, G.-F. Zhang and L. Nguyen, J. Biol.

Chem., 2011, 286, 15377–15390.

68 E. A. Newsholme, J. R. Arch, B. Brooks and B. Surholt,
Biochem. Soc. Trans., 1983, 11, 52–56.

69 S. Dittrich, S. L. Mitchell, A. M. Blagborough, Q. Wang,
P. Wang, P. F. G. Sims and J. E. Hyde, Mol. Microbiol., 2008,
67, 609–18.

12 | 1–12

Page 13 of 13 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


