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Abstract  

Amyotrophic	lateral	sclerosis	(ALS)	and	Parkinson’s	disease	(PD)	are	protein-
aggregation	diseases	that	lack	clear	molecular	etiologies.	Biomarkers	could	aid	in	
diagnosis,	prognosis,	planning	of	care,	drug	target	identification	and	stratification	of	
patients	into	clinical	trials.	We	sought	to	characterize	shared	and	unique	metabolite	
perturbations	between	ALS	and	PD	and	matched	controls	selected	from	patients	with	
other	diagnoses,	including	differential	diagnoses	to	ALS	or	PD	that	visited	our	clinic	for	a	
lumbar	puncture.	Cerebrospinal	fluid	(CSF)	and	plasma	from	rigorously	age-,	sex-	and	
sampling-date	matched	patients	were	analyzed	on	multiple	platforms	using	gas	
chromatography	(GC)	and	liquid	chromatography	(LC)-mass	spectrometry	(MS).	We	
applied	constrained	randomization	of	run	orders	and	orthogonal	partial	least	squares	
projection	to	latent	structures-effect	projections	(OPLS-EP)	to	capitalize	upon	the	study	
design.	The	combined	platforms	identified	144	CSF	and	196	plasma	metabolites	with	
diverse	molecular	properties.	Creatine	was	found	increased	and	creatinine	decreased	in	
CSF	of	ALS	patients	compared	to	matched	controls.	Glucose	was	increased	in	CSF	of	ALS	
patients	and	α-hydroxybutyrate	was	increased	in	CSF	and	plasma	of	ALS	patients	
compared	to	matched	controls,	indicating	altered	glutathione	metabolism.	Leucine,	
isoleucine	and	ketoleucine	were	increased	in	CSF	of	both	ALS	and	PD.	Together,	these	
studies,	in	conjunction	with	earlier	studies,	suggest	alterations	in	energy	utilization	
pathways	and	have	identified	and	further	validated	perturbed	metabolites	to	be	used	in	
panels	of	biomarkers	for	diagnosis	of	ALS	and	PD.	
 

Key words:	Amyotrophic	lateral	sclerosis	(ALS),	Parkinson’s	disease	(PD),	
cerebrospinal	fluid	(CSF),	plasma,	mass	spectrometry	(MS),	metabolomics.	
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Introduction 

There	is	currently	no	established	fluid	biomarker	in	routine	use	for	diagnosing	

amyotrophic	lateral	sclerosis	(ALS)	or	Parkinson’s	disease	(PD).	Though	there	are	

guidelines	or	recommendations,	there	is	at	present	no	consensus	on	which	procedures,	

including	cerebrospinal	fluid	(CSF)	analysis,	to	perform/not	perform	when	investigating	

new	cases.	At	our	department,	collecting	and	analysis	of	CSF	are	included	in	the	routine	

investigation	for	a	variety	of	neurodegenerative	conditions.	ALS	and	PD	are	diagnosed	

by	clinical	examination	and	exclusion	of	other	diseases,	and	are	more	precisely	

diagnosed	when	the	disease	has	progressed.	Blood	relatives	of	patients	with	ALS	or	PD	

have	a	slight	increased	risk	of	developing	the	same	disease1	and	overall	also	have	an	

increased	incidence	for	other	neurodegenerative	syndromes2.	This	is	best	depicted	

within	the	ALS	syndrome	where	pleiotropy,	including	for	parkinsonism,	has	been	

demonstrated	for	several	of	the	30	genes	now	known	to	cause	ALS3.	The	emerging	

evidence	is	that	there	is	considerable	overlap	in	predisposing	genetic	etiology	and	

pathomechanisms	between	several	neurodegenerative	disorders.		

			While	neurodegenerative	disorders	such	as	ALS	and	PD	exhibit	heterogeneous	genetic	

causes	and	disease	courses,	many	share	a	molecular	pathology	of	misfolding	and	

aggregation	of	disease	specific	proteins4-5.	Recent	efforts	have	focused	upon	identifying	

underlying	molecular	etiologies	leading	to	deficits	in	protein	homeostasis	and	

autophagy6-7.	Metabolic	patterns	have	emerged,	indicating	that	mitochondrial	function	

and	management	of	oxidative	stress	are	critical	for	maintaining	protein	homeostasis8.	

Since	mitochondrial	function	is	critically	sensitive	to	metabolic	alterations,	small	but	

chronic	changes	in	metabolic	signatures	may	increase	the	likelihood	of	mitochondrial	

mediated	oxidative	stress	and	lipid	modifications	causing	lysosomal	and	autophagy	

failure	leading	to	protein	misfolding,	formation	of	fibrils	and	aggregation9.		

			The	considerable	heterogeneity	in	the	predisposing	genetic	causes	of	ALS	and	PD	

appeals	the	investigation	of	mechanisms	closer	to	the	final	pathology—protein	

aggregation	leading	to	neuronal	degeneration.		

			The	first	report	of	metabolomics	in	motor	neuron	disease	performed	on	human	

subjects	was	published	in	200510.	Metabolomics	approaches	to	investigate	systems	

biology	are	increasingly	popular	due	to	the	unique	ability	to	reveal	the	combined	

environmental,	genetic	and	physiological	components	leading	to	pathological	states.	

Metabolomics	can	be	used	for	screening	of	perturbed	metabolic	pathways	of	diseases	for	

which	pathological	mechanisms	may	be	unknown	or	poorly	understood,	to	generate	

new	data-driven	hypotheses,	or	for	validation	of	established	hypotheses	from	genes,	

transcripts	or	proteins11-13.	Since	there	is	no	single	analytical	method	that	can	provide	a	

complete	coverage	of	the	metabolome14,	complementary	techniques	increase	the	

metabolite	coverage	and	expand	the	number	of	metabolic	pathways	studied.		

			For	the	first	time	we	report	metabolomics	results	from	CSF	and	plasma	collected	at	the	

same	visit	to	the	hospital	from	ALS	and	PD	patients.	In	this	study	we	utilized	multiple	

mass	spectrometry	(MS)	platforms	to	investigate	common	and	specific	perturbations	in	

the	metabolome	between	ALS	and	PD,	extending	the	comparisons	towards	a	control	
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group	to	assessing	the	other	disease	as	a	second	diseased	control	group.		We	applied	a	

purpose	developed	data	analytical	approach15	to	minimize	the	influence	of	instrumental	

drift	that	could	bias	comparisons,	by	capitalizing	upon	the	power	of	rigorously	matched	

samples.	Apart	from	screening	for	new	potential	candidate	markers,	we	sought	to	verify	

candidate	biomarkers	identified	in	previous	reports.		

Materials and Methods  

The	study	was	performed	in	accordance	with	the	Declaration	of	Helsinki16	and	approved	

by	the	Swedish	medical	ethical	review	board.	Written	informed	consent	was	obtained	

from	all	patients.		

Study design, selection of patients and samples  

At	the	Department	of	Neurology	at	Umeå	University	Hospital,	CSF	and	plasma	samples	

are	collected	from	non-fasting	patients	with	various	neurological	conditions	and	kept	in	

−80°	freezers17.	Since	age	of	the	test	subject,	storage	time	of	the	sample18,	sex	of	the	

patient,	as	well	as	a	correct	diagnosis	are	essential	when	performing	metabolomic	

studies,	we	first	selected	a	group	of	22	ALS	patients	(16	males,	6	females)	that	was	

rigorously	matched	for	age,	sex	and	storage	time,	to	a	similar	group	of	22	(15	males,	7	

females)	patients	with	PD	(1	female	ALS	patient	was	reclassified	to	male,	hence	16	ALS	

males	and	6	ALS	females).	The	patients	were	only	included	if	both	plasma	and	CSF	were	

available	and	had	been	collected	at	the	same	visit.	Having	identified	these	22	+	22	

groups,	we	then	searched	the	biobank	for	patients	with	other	neurological	conditions	

that	matched	the	ALS	and	PD	groups	for	age,	sex	and	storage	time.	The	aim	was	to	create	

the	control	group	as	a	sample	of	patients	coming	to	the	clinic,	who	may	share	early	signs	

and	symptoms	with	ALS	or	PD,	and	hence	be	candidates	for	a	diagnostic	test.	We	further	

aimed	to	target	sporadic	ALS	cases	without	pre-knowledge	about	genetic	background	at	

the	time	of	inclusion	in	the	study,	at	a	span	in	age	where	most	sporadic	patients	are	

known	to	present	with	ALS.	Since	PD	patients	often	presents	at	older	age,	the	study	was	

extended	to	include	older	ALS	patients.	With	this	approach	we	identified	28	control	

subjects	(19	males,	9	females),	22	of	them	matching	the	ALS	and	PD	patients	on	a	1:1:1	

basis,	however	for	6	ALS	and	6	PD	patients	two	control	individuals	were	found	and	

matched	(1:1:2).			

			A	strict	requirement	was	that	the	diagnosis	of	the	included	patients	should	be	definite.	

For	samples	collected	at	the	initial	visit	to	our	hospital	with	the	diagnosis	still	uncertain,	

only	patients	for	whom	the	initial	or	later	investigations	made	the	diagnosis	certain	

were	included.	The	included	ALS	patients	were	clinically	investigated	according	to	the	

revised	European	Federation	of	Neurological	Societies	(EFNS)	Consensus	Guidelines	for	

Managing	ALS19	and	the	PD	patients	according	to	the	United	Kingdom	Parkinson’s	

Disease	Society	Brain	Bank	(UK	PDSBB)	criteria.	In	total,	72	matched	patients	passed	all	

criteria	and	were	included	in	the	study	(22	ALS,	22	PD	and	28	control	individuals)	as	

summarized	in	Table	S1.	Patients	were	annotated	with	match	number,	sample	biobank	

number,	diagnosis,	sex,	age	of	patient	at	sampling	and	age	of	sample.	
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Sample preparation  

CSF	and	plasma	samples	were	extracted	according	to	a	standardized	protocol20.	100	µL	

of	plasma	or	CSF	were	aliquoted	and	added	to	900	µL	extraction	solution	consisting	of	

methanol:water	(8:1).	The	extraction	solution	was	spiked	with	isotope	labeled	internal	

standards	(500	ng/µl	stocks	of	[2H4]	succinic	acid,	[13C12]	sucrose,	[13C5,15N]	glutamic	

acid,	cholesterol,	[1,2,3-13C3]	myristic	acid,	[13C4]	palmitic	acid	and	[2H6]	salicylic	acid)	

for	gas	chromatography	(GC)/MS	to	a	final	concentration	of	3.65	ng/µL	in	the	plasma	

extracts	while	the	CSF	extracts	were	prepared	to	4.5	ng/µL	to	compensate	for	different	

dilution	effects	during	sample	derivatization.	Val-Tyr-Val,	Leu-Enk,	sulfadimethoxine,	

reserpine	were	added	as	internal	standard	for	liquid	chromatography	(LC)/MS	to	a	final	

concentration	of	0.081	ng/µL	in	the	CSF	and	plasma	extracts.	The	extracts	were	split	

into	4	vials,	to	allow	measurements	with	the	multiple	MS	methods:	GC/MS;	LC/MS	

electrospray	ionization	(ESI)	in	both	positive	and	negative	mode	(ESI+/−)	and	target	

amino	acid	analysis	using	LC/MS.	Quality	control	samples	were	prepared	by	pooling	CSF	

from	a	subset	of	subjects	equally	distributed	between	diagnoses	(ALS,	PD,	controls)	and	

plasma	was	pooled	from	all	72	subjects.		To	minimize	confounding	between	metabolite	

variations	related	to	disease	with	analytical	drift,	all	run	orders	were	randomized	using	

constrained	randomization15,	i.e.	randomization	was	applied	both	between	and	within	

matched	subjects.	By	applying	this	approach	we	were	able	to	minimize	the	influence	of	

the	instrumental	drift,	except	irregular	drift	(i.e.	noise).	Noise	was	instead	handled	by	

using	the	multivariate	modelling	approach,	since	only	variability	with	structure	are	

considered	by	the	models.	

Untargeted GC/MS	

GC/MS	requires	volatile	compounds	for	detection	and	this	can	be	achieved	by	

derivatization	of	metabolites.	For	derivatization,	o-methylhydroxylamine	hydrochloride	

98%	(Aldrich)	(30	μL,	15	μg/μl)	in	pyridine	was	added	to	the	samples,	shaken	with	a	

MM301	beadmill	(Retsch®	GmbH	&	Co.	KG)	for	15	min,	heated	to	70	°C	for	1	h	and	left	

for	16	h	in	room	temperature.	N-Methyl-N-trimethylsilyltrifluoroacetamide+1%	

trimethylchlorosilane	(30	μL)	were	added	to	the	samples,	kept	in	room	temperature	for	

1	h	before	heptane	(30	μL,	with	15	ng	methylstearate/μL,	injection	standard)	was	added	

prior	to	GC/MS	analysis.	The	same	procedure	was	used	for	derivatization	of	metabolites	

in	CSF	but	the	amount	of	O-methylhydroxylamine	hydrochloride	(98%,	15	μg/μl	in	

pyridine),	N-Methyl-N-trimethylsilyltrifluoroacetamide	+1%	trimethylchlorosilaneand	

heptane	(with	15	ng	methylstearate/μL,	injection	standard)	was	lowered	to	20	μL	each.	

Nine	quality	control	samples	were	distributed	along	the	run	order	in	the	analysis	of	

plasma	samples,	however	for	analysis	of	CSF	samples,	no	quality	control	samples	were	

analyzed	by	GC/MS.	1	μL	aliquot	was	injected	splitless	by	an	CTC	Combi	Pal	autosampler	

(CTC	Analytics	AG,	Zwingen,		Switzerland)	into	an	Agilent 6890N	gas	chromatograph	

(Agilent	Technologies,	Santa	Clara,	CA,	USA)	equipped	with	a	10	m	×	0.18	inner	diameter	

fused-silica	capillary	column	chemically	bonded	with	0.18	μm	DB	5-MS	stationary	phase	

(J&W	Scientific,	Folsom,	CA,	USA).	The	injector	temperature	was	set	to	270	°C,	the	

septum	purge	gas	was	turned	on	after	60	s	at	a	flow	rate	of	20	mL/min.	The	initial	
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column	temperature	was	70°C	and	kept	steady	for	2	min.	Temperature	was	increased	by	

40	°C/min	until	a	temperature	of	320	°C	was	reached.	Stop	temperature	was	kept	for	2	

min	before	the	oven	was	allowed	to	return	and	stabilize	at	the	initial	temperature.	The	

gas	flow	rate	through	the	column	was	1	mL/min.	The	column	outlet	was	introduced	into	

the	ion	source	of	a	Pegasus	III	time	of	flight	MS	(Leco®	Corp.,	St	Joseph,	MI,	USA).	The	

transfer	line	temperature	was	set	to	250	°C	and	the	ion	source	temperature	was	set	to	

200	°C.	Ions	were	produced	by	a	70	eV	electron	beam	(2.0	mA).	Acceleration	voltage	was	

switched	on	after	a	165	s	solvent	delay	and	masses	were	acquired	between	m/z	50-800,	

at	a	rate	of	30	spectra/s	for	445	s.	Chromatographic	profiles	were	extracted	using	in-

house	developed	scripts.		

Untargeted LC/MS	

LC/MS	was	recorded	using	both	ESI+	and	ESI−.	Chromatography	was	performed	on	an	

Agilent	1290	Infinity	ultra-high	pressure	liquid	chromatography	system.	2	µL	aliquot	of	

the	dissolved	sample	extract	(in	50%	methanol,	correspond	to	20	µl	extracted	sample)	

was	injected	onto	a	2.1	x	100	mm,	1.7	µm	Kinetex	C18	ultra-high	pressure	liquid	

chromatography	column	(Phenomenex	Inc,	CA,	USA)	held	at	40	°C.	The	column	was	

eluted	with	a	series	of	linear	gradients:	1-20%	B	over	0-4	min,	20-40%	B	over	4-6	min,	

40-95%	B	over	6-9	min,	where	A	was	0.1%	formic	acid	in	water	and	B	was	

acetonitrile:isopropanol	(72:25	v/v)	with	0.1%	formic	acid,	flow	rate	500	µl/min.	Then	

the	mobile	phase	was	held	at	95%	B	for	4.5	min,	returned	to	1%	B	at	14.50	min	and	kept	

at	1%	B	for	a	further	4.5	min	before	the	next	injection.	The	ultra-high	pressure	liquid	

chromatography	was	coupled	to	an	Agilent	G6540	quadrupole-time	of	flight	tandem	MS	

(Agilent	Technologies,	Santa	Clara,	CA,	USA)	equipped	with	a	Dual	Jet	Stream	ESI	source,	

operating	with	4.0kV	capillary	voltage	in	both	positive	and	negative	ion	modes	(sheath	

gas	temperature	350	°C,	sheath	gas	flow	rate	11	L/min,	drying	gas	temperature	300	°C,	

drying	gas	flow	rate	8L/min	and	nebulizer	pressure	40	psi	in	positive	mode	and	0	psi	in	

negative	mode).	The	fragmenter	voltage	was	100	V.	All	mass	spectral	data	were	acquired	

in	centroid	mode,	70-1700	m/z	at	a	rate	of	4	spectra/s.	For	internal	calibration	a	

reference	solution	of	purine	and	HP-0921	was	infused	to	the	MS	(positive	ion	mode:	m/z	

121.0509	and	922.0098;	negative	ion	mode:	m/z	119.0363	and	966.0007).	Nine	quality	

control	samples	were	distributed	along	the	runorder	during	each	analysis.	The	run	

orders	were	randomized	using	constrained	randomization15.	Peaks	were	extracted	using	

the	MassHunter	Qualitative	Analysis	B.05.00	software	(Agilent	Technologies,	Santa	

Clara,	CA,	USA),	by	the	Find	Compound	by	Molecular	Feature	(MFE)	algorithm.	To	get	a	

collective	peak	list	from	all	samples,	the	sample-individual	peak	lists	were	imported	into	

Mass	Profiler	Professional	B.02.00	program	(Agilent	Technologies)	and	sorted	(i.e.	peaks	

present	in	<3%	of	samples	were	removed	and	obvious	background	peaks	were	

excluded).	All	peak	areas	were	reintegrated	in	MassHunter	Qualitative	Analysis.		

Targeted LC/MS of amino acids	

For	targeted	amino	acid	analysis,	amino	acids	were	labelled	with	tags	for	detection	

(AccQ•Tag™,	Waters,	MA,	USA)	as	specified	in	the	manufacturer’s	instructions	and	

norvaline	(a	non-endogenous	amino	acid)	was	used	as	a	standard	reference.	A	reference	
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mixture	of	29	amino	acids	was	analyzed	to	allow	targeted	detection	of	amino	acids.	

Quality	control	samples	were	distributed	along	the	run	order	(7	quality	control	samples	

were	measured	for	CSF	and	3	quality	control	samples	were	measured	for	plasma).	The	

analysis	was	performed	using	a	Waters	Acquity	UPLC	system	coupled	to	a	Micromass	

LCT	Premier	mass	spectrometer	(Waters,	Millford,	MA,	USA)	operated	in	W-mode	to	

detect	the	pre-tagged	amino	acids.	The	run	orders	were	randomized	using	constrained	

randomization15.			

Identification and quality filtration of metabolite peaks 

Metabolites	detected	by	GC/MS	were	identified	by	means	of	chromatographic	retention	

indices	and	comparison	of	the	resolved	mass	spectra	against		the	Umeå	Plant	Science	

Centre	mass	spectra	library,	public	available	mass	spectra	libraries	(NIST	98	mass	

spectra	library)	and	the	mass	spectra	library	hosted	by	the	Max	Planck	Institute	in	Golm	

(http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html)	or	de novo	identification	via	

mass	spectrum	interpretation.		

For	metabolite	peaks	detected	by	LC/MS	metabolite	features	were	identified	by	exact	

mass	determination	and	LC/MSMS	spectra	to	the	extent	it	was	possible	using	open	

source	libraries	or	databases	(Metlin)	or	in-house	standard	databases	at	the	Swedish	

Metabolomics	Centre.	Some	non-identified	peaks	were	classified,	(i.e.	phosphatidyl	

choline,	lyso-phosphatidyl	choline)	and	it	should	be	noted	that	some	of	the	peaks	

corresponded	to	compounds	that	are	too	hydrophobic	for	optimal	measurements	using	

this	type	of	extraction.	Tripeptides	were	classified	and	the	amino	acids	in	the	tripeptides	

are	listed;	note,	however,	that	the	order	of	amino	acids	is	not	established.	Unknowns	

were	denoted	by	retention	time,	retention	index	and/or	m/z. 	An	in-house	script	was	

used	for	determination	of	peak	area	and	identity	of	the	targeted	amino	acids.	The	

identity	was	assigned	based	on	the	measured	standards	and	mass	spectra	comparisons.	

To	assess	variability	from	extraction	and	analysis	we	calculated	percentage	relative	

standard	deviation	(%RSD)	on	the	quality	control	samples.	%RSD	was	used	to	

determine	by	which	analysis	the	metabolite	was	detected	most	robustly.	The	analysis	

generating	the	lowest	%RSD	for	a	metabolite,	or	the	analysis	providing	the	most	certain	

identification	of	the	metabolite,	was	used	for	data	analysis.	Peaks	were	discarded	before	

data	analysis	if	%RSD>40	or	if	poor	analytical	quality	was	detected	manually	(i.e.	a	high	

rate	of	missing	values	were	found	amongst	the	control,	ALS	and	PD	samples).	Some	

amino	acids	measured	by	the	untargeted	methods	showed	low	%RSD	due	to	robust	

measurements	as	compared	to	the	targeted	LC/MS	amino	acid	analysis	and	were	hence	

used	instead.	The	exception	in	CSF	was	glutamic	acid	(better	measured	with	LC/MS	

ESI−)	and	exceptions	in	plasma	were	asparagine	(LC/MS	ESI−),	glutamine	(LC/MS	ESI−),	

leucine	(GC/MS),	proline	(GC/MS),	threonine	(GC/MS),	tryptophan	(GC/MS),	tyrosine	

(LC/MS	ESI+)	and	valine	(GC/MS).		

Data analysis  

Metabolomics	data	from	the	individual	platforms	were	overviewed	using	principal	
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component	analysis21	for	visualization	of	variation	in	multiple	variables.	Before	

principal	component	analysis	the	data	was	mean	centered	and	scaled	to	unit	variance.	

Drift	and	possible	outliers	detected	by	the	principal	component	analysis	were	

investigated	by	inspection	of	internal	standards	and	quality	control	samples.	Data	from	

the	different	platforms	were	combined	for	the	subsequent	analysis.	A	combination	of	

identified	and	non-identified	metabolites	were	evaluated	for	the	discrimination	between	

ALS,	PD	and	controls.		

Orthogonal	partial	least	squares	projections	to	latent	structures	(OPLS)22	and	OPLS-

discriminant	analysis	(DA)23	were	used	to	consider	variable	correlations	in	the	

modelling	of	group	mean	differences	between	sample	classes	(ALS,	PD	and	controls).	

The	R2Y	value	represents	the	modeled	class	discrimination,	ranging	from	0	(no	

discrimination)	to	1	(perfect	discrimination).	The	Q2	represents	the	predicted	class	

discrimination	ranging	from	−∞	to	1.		

Since	previous	studies	have	demonstrated	effects	of	sex,	age	of	patient,	age	of	sample	

and	analytical	drift	on	acquired	metabolite	profiles18,	24-25,	this	study	was	designed	to	

minimize	these	factors	by	defining	a	collection	of	rigorously	matched	sets	of	ALS,	PD	and	

controls.	Table	S1	shows	the	22	groups	of	patients	exhibiting	very	low	mean	standard	

errors	in	age	of	patient	(0.8	years)	and	age	of	sample	(2.1	months).	To	capitalize	on	the	

novel	study	design	with	rigorously	matched	patients	and	controls,	a	novel	multivariate	

analysis	method	−orthogonal	projection	to	latent	structures-effect	projections	(OPLS-

EP)15	was	used.	OPLS-EP	models	of	the	effect	changes	(e.g.	disease-control)	were	used	to	

investigate	common	variable	pattern	(metabolite	signature)	for	each	matched	pair	and	

to	compare	the	magnitude	of	change	between	the	matched	pairs.	This	can	be	regarded	

as	a	multivariate	“paired”	statistical	test	in	latent	variables.	For	each	matched	pair,	a	

predicted	response	(Ypred)	is	calculated	(the	target	value	is	1)	by	OPLS-EP.	If	all	pairs	

yield	Ypred=1,	the	differences	between	the	two	classes	is	consistent	amongst	the	pairs;	

deviations	from	1	indicate	inconsistency,	where	a	value	>1	indicates	a	positive	

difference	(the	pair	is	less	similar)	and	value	<1	indicates	a	negative	difference	(the	pair	

is	more	similar).	Wilcoxon’s	test	was	used	to	assess	the	univariate	significance	of	each	

variable	(metabolite)	focusing	between	matched	subjects.	Significance	level	of	the	test	

was	set	to	95%	(from	here	stated	as	‘significant	according	to	univariate	test’).		

First	all	variables	were	used	in	the	OPLS-DA	or	the	OPLS-EP	model.		ALS	and	PD	were	

modelled	versus	matched	controls	and	versus	each	other.	Seven	fold	cross-validation	

was	used	to	estimate	the	quality	of	the	model	and	to	establish	a	confidence	interval	

around	the	model	weights.	For	the	six	pairs	assigned	two	matched	controls,	each	control	

was	used	independently;	and	to	avoid	over-estimation	of	the	model	performance	they	

were	kept	in	the	same	cross-validation	group.	Metabolites	were	considered	significant	in	

a	model	when	the	Jack-knife	confidence	interval	(95%)	of	the	weight,	computed	from	all	

rounds	of	cross	validation,	did	not	include	the	value	zero.	New	models	based	on	

significant	variables	were	calculated.	R2Y,	Q2	for	all	models	can	be	found	in	Table	S2.	

Disease	profiles	for	each	matched	pair,	compared	to	the	mean	metabolite	disease	profile	
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calculated	from	all	22	pairs	was	predicted	in	the	cross-validated	model.	Individual	

predicted	values	(Ypredcv)	correspond	to	the	predicted	metabolite	disease	profile	of	a	

patient	compared	to	the	matched	control.	The	value	reflects	the	similarity	to	the	models	

estimated	mean	metabolite	disease	profile.		

Results 

General performance of the mass spectrometry methods 

We	performed	four	different	analytical	experiments	on	both	CSF	and	plasma	for	a	total	

of	eight	distinct	measurements	listed	in	Table	1.	In	CSF,	by	combining	all	analytical	

platforms,	600	peaks	were	measured	across	the	patient	samples.	Among	the	600	peaks,	

144	unique	metabolites	were	identified	(metabolites	identified	on	multiple	platforms	

were	counted	once).	The	mean	%RSD	for	the	CSF	metabolites	was	15.6%.	In	plasma,	

1233	potential	metabolites	were	detected	in	total,	of	which,	188	unique	metabolites	

were	identified.	The	mean	%RSD	for	the	plasma	metabolites	was	18.9%.	As	expected,	

amino	acids	measured	by	the	targeted	amino	acid	method	showed	low	%RSD	as	

compared	to	the	untargeted	GC/MS	and	LC/MS	screening;	however	exceptions	were	

found	of	amino	acids	(listed	in	methods)	that	were	more	robustly	measured	by	the	

untargeted	analysis.	The	highest	percentage	of	identified	compounds	compared	to	

resolved	peaks,	were	detected	using	GC/MS,	due	to	more	complete	spectral	databases	

for	identification	of	metabolites.	LC/MS	ESI−	detected	the	greatest	number	of	identified	

metabolites	in	plasma,	while	the	platform	that	resolved	the	most	peaks	in	plasma	

counting	non-identified	peaks	was	LC/MS	ESI+.	 

Multivariate analysis accounting for individual sample matching 

OPLS-EP	models	used	for	targeting	effects	of	variables	(metabolites)	between	pairs	were	

compared	to	the	corresponding	OPLS-DA	models.	The	OPLS-EP	models	exhibited	

significant	improvements	in	predictive	ability	(Table	S2)	compared	to	the	corresponding	

OPLS-DA.	As	an	example,	the	R2Y	value	for	the	OPLS-DA	model	separating	between	ALS	

and	controls	in	CSF	was	0.57	compared	to	0.96	for	the	corresponding	OPLS-EP.	

Similarly,	the	Q2	value	for	the	OPLS-DA	model	separating	between	ALS	and	controls	in	

CSF	was	−0.05	compared	to	0.22	for	OPLS-EP.	By	predicting	values	for	CSF	versus	

plasma	for	ALS	or	PD	versus	matched	controls	a	patient	overview	could	be	plotted	

(Figure	1).	Neither	CSF,	nor	plasma	models	or	the	combination	were	able	to	completely	

distinguish	all	ALS	patients	from	matched	controls	nor	all	PD	from	matched	controls.	

The	visualization	allows	interpretation	of	distribution	of	predictions	amongst	the	

individual	matched	pairs,	such	that	values	close	to	1	corresponds	to	the	mean	disease	

profile	and	patients	with	values	higher	than	1	drives	the	model	while	patients	with	

values	below	1	shows	less	conformation	with	the	model.		

Metabolites differentiating ALS patients from matched controls 

OPLS-EP	models	were	calculated	using	both	identified	and	unidentified	metabolites,	

however	only	identified	metabolites	are	listed	in	the	summarized	metabolite	profiles	

(Figure	2).	Model	weights	(w[1])	are	shown	for	significant	metabolites	according	to	the	
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OPLS-EP	model	and	the	univariate	test,	between	ALS	and	matched	controls	in	CSF	

(Figure	2A;	analysis	method,	%RSD	and	HMDB	numbers	for	the	metabolites	are	listed	in	

Table	S3).	CSF	metabolites	that	most	positively	correlated	with	the	metabolite	profile	of	

ALS	(i.e.	interpreted	as	increased	in	ALS	compared	to	the	matched	controls)	were	β-D-

methylglucopyranoside	(fold=1.33;	p=0.003),	carnitine	(fold=1.25;	p=0.001),	

decenedioic	acid	(fold=1.20;	p=0.001),	creatine	(fold=1.15;	p=0.001),	α-hydroxy	butyric	

acid	(fold=1.27;	p=9.04	*10−5),	ketoleucine	(fold=1.16;	p=0.015)	and	glucose	(fold=1.10;	

p=0.015).	CSF	metabolites	that	most	negatively	correlated	to	the	metabolite	profile	of	

ALS	(i.e.	interpreted	as	decreased	in	ALS	compared	to	the	matched	controls)	included	

uracil	(fold=0.82;	p=0.003),	ribitol	(fold=0.85;	p=0.05),	succinyladenosine	(fold=0.83;	

p=0.015),	creatinine	(fold=0.91;	p=0.03),	arabitol	(fold=0.85;	p=0.05),	xylitol	(fold=0.85;	

p=0.05),	acetylalanine	(fold=0.88;	p=0.015),	xylose	(fold=0.87;	p=0.001)	and	pentonic	

acid-1,4-lactone	(fold=0.87;	p=0.015).	Creatinine	was	lower	in	17/28	ALS	cases	

compared	to	the	matched	controls	in	CSF	(13/28	in	plasma)	and	creatine	was	higher	in	

20/28	ALS	cases	compared	to	matched	controls.	Creatinine	is	a	product	of	creatine,	we	

therefore	compared	the	two	by	plotting	creatinine	towards	creatine	in	CSF.	The	two	

metabolites	could	not	distinguish	ALS	from	controls,	however	a	shift	towards	more	

creatine	and	less	creatinine	was	apparent	in	the	ALS	patient	group	(plots	can	be	found	in	

Figure	S1).					

			Many	plasma	metabolites	positively	correlated	to	the	metabolite	profile	of	ALS	and	

were	significant	according	to	the	univariate	test.	The	top	five	positively	correlated	

metabolites	were	indole,	tryptophan,	oxoquinoline,	adenosine	monophosphate	(AMP)	

and	proline	(Figure	2B;	analysis	method,	%RSD	and	HMDB	numbers	for	the	metabolites	

are	listed	in	Table	S4).	The	five	metabolites	in	plasma	most	negatively	correlated	to	the	

metabolite	profile	of	ALS	were	ribonic	acid,	prostaglandin	A2	(PGA2),	homovanillic	acid,	

hypoxanthine	and	cysteamine	(Figure	2B;	analysis	method,	%RSD	and	HMDB	numbers	

for	the	metabolites	are	listed	in	Table	S4).		

Metabolites differentiating PD patients from matched controls 

CSF	metabolites	most	correlated	in	the	OPLS-EP	to	the	PD	metabolite	profile	and	

significant	according	to	the	univariate	test,	were	alanine	(fold=1.20;	p=0.001),	sorbitol	

(fold=1.43;	p=0.007),	pyroglutamic	acid	(fold=1.10;	p=0.02),	galactitol	(fold=1.26;	

p=0.003),	mannitol	(fold=1.32;	p=0.015),	threonine	(fold=1.18;	p=0.01),	saccharic	acid-

1,4-lactone	(fold=1.20;	p=0.003),	isoleucine	(fold=1.24	;	p=0.003),	ketoleucine	

(fold=1.15;	p=0.003),	benzoic	acid	(fold=1.14	;	p=0.015),	glutamine	(fold=1.07;	p=0.05),	

ornithine	(fold=1.19;	p=0.024),	glycerol-3-phosphate	(fold=1.36;	p=0.05),	histidine	

(fold=1.15;	p=0.006),	octadecanol	(fold=1.08;	p=0.015)	sorbose	(fold=1.14;	

p=0.05)(Figure	3A;	analysis	method,	%RSD	and	HMDB	numbers	for	the	metabolites	are	

listed	in	Table	S5).	

	The	metabolite	in	CSF	contributing	with	negative	correlation	in	the	OPLS-EP	to	the	PD	

metabolite	profile	was	tetracosanoic	acid	(fold=0.97;	p=0.015)	(Figure	3A;	analysis	

method,	%RSD	and	HMDB	numbers	for	the	metabolites	are	listed	in	Table	S5).	The	top	

five	plasma	metabolites	that	were	positively	correlated	in	the	OPLS-EP	to	the	metabolite	
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profile	of	PD	and	significant	according	to	the	univariate	test	were	a	tripeptide	

(LysHisMet),	maltotriose,	aconitic	acid,	urate	and	cysteine	(Figure	3B;	analysis	method,	

%RSD	and	HMDB	numbers	for	the	metabolites	are	listed	in	Table	S6).	The	top	five	

metabolites	in	plasma	that	were	negatively	correlated	in	the	OPLS-EP	with	the	

metabolite	profile	of	PD	included	phosphatidylcholine	(36:4),	arabinose,	oxalate,	

pyruvate,	and	fumarate	(Figure	3B;	analysis	method,	%RSD	and	HMDB	numbers	for	the	

metabolites	are	listed	in	Table	S6).		

Metabolites differentiating ALS from matched PD 

OPLS-EP	models	of	CSF	(Figure	4A;	analysis	method,	%RSD	and	HMDB	numbers	for	the	

metabolites	are	listed	in	Table	S7)	and	plasma	(Figure	4B;	analysis	method,	%RSD	and	

HMDB	numbers	for	the	metabolites	are	listed	in	Table	S8)	between	matched	ALS	and	PD	

revealed	6	identified	CSF	metabolites	that	were	significantly	different	between	the	two	

diseases	and	12	identified	metabolites	significantly	different	in	plasma.	In	CSF,	the	6	

metabolites	found	to	be	significantly	altered	between	ALS	and	PD	according	to	the	

univariate	test	include	increased	α-hydroxy	butyric	acid	(fold=1.51;	p=0.02)	and	β-

hydroxy	butyric	acid	(fold=1.28;	p=0.05),	carnitine	(fold=1.18;	p=0.04)	and	decreased	

ammonia	(fold=0.92;	p=0.05),	inosine	(fold=0.88;	p=0.03)	and	uracil	(fold=0.85;	

p=0.01).	In	plasma,	the	12	metabolites	found	to	be	significantly	altered	between	ALS	and	

PD	according	to	the	univariate	test	include	increased	carnitine,	α-hydroxy	butyrate,	

lactate,	O-phosphoethanol	and	xanthine.	Conversely,	dihydroxybenzoate,	hippurate,	

taurine,	hypoxanthine,	erythronic	acid,	adenine,	lyso-phosphatidylcholine	(14:0)	and	

pregnelone	sulphate	were	found	decreased	in	ALS	versus	matched	PD	or	increased	in	PD	

versus	matched	ALS	in	plasma.		

‘Unique’ metabolite perturbations between matched ALS, PD and controls 

In	addition	to	those	separating	ALS	from	matched	controls	and	PD	from	matched	

controls,	metabolites	that	further	discriminated	between	ALS	and	PD	were	of	particular	

interest	as	candidate	diagnostic	markers.	Metabolites	significantly	different	in	CSF	and	

plasma	between	matched	ALS	and	PD	were	compared	to	the	metabolites	found	

significant	between	ALS	and	matched	controls	or	PD	and	matched	controls.	α-hydroxy	

butyric	acid,	carnitine	and	uracil	were	significant	metabolites	between	ALS	and	matched	

control	and	ALS	and	matched	PD	in	CSF	(Table	2).	No	metabolite	was	found	significantly	

altered	both	between	PD	and	matched	control	and	PD	and	matched	ALS	in	CSF.	

Hypoxanthine	was	the	only	univariate	significant	metabolite	between	ALS	and	matched	

control	and	ALS	and	matched	PD	in	plasma	(Table	2).	No	metabolite	was	found	

significantly	altered	both	between	PD	and	matched	control	and	PD	and	matched	ALS	in	

plasma.		

‘Shared’ perturbations in CSF and plasma of ALS and PD patients  

Metabolites	non-significantly	different	in	CSF	and	plasma	between	matched	ALS	and	PD	

were	compared	to	the	metabolites	found	significant	between	ALS	and	matched	controls	

and	PD	and	matched	controls.	Shared	perturbations	between	ALS	and	PD	were,	

galactitol,	saccharic	acid-1,4-lactone,	isoleucine,	ketoleucine,	ornithine,	and	sorbitol	
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significantly	increased	in	CSF	of	both	ALS	and	PD	patients,	compared	to	the	matched	

controls		(Table	3).	In	plasma,	indole	and	proline	were	found	to	be	significantly	

increased	in	both	ALS	and	PD	compared	to	matched	controls	(Table	3). 

Discussion  

Metabolites	can	be	changed	by	a	large	set	of	factors,	such	as	disease,	sex,	age	and	
nutrition.	This	reflects	the	high	responsiveness	in	the	metabolome	that	makes	
metabolomics	data	highly	informative	of	state	and	change.	Today	many	studies	strive	to	
enhance	the	theoretical	statistical	power	by	increasing	the	number	of	samples,	however,	
biased	factors	cannot	be	managed	by	simply	expanding	the	size	of	cohorts.	Changes	in	
non-disease	related	metabolic	patterns,	such	as	age	of	patient	or	sample	can	mask	
molecular	changes	caused	by	a	disease.	In	this	study	we	attempted	to	eliminate	some	of	
these	potential	confounders. Using	a	rigorous	experimental	design	we	were	able	to	
detect	significant	alterations	of	previously	reported	candidate	metabolite	biomarkers	
but	also	elucidate	new	potential	metabolites	in	CSF	and	plasma	that	may	be	used	in	
panels	of	candidate	markers	for	ALS	and	PD	or	for	understanding	of	molecular	
pathology	of	neurodegenerative	processes.	
			While	the	potential	of	metabolite	biomarkers	that	could	diffuse	out	of	compromised	
cells	and	signal	neurodegeneration	through	disease	specific	signatures	in	CSF	or	plasma	
is	very	exciting,	different	metabolomics	studies	have	identified	a	generally	non-
overlapping	list	of	candidates.	Hence,	we	start	by	focusing	our	discussion	on	candidate	
metabolites,	and	associated	biochemical	pathways,	that	have	been	detected	as	
significantly	altered	in	previously	published	studies.	
			Alzheimer’s	disease	has	been	termed	type	3	diabetes26	and	there	is	increasing	evidence	
of	metabolic	overlap	between	type	2	diabetes	and	neurodegenerative	diseases.	
Perturbations	in	glucose	metabolism	have	been	reported	in	several	neurodegenerative	
disorders	including	ALS,	PD,	and	dementia.27-29.	Type	2	diabetes	patients	are	more	likely	
to	develop	PD	and	PD	patients	with	glucose	dysregulation	are	more	likely	to	develop	
dementia30.	Recently,	exenatide,	a	diabetes	medication,	has	shown	promising	results	in	a	
clinical	trial	measuring	disease	progression	in	PD31.	ALS	has	been	reported	associated	
with	hypermetabolism32-34	and	energy	utilization	was	recently	shown	to	be	altered	in	
ALS35.	
			In	this	study,	ALS	patients	showed	increased	levels	of	glucose	in	CSF.	We	have	further	
detected	an	increase	in	CSF	of	hexose	alcohols	including	sorbitol	and	galactitol	in	ALS,	
and	sorbitol,	galactitol	and	mannitol	in	PD.	Together,	this	suggests	that	excess	glucose	
beyond	the	capacity	of	glycolysis	may	be	converted	to	sorbitol.	The	fact	that	α-hydroxy	
butyric	acid	was	important	in	separating	ALS	from	PD	in	the	multivariate	modelling	of	
both	CSF	and	plasma	suggest	that	the	ALS	pathology	could	exhibit	similarity	to	the	pre-
diabetic	insulin	phenotype	suggestive	of	this	biomarker36.	The	polyol	pathway	(or	the	
sorbitol-aldose	reductase	pathway)	has	been	suggested	to	be	involved	in	diabetic	
neuropathy37	and	has	been	reported	to	be	increased	in	CSF	of	patients	with	Alzheimer’s	
disease38.	In	this	study	we	detected	a	decrease	in	CSF	xylose	in	ALS	and	in	a	previous	
study	a	decrease	in	CSF	xylose	and	xylitol	in	PD	patients39.	The	three	pentols	ribitol,	
arabitol	and	xylitol	were	found	reduced	in	CSF	of	patients	with	ALS,	which	may	further	
indicate	an	alteration	in	pentose	metabolism.	In	general,	in	CSF	of	ALS	patients	we	
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detected	a	striking	decrease	in	CSF	levels	of	pentose	related	alcohols,	and	conversely	an	
increase	in	hexoses	and	hexols.	The	alteration	of	glucose	homeostasis	in	
neurodegenerative	diseases	may	effect	shunting	of	hexoses	through	the	pentose	
phosphate	pathway,	a	major	route	for	conversion	of	hexoses	to	pentoses	and	a	critical	
pathway	for	production	of	reducing	equivalents	in	the	form	of	NADPH.	We	previously	
detected	an	increase	in	pyroglutamate	(5-oxoproline)	in	a	case	control	study	of	PD	
patients39	and	in	this	study	pyroglutamate	was	found	increased	in	CSF	of	PD	patients.	As	
pyroglutamate	is	an	intermediate	in	the	generation	of	NADPH	from	glutathione,	this	may	
indicate	changes	in	this	critical	pathway	in	PD.	However,	we	instead	detected	increased	
levels	of	the	glutathione	pathway	degradation	product	α-hydroxy	butyric	acid,	in	CSF	of	
ALS	patients	compared	to	controls	and	PD;	potentially	indicating	increased	activity	of	
the	glutathione	pathway.	α-hydroxy	butyric	acid	was	further	increased	in	plasma	of	ALS	
patients	and	has	also	been	reported	increased	in	plasma	of	ALS	patients	in	a	previous	
metabolomics	study	of	two	different	sets	of	patients40.	α-hydroxy	butyric	acid,	BCAAs	
and	aromatic	amino	acids	have	been	suggested	as	possible	early	plasma	markers	for	
insulin	resistance	36,41.	We	have	detected	a	reduction	in	the	levels	of	the	pyrimidine	
nucleotide	base	uracil	in	CSF	and	the	purine	nucleotide	base	hypoxanthine	in	plasma	
from	patients	with	ALS;	and	we	detect	a	decrease	of	the	ribonucleic	acid	(RNA)	
precursor	inosine	in	CSF	of	ALS	patients	compared	to	PD.	Combined	with	the	significant	
decrease	in	pentose	derivatives	in	CSF	of	ALS,	this	suggests	a	general	deficit	in	RNA	
synthesis	(for	a	schematic	overview	see	Figure	5). This	is	particularly	interesting	
considering	the	identification	of	mutations	in	RNA-housekeeping	genes	(TARDBP,	
FUS/TLS,	TAF15,	ANG)	as	a	cause	of	ALS.	The	combination	of	RNA	metabolism	deficits	
described	here	may	create	a	background	on	which	variants	in	RNA	processing	genes	
may	have	a	dramatic	impact.	In	this	study	we	have	also	detected	a	significant	decrease	in	
the	CSF	levels	of	succinyladenosine	in	patients	with	ALS.	This	compound	is	the	
dephosphorylated	form	of	an	intermediate	(adenosylsuccinate)	in	the	adenosine	
biosynthesis	pathway	generated	from	inosine-monophosphate	by	the	adenylosuccinate	
synthetase	(ADSS)	enzymes.	Recently,	whole	exosome	sequencing	has	detected	
mutations	in	a	muscle	specific	ADSS	(ADSSL1)	in	adolescent	onset	distal	myopathy42.	In	
another	recent	report,	adenylosuccinate	has	been	shown	to	be	an	insulin	secretagogue	
for	pancreatic	beta-islet	cells−inducing	the	secretion	of	insulin	following	glucose	
stimulation43.	Taken	together,	our	results	suggest	that	reduced	levels	of	a	purine	
metabolite	in	CSF	is	a	candidate	mechanism	for	altered	energy	usage	in	ALS.	Further	
examples	of	altered	energy	usage	is	seen	in	the	decreased	levels	of	the	ketone	body	β-
hydroxybutyrate	in	PD	compared	to	ALS.	
			We	have	previously	reported	decreased	creatinine	in	a	distinct	set	of	CSF	samples24	
and	increased	plasma	creatine	and	decreased	creatinine	have	been	reported	in	
metabolomics	studies	of	other	patient	groups	as	well40.	Here	we	reproduced	the	results	
and	detected	significantly	increased	levels	of	creatine	and	decreased	levels	of	creatinine	
in	CSF	from	patients	with	ALS.	As	ALS	is	a	muscle	wasting	disease,	increases	in	plasma	of	
breakdown	products	from	muscle	such	as	amino	acids	and	residual	creatinine	are	
anticipated,	but	the	decrease	in	creatinine	in	CSF	suggests	an	altered	metabolism	of	
creatine	in	the	brain.	A	much	larger	proportion	of	cellular	creatinine	is	produced	from	
the	non-enzymatic	degradation	of	phosphocreatine	than	from	creatine,	suggesting	that	
increases	in	creatine	and	decreases	of	creatinine	in	CSF	may	be	surrogate	markers	for	
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reduced	levels	of	central	nervous	system	phosphocreatine.	This	deficit	could	be	caused	
by	an	alteration	in	the	function	of	the	enzyme	creatine	kinase,	levels	of	the	creatine	
transporter	or	reduced	availability	of	adenosine	triphosphate.	As	phosphocreatine	is	
critical	for	mitochondrial	shuttling	of	adenosine	triphosphate,	such	a	deficit	would	
drastically	compromise	ability	of	neurons	to	meet	high	energy	demands.	It	is	interesting	
to	note	that	we	detected	an	increase	in	plasma	AMP	in	ALS.	Since	the	use	of	creatine	as	
an	ALS	medication	has	been	extensively	studied	and	failed	in	clinical	trials44,	our	
analysis	of	creatine	and	creatinine	in	CSF	suggest	that	therapeutically	increasing	
creatine	kinase	activity	may	be	a	more	effective	strategy.	
			Recent	metabolomics	analysis	of	CSF	revealed	that	metabolite	derivatives	of	branched	
chain	amino	acids	are	important	for	separating	ALS	from	healthy	control	samples45.	In	
this	study,	we	detected	a	pattern	of	BCAAs	and	their	metabolites	increased	in	CSF	of	
both	ALS	and	PD.	We	specifically	detected	increased	levels	of	isoleucine	and	ketoleucine	
in	CSF	of	patients	with	ALS	and	PD.	BCAAs	are	critical	for	brain	energy	metabolism,	
regulation	of	protein	degradation	as	well	as	maintenance	of	glutamate	homeostasis.	Up	
to	50%	of	all	α-amino	groups	of	glutamate	and	glutamine	are	derived	from	leucine	46.	
Leucine	enters	the	brain	from	the	blood	more	rapidly	than	any	other	amino	acid	through	
the	neutral	amino	acid	transporter	on	astrocytes.	BCAAs	are	metabolized	in	astrocytes	
into	their	cognate	ketoacids,	released	and	subsequently	taken	up	by	neurons.	This	
serves	as	an	important	mechanism	for	neurons	to	buffer	glutamate	levels	by	converting	
ketoleucine	back	to	leucine,	consuming	glutamate	in	the	process.	Our	results	suggest	
that	disruption	of	BCAA	homeostasis	may	have	effects	on	neuronal	solute	transport	and	
excitatory	neurotransmitter	function.	Leucine	is	further	a	key	amino	acid	regulator	of	
the	mechanistic	target	of	rapamycin	(mTOR)	complex	1	(mTORC1)	−the	critical	
mediator	of	protein	synthesis	and	degradation47.	When	leucine	is	plentiful	mTORC1	is	
active	and	promotes	protein	translation	and	suppresses	autophagy48.	And	as	such,	
leucine	levels	function	as	a	critical	regulator	of	autophagy.	Our	results	suggest	that	
further	analysis	of	BCAA	metabolism	in	neurodegenerative	diseases	is	warranted,	and	in	
particular	investigation	of	the	role	of	leucine	metabolites	in	modification	of	mTORC1	
induction	of	autophagy.	We	further	found	increased	saccarhic	acid	1,4	lactone	in	CSF	of	
both	ALS	and	PD	may	that	may	indicate	a	disruption	in	lysosomal	processing	in	both	
diseases	since	it	is	known	to	inhibit	the	lysosomal	beta-glucuronidase.	
			We	detected	increased	tryptophan,	formylkynurenine	and	indole	in	plasma	of	ALS	
patients	compared	to	controls.	Various	metabolites	of	the	kynurenine	pathway	have	
been	suggested	to	be	involved	in	numerous	neurodegenerative	diseases	such	as	
Alzheimer's	disease,	Huntington's	disease,	PD49	and	ALS50.	Increased	concentrations	of	
3-hydroxykynurenine	have	been	detected	in	post-mortem	putamen	and	substantia	nigra	
of	PD,	suggesting	a	defect	in	the	kynurenine	pathway	and	production	of	reduced	
nicotinamide	adenine	dinucleotide	(NADH)51.	It	was	recently	reported	that	up	
regulation	of	this	pathway	is	one	of	the	mechanisms	mediating	insulin	resistance52.	An	
observation	from	this	study	was	that	a	combination	of	metabolites	from	the	pathway	
was	necessary	to	separate	patients	from	controls.	This	may	reflect	that	different	patients	
with	a	similar	disease	have	different	metabolites	perturbed	in	the	same	pathway,	
reflecting	individual	response	to	pathology.	The	decreased	CSF	levels	of	aminoadipic	
acid	that	we	detect	may	indicate	a	decreased	activity	of	the	upstream	enzyme	
aminoadipate	aminotransferase,	which	also	catalyzes	the	conversion	of	kynurenine	to	
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kynurenic	acid53.	This	is	supported	by	our	measurements	of	increases	in	the	metabolites	
upstream	of	this	enzyme	in	plasma,	tryptophan	and	formylkynurenine;	and	reductions	
of	this	enzyme	would	shift	this	pathway	towards	the	excitotoxic	metabolite	3-
hydroxykynurenine.	Aminoadipic	acid	has	previously	been	identified	in	an	analysis	from	
the	longitudinal	Framingham	Heart	Study	as	the	single	metabolite	most	significantly	
correlated	to	an	increased	risk	for	developing	diabetes54,	which	indicates	an	additional	
overlap	between	diabetes	risk	and	neurodegenerative	disease	metabolic	profiles.	
			In	plasma	from	patients	with	ALS	we	also	detected	a	significant	decrease	in	
asymmetric	dimethylarginine	(ADMA).	An	earlier	report	also	detected	reduced	plasma	
concentration	of	ADMA	in	patients	with	ALS55.	ADMA	functions	as	an	endogenous	
regulator	of	nitric	oxide	synthase56	and	consequently	is	involved	in	the	synthesis	of	
nitric	oxide	and	the	remediation	of	oxidative	stress.		
			In	this	study	we	have	validated	several	candidate	metabolite	biomarkers	for	PD.	In	
patients	with	PD,	alanine	was	increased	in	CSF	and	plasma.	Alanine	has	previously	been	
shown	to	be	increased	in	CSF	of	PD	patients39,	57.	Alanine	increases	in	PD	CSF	may	
indicate	a	disruption	in	the	alanine/glucose	shuttle,	which	is	supported	by	alterations	in	
plasma	levels	of	α-ketoglutarate.	Increased	levels	of	ornithine	in	CSF	in	both	ALS	and	PD	
may	indicate	a	reduction	in	the	ability	of	mitochondria	to	transport	ornithine	for	
conversion	in	the	urea	cycle.	In	plasma	of	patients	with	PD,	we	detected	a	significant	
increase	in	taurine	relative	to	ALS	and	an	increase	relative	to	controls	below	significance	
threshold	by	univariate	analysis	(not	shown).	Taurine	has	previously	been	identified	as	
increased	in	PD58,	and	can	be	generated	from	cysteine	upstream	of	glutathione	
synthesis.		
			Due	to	stringent	requirements	to	reduce	age	span	of	patients	and	use	the	individually	
matched	design	to	minimize	the	effect	of	metabolome	variation	in	terms	of	sample	age	
and	gender	effects,	combined	with	the	extensive	range	of	metabolites	measured,	we	
anticipated	significant	false	discovery	rate.	Nonetheless,	we	reported	all	detected	
significant	alterations	in	metabolites	between	matched	pairs,	keeping	this	caveat	in	
mind.	To	bring	coherence	to	the	metabolomics	data	and	to	compensate	for	the	
inherently	high	false	discovery	rates,	we	emphasize	the	value	of	external	validation	
across	studies.	Metabolomics	studies	can	further	capture	exogenous	aspects	of	
phenotype	such	as	nutritional,	environmental	and	pathogen	derived	changes	that	are	
beyond	the	scope	of	genomic	or	proteomic	analysis.	Due	to	the	heterogeneous	nature	of	
neurodegenerative	diseases,	comparing	different	studies	can	be	difficult	and	outcomes	
can	be	distorted	by	sub-groups	of	patients.	Small	sample	sets	will	lack	power	to	find	
significance	of	metabolites	only	altered	in	small	subsets	of	patients	and	hence	the	false	
negative	rate	will	be	inherently	high	for	such	alterations.	A	limitation	of	this	study	is	the	
fact	that	we	did	not	include	a	group	of	healthy	control	samples	that	match	rigorously	to	
the	ALS	and	PD	samples.	Instead	we	chose	to	represents	patients	with	other	diagnoses	
and	differential	diagnoses	to	ALS	and/or	PD	that	had	visited	our	clinic	for	a	lumbar	
puncture.	Additional	studies	to	identify	subgroups	of	ALS	and	PD	are	warranted;	and	
additional	studies	designed	to	distinguish	neurodegenerative	diseases	from	distinct	
medical	conditions	with	compromised	energy	utilization	such	as	diabetes	mellitus	are	
required	to	validate	the	clinical	utility	of	many	of	the	above	metabolites	in	diagnostic	
biomarker	panels. 
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ADMA	 Asymmetric	dimethylarginine	

ALS	 Amyotrophic	lateral	sclerosis	

AMP		 Adenosine	monophosphate	

BCAA	 Branched	chain	amino	acids	

CSF	 Cerebrospinal	fluid	

DA	 Discriminant	analysis	

EP	 Effect	projections	

ESI	+/−	 Electrospray	ionization,	positive	and	negative	mode	

GC	 Gas	chromatography	

LC	 Liquid	chromatography	

MS	 Mass	spectrometry	

mTORC1		 Mechanistic	target	of	rapamycin	complex	1	

OPLS	 Orthogonal	partial	least	squares	projections	to	latent	structures	

PD		 Parkinson’s	disease	

%RSD	 Relative	standard	deviation	
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Table 1. Number of Peaks and Metabolites Detected by the Analytical Platforms.  

Analytical method Biofluid Number of 

peaks 

(%RSD*<40) 

Number of identified 

unique metabolites 

(%RSD*<40) 

 	 	 	
 	 	 	
Untargeted 	 	 	

GC/MS	 CSF	 90**	 52**	
GC/MS	 Plasma	 103	 50	

LC/MS	ESI+	 CSF	 261	 42	
LC/MS	ESI+	 Plasma	 809	 69	
LC/MS	ESI-	 CSF	 221	 31	
LC/MS	ESI-	 Plasma	 290	 104	

	 	 	 	
Targeted 	 	 	

LC/MS	AccQ•Tag™	 CSF	 28	 25	
LC/MS	AccQ•Tag™	 Plasma	 31	 27	

	 	 	 	
Total		 CSF	 600	 144	
Total	 Plasma	 1233	 188	

*	%RSD	is	based	on	quality	control	samples	measured	across	the	analytical	runs.	

**	Peaks	from	GC/MS	for	CSF	were	manually	inspected	for	quality	assessment	due	to	

missing	quality	control	samples. 

Table 2. Metabolites significant in ALS compared to matched controls and PD. The group 

showing increased metabolite level is listed. 

Metabolite Biofluid HMDB %RSD Analysis Control 

vs ALS 

Control 

vs PD 

ALS 

vs 

PD 

α-hydroxybutate	 CSF	 HMDB00008	 N/A	 GC/MS	 ALS	 n.s ALS	

Carnitine	 CSF	 HMDB00062	 5.12	 LC/MS	ESI+	 ALS	 n.s ALS	

Uracil	 CSF	 HMDB00300	 N/A	 GC/MS	 Control	 n.s PD	

Hypoxanthine	 Plasma	 HMDB00157	 13.25	 LC/MS	ESI-	 Control	 n.s PD	

	

Table 3. Metabolites significant in ALS and PD compared to matched controls. The group 

showing increased metabolite level is listed. 

Metabolite Biofluid HMDB %RSD Analysis Control 

vs ALS 

Control 

vs PD 

ALS 

vs PD 

Galactitol	 CSF	 HMDB00107	 N/A	 GC/MS	 ALS	 PD	 n.s 

Saccharic	acid	1,4-lactone	 CSF	 N/A	 N/A	 GC/MS	 ALS	 PD	 n.s 

Ketoleucine	 CSF	 HMDB00695	 8.53	 LC/MS	ESI-	 ALS	 PD	 n.s 

Ornithine	 CSF	 HMDB00214	 4.85	 LC/MS	AA	 ALS	 PD	 n.s 

Sorbitol	 CSF	 HMDB00247	 N/A	 GC/MS	 ALS	 PD	 n.s 

Isoleucine	 CSF	 HMDB00172	 4.19	 LC/MS	AA	 ALS	 PD	 n.s 

Indole	 Plasma	 HMDB00738	 16.08	 LC/MS	ESI+	 ALS	 PD	 n.s 

Proline	 Plasma	 HMDB00162	 7.03	 GC/MS	 ALS	 PD	 n.s 
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Figure legends  

Figure 1.	Response of matched pairs in optimized OPLS-EP models.	Patients	depicted	as	

grey	dots	are	labeled	with	the	match	number	(listed	in	Table	S1).	Correlation	of	individual	

patients	predicted	profiles	to	the	optimized	OPLS-EP	cross-validated	models	(Ypredcv)	were	

plotted	for	CSF	metabolites	(x-axis)	versus	the	predicted	profiles	using	plasma	metabolites	(y-

axis).	A)	Model	of	ALS	versus	matched	control.	B)	Model	of	PD	versus	matched	control.	Y	

predicted=1	equals	the	model	prediction	of	the	disease,	values	greater	than	1	represent	a	higher	

correlation	to	the	disease	profile	in	the	OPLS-EP	models	and	below	one	represent	a	lower	

correlation	to	the	disease	profile.	Y	predicted	<0.5	indicates	a	patient	that	was	not	predicted	to	

the	disease	group	by	the	model.	Y	predicted	<0	indicates	a	patient	that	was	predicted	similar	to	

the	matched	control	or	opposite	to	the	disease	profile	of	the	model. 

Figure 2.	Metabolites significantly driving separation of ALS from matched controls in 

OPLS-EP models. Model	significant	weights	(w[1])	and	univariate	significant	variables	

according	to	the	univariate	test	are	shown.	The	weight	is	the	mean	of	the	difference	between	

ALS	and	matched	control	(of	each	metabolite).	Value	above	zero	means	higher	values	in	ALS	and	

below	zero	means	higher	values	in	control.	A)	Model	of	ALS	versus	matched	control	in	CSF.	B)	

Model	of	ALS	versus	matched	control	in	plasma.		

Figure 3.	Metabolites significantly driving separation of PD from matched controls in 

OPLS-EP models. Model	significant	weights	(w[1])	and	univariate	significant	variables	

according	to	the	univariate	test	are	shown.	The	weight	is	the	mean	of	the	difference	between	PD	

and	matched	control	(of	each	metabolite).	Value	above	zero	means	higher	values	in	PD	and	

below	zero	means	higher	values	in	control.	A)	Model	of	PD	versus	matched	control	in	CSF.	B)	

Model	of	PD	versus	matched	control	in	plasma.	

Figure 4. Metabolites significantly driving separation of ALS from matched PD in OPLS-EP 

models. Model	significant	weights	(w[1])	and	univariate	significant	variables	according	to	the	

univariate	test	are	shown.	The	weight	is	the	mean	of	the	difference	between	ALS	and	matched	

PD	(of	each	metabolite).	Value	above	zero	means	higher	values	in	ALS	and	below	zero	means	

higher	values	in	PD.	A)	Model	of	ALS	versus	matched	PD	in	CSF.	B)	Model	of	ALS	versus	matched	

PD	in	plasma.	

Figure 5. Sugar and ribonucleotide metabolism dissected by metabolomics in ALS. 

Overview	of	hexose	derivatives	relation	to	the	pentose	derivatives,	purine	and	pyrimidine	

metabolites	found	to	be	significantly	altered	in	ALS.	
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