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MoRFs are widespread intrinsically disordered protein-binding regions that have 
similar abundance and amino acid composition across the three domains of life 
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Abstract  

Intrinsically disordered proteins and protein regions offer numerous advantages in the context of 

protein-protein interactions when compared to the structured proteins and domains. These 

advantages include ability to interact with multiple partners, to fold into different conformations 

when bound to different partners, and to undergo disorder-to-order transitions concomitant with 

their functional activity. Molecular Recognition Features (MoRFs) are widespread elements 

located in disordered regions that undergo disorder-to-order transition upon binding to their 

protein partners. We characterize abundance, composition, and functions of MoRFs and their 

association with the disordered regions across 868 species spread across Eukaryota, Bacteria and 

Archaea. We found that although disorder is substantially elevated in Eukaryota, MoRFs have 

similar abundance and amino acid composition across the three domains of life. The abundance 

of MoRFs is highly correlated with the amount of intrinsic disorder in Bacteria and Archaea but 

only modestly correlated in Eukaryota. Proteins with MoRFs have significantly more disorder 

and MoRFs are present in many disordered regions, with Eukaryota having more MoRF-free 

disordered regions. MoRF-containing proteins are enriched in the ribosome, nucleus, nucleolus 

and microtubule and are involved in translation, protein transport, protein folding, and 

interactions with DNAs. Our insights into the nature and function of MoRFs enhance our 

understanding of the mechanisms underlying the disorder-to-order transition and protein-protein 

recognition and interactions. The fMoRFpred method that we used to annotate MoRFs is 

available at http://biomine.ece.ualberta.ca/fMoRFpred/   

 

Keywords: intrinsically disordered protein; intrinsically disordered region; MoRF; Molecular 

Recognition Feature; protein-protein interactions; protein-protein recognition.  
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Introduction  

The protein structure-function paradigm, where a specific sequence folds into a specific structure 

that is responsible for a unique function, served as cornerstone of protein science for more than a 

century 
1, 2

. Research of the past decade and a half has broadened this view of a protein 

functionality by adding a new player, the class of intrinsically disordered proteins (IDPs), 

members of which fail to form rigid 3D structures under physiological conditions, either along 

their entire lengths or in localized regions, but still possess numerous important biological 

functions 
3-9

. Sequences of these IDPs and disordered parts of hybrid proteins possessing ordered 

domains and intrinsically disordered regions (IDRs) are characterized by a number of specific 

features that distinguish them from those of ordered proteins and domains and make these IDPs 

and IDRs predictable 
3, 5, 6, 10-12

. 

 

Application of computational tools developed for sequence-based intrinsic disorder prediction 

revealed the wide spread occurrence of IDPs and hybrid proteins containing both structured 

regions and IDRs within all three domains of life 
13-23

. The lack of unique structure under 

physiological conditions provides IDPs and IDRs with a remarkable set of advantages for certain 

functions compared to the structured proteins, since the resulting plasticity allows them to 

efficiently interact with a variety of different targets 
4-6, 9

. IDPs are typically involved in 

pathways that carry out signaling, regulation, and/or control 
8, 24, 25

, which nicely complements 

the functional repertoire of ordered proteins that have primarily evolved to carry out small 

molecule binding, transport and catalytic functions 
11

. Several illustrative biological activities of 

IDPs and IDRs include various roles in transcription and translation, regulation of cell division, 

signal transduction, storage of small molecules, sites for protein phosphorylation and other 

posttranslational modifications, chaperone action, and regulation of the self-assembly of large 

multi-protein complexes such as the ribosome 
4-7, 9-11, 24-40

. 

 

IDPs and IDRs offer advantages in the context of protein-protein interactions when compared to 

the structured proteins and domains. One of these functional advantages is the ability of many 

IDPs/IDRs to undergo disorder-to-order transitions concomitant with their functional activity 
4, 6, 

8, 24-28, 31, 38, 41-45
. Furthermore, the structural flexibility of a disordered protein or region enables it 

to interact with numerous partners and to fold into different conformations when bound to 

different partners 
3, 43, 46, 47

. Also, partner selection by IDRs can be modulated by post-

translational modifications (PTMs) 
47, 48

, and such partner binding sites (with or without PTMs) 

can be added, deleted, or modulated by alternative splicing (AS) of an IDR’s pre-mRNA 
49

. Thus, 

tissue-specific PTMs 
50, 51

 and AS 
52, 53

 can lead to the “rewiring” of protein-protein interaction 

networks in different cell types 
54, 55

. IDPs and their modulation by PTMs and AS provide a 

robust mechanism that enables context-dependent signaling 
32

 that is likely of fundamental 

importance for cellular differentiation 
34-36, 56

. The plasticity of these interactions provides 

additional functional advantages particularly for signaling and regulation.  

 

A further point is that protein-protein interaction (PPI) networks include proteins, called “hubs,” 

that bind to large numbers of partners while most proteins in the networks bind to only a few 
57, 

58
. Other networks that have a similar architecture arise because the hubs have special features 

that facilitate their association with multiple partners and to new partners that come along over 

time; that is, “the rich get richer” 
57

. This raised the question for PPI networks, what are these 
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special features 
59

? As pointed out above, IDPs and IDRs can readily bind to multiple partners, 

so based on these observations, we proposed that the special features that enabled the evolution 

of complex networks containing hubs was IDPs and IDRs 
25

. This proposal has been supported 

by a number of subsequent studies 
47, 60-65

. 

 

Given the importance of IDPs and IDRs for signaling, regulation, and control via PPI pathways 

and networks, as well as via IDP and IDR involvement in gene pathways and networks, 

computational methods have been developed to identify the partner binding sites. One approach 

depends on the identification of short sequence motifs 
66

, linear motifs 
67

, eukaryotic linear 

motifs (ELMs) 
68

 or short linear motifs (SLiMs) 
69

. This approach depends on identifying over-

represented sequence patterns found among a collection of different sequences that bind to a 

common protein partner 
47, 66, 68, 69

.  

 

An alternative approach was provided by the discovery that some disorder predictors identified 

localized regions having increased structural propensity. These regions were initially thought to 

be prediction errors, but instead many of these regions were found to be binding sites for protein 

partners 
70

. Interestingly, this approach actually pre-dated the motif-based methods for finding 

binding partners. The Protein Data Bank (PDB) contains more than 10,000 complexes containing 

short peptides bound to globular protein partners. Studies of hundreds of these showed that a 

large number of these peptides are located in IDPs or IDRs that are predicted to be considerably 

longer than the segments found in the PDB. Curiously, those that form α-helix or β-sheet upon 

complex formation were often found to be associated with a local region of predicted structure 

due to a localized increase in hydrophobicity, whereas those that formed irregular or random 

structure upon binding, rarely gave strong predictions of localized structure. To indicate their 

specialized functions within the longer IDRs, these binding segments were called molecular 

recognition features (MoRFs) 
71

.  

 

These partner-binding regions contain higher local concentrations of large hydrophobic side 

chains, especially aromatics, as compared to the flanking IDRs. Furthermore, the PDB structures 

showed these hydrophobic groups to be mostly buried in the interfaces between the IDPs or 

IDRs and their partners. Even though the random-structured MoRFs (forming coils and/or turns 

upon binding), or γ-MoRFs, show weaker predictions of structure and reduced hydrophobicity 

compared to the helix-forming, or α-MoRFs, and the sheet-forming, or β-MoRFs, the γ-MoRF 

hydrophobic side chains are, if anything, more selectively buried in their respective interfaces 
47, 

72
.  

 

Using collections of MoRFs from the PDB ranging from 5 to 25 residues in length, predictors of 

α-MoRFs were developed 
47, 73, 74

. This work focused initially on α-MoRFs because they 

typically give strong predictions of local structure flanked by predictions of IDRs. Binding 

regions longer than ~ 30 residues arising from IDRs have been called disordered binding 

domains 
75

; these often contain subregions that are identified by MoRF predictors (unpublished 

observations). Eventually, predictors that could recognize all types of binding regions, including 

those that form irregular structure upon binding, were developed. They include ANCHOR 
76, 77

, 

DISOPRED3 
78

, MoRFCHiBi 
79

, MoRFpred 
80

, and fMoRFpred, which was developed as part of 

this study with the aim to offer accurate predictions in high throughput. These methods use the 

PDB protein complexes for training. 
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While their details differ, these predictors identify binding sites by their increased 

hydrophobicity and reduced propensity for disorder compared to the flanking regions of disorder. 

Although these feature-based algorithms and the motif-based approach for finding partner 

binding sites are completely different, both approaches typically identify binding sites that are 

located in IDRs 
67, 81

. In recognition of this, the MoRFpred algorithm includes sequence 

similarity to any of the MoRFs in its training set as one of the inputs. This input serves as a 

surrogate for the use of motifs. Others have studied such regions from a different perspective. 

Many proteins appear in the PDB more than once with the structure determinations carried out 

under (slightly) different conditions. Such proteins often have regions that are structured under 

one set of conditions but are disordered under the other. These ambiguous 
82

 or dual-personality 
83

 or semi-disordered 
84

 regions exhibit disorder predictions (and hydrophobicities) that are 

intermediate between the extremes observed for structured and disordered proteins 
83, 84

.  

 

Experimentalists can use binding-site predictors to speed-up the process of PPI discovery 
85-87

, 

and, indeed, MoRF predictions have been used for this purpose 
88-90

. In 
90

, the yeast-two hybrid 

method 
91

 was followed by mutational analysis to identify both the partners of the MoRFs and 

the MoRF residues essential for partner binding, suggesting we are now in a position to study 

MoRF-partner interactions by high throughput methods. The first step for such high throughput 

studies of disorder-based PPIs is MoRF prediction (and/or binding motif identification) on a 

large scale.  

 

However, to date only a few studies have investigated properties and abundance of a larger set of 

MoRFs. In 2006, Mohan and colleagues performed analysis of secondary structure, amino acid 

composition, aromaticity and charge, and a limited functional analysis of a relatively small set of 

372 MoRFs derived from PDB 
71

. In 2007, geometric and physiochemical properties of the 

surface of the corresponding binding regions for 258 MoRFs collected from the PDB were 

examined 
72

. A recent study investigated MoRFs in a small set of 289 membrane proteins from 

PDB 
92

. There were only two studies that analyzed MoRFs on genomic scale. The prevalence of 

α-MoRFs generated by the α-MoRF predictor was estimated in 82 genomes from Eukaryota, 

Bacteria and Archaea and the authors observed that a median eukaryotic genome has greater 

fraction of proteins with α-MoRF propensities than median archaeal and bacterial genomes 
74

. 

More recently, analysis of 736 complete proteomes that took advantage of the ANCHOR method 

was performed; however, it was limited to the characterization of abundance and length of these 

binding regions 
76

. To this end, herein we present our analysis of the 868 complete proteomes 

from the three domains of life. We consider multiple perspectives including 1) abundance of 

MoRFs and their types; 2) relation between abundance of MoRFs and IDRs; 3) enrichment of 

disorder in MoRF-containing proteins; 4) compositions of MoRF, intrinsically disordered and 

structured regions; and 5) functions of MoRF-containing proteins. Our analysis across different 

species and domains of life points to interesting and distinct differences between MoRF and 

generic IDRs. These data provide experimentalists with the starting points for the high 

throughput analysis of MoRF-based PPIs for any of these organisms.  
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Materials and Methods 

We analyze putative MoRFs and IDRs in the complete proteome set from UniProt release of 

April 2013 
93

. This dataset includes 174,381 protein sequences from 72 species in Archaea, 

2,025,100 sequences from 567 species in Bacteria and 3,645,837 sequences from 229 species in 

Eukaryota (Table 1). 

 

Only high-throughput methods that find putative MoRF and IDRs could be used given the size of 

the UniProt dataset. We apply fMoRFpred predictor to find putative MoRFs; the design and 

predictive performance of this method are discussed in the Supplement. fMoRFpred uses a 

similar design to the popular MoRFpred method (see Supplement) 
80

. In short, each residue in 

the input protein sequence is represented by 20 features that are derived from structural, 

physicochemical and biochemical properties of this and its neighboring residues; these features 

were empirically selected as the most predictive from a comprehensive group of over 7000 

features. The predictive properties include putative annotation of intrinsic disorder and secondary 

structure, estimated B-factor, structural stability, and unfolding energy. They allow identifying 

MoRF regions since these regions are enclosed inside of longer disordered regions, may fold into 

secondary structures upon binding, and are characterized by a relatively high flexibility (B-factor) 

and lower structural stability as compared to the structured regions. The prediction is performed 

with Support Vector Machine model that uses the features as inputs and which was trained using 

a large dataset with annotated MoRFs to optimize separation of its output values between MoRF 

and non-MoRF residues. fMoRFpred is shown to provide accurate estimates of abundance of 

MoRFs via comprehensive tests that utilize several benchmarking datasets, which include chains 

with low similarity to the training proteins. This means that it can be used to accurately predict 

MoRFs on the whole proteome scale. It is also characterized by a relatively low runtime, which 

allows for the genome-scale predictions on a single desktop computer. The predictive quality of 

MoRF predictors was also validated against experimental results in a few applications 
90, 94

, 

supporting the claim that they provide accurate results. A webserver-based implementation of 

fMoRFpred is available at http://biomine.ece.ualberta.ca/fMoRFpred/. 

 

IDRs were predicted using a consensus of five high-throughput predictors: two versions of 

IUPred 
95

 designed to find long and short IDRs and three version of Espritz 
96

 that predict 

intrinsic disorder annotated based on X-ray crystal structures, the NRM-derived structures, and 

the Disprot database. Thus, the consensus considers two types of IDRs (short regions and longer 

domains) and three dominant types of annotations. These methods were shown to provide good 

predictive performance in a recent large-scale assessment 
97

. A given residue is predicted as 

disordered if at least three of the five methods predict so; otherwise it is predicted as structured 

(ordered). The same consensus was recently used in related works 
23, 98

. Use of the consensus is 

an improvement over some prior studies where only one or at most two methods were used 
14, 16, 

99
. MoRF and disorder predictions were filtered by removing segments with less than 4 

consecutive residues, which is in agreement with other studies 
23, 80, 100

. The secondary structure, 

which is used to define different types of MoRFs, was predicted using the fast version of the 

PSIPRED method 
101

. 

 

We characterize abundance of MoRF and disordered residues and regions and aggregate this 

information by species and by domains of life. We compute content of MoRF and disordered 
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residues which is defined as the number of MoRF or disordered residues in a given sequence, 

species or domain of life divided by the total number of residues. We analyze normalized 

number and size of MoRFs and IDRs. The number of regions was normalized per sequence (the 

count was divided by the total number of proteins in a given dataset) while the size of the regions 

was normalized by dividing their length by the length of the corresponding proteins. We also 

investigate MoRFs at the whole protein level. We compute the disorder content and fraction of 

fully disordered protein (proteins composed of only disordered residues) in proteins that contain 

MoRFs, that contain IDRs, and in all proteins in a given species or domain of life. Finally, we 

calculate content of amino acid defined as the count of residues for a given amino acid type 

divided by the total number of residues. These content values were compared between MoRFs, 

IDRs, structured (ordered) regions, and a generic (drawn at random from protein sequences) set 

of regions.  

 

We assess statistical significance of differences between content values or normalized counts 

between two protein sets. We select at random 1000 samples (proteins or residues) from a given 

set of proteins (e.g., Eukaryotic proteins with MoRFs), calculate a given characteristic (content 

or count) and repeat that 10 times. The resulting vector of 10 values is compared with the 

corresponding vector of 10 values computed from the second proteins set (e.g., Eukaryotic 

proteins with IDRs). We determine normality of these values with the Anderson-Darling test at 

the 0.05 significance. We use the t-test for normal distributions; otherwise we use the Wilcoxon 

rank-sum test. We assume that the difference is significant if p-value < 0.01. We also report 

average and standard deviation over the 10 repetitions if data are normal, and median with 25
th

 

and 75
th

 centiles otherwise.  

 

We carried analysis of functional annotations of proteins that have MoRFs based on the Gene 

Ontology (GO) terms collected from the UniProt resource. We utilize statistical test to find 

annotations that are significantly enriched in these proteins when compared with a generic set of 

proteins from the same domain of life. We consider annotations of biological processes and 

cellular components that indicate cellular localization of the MoRF-including proteins. We 

compute significance of enrichment for each annotation that occurs at least 20 times in the 

proteins with MoRFs (to assure statistically sound estimates) and which has the rate of 

occurrence (defined as number of occurrences divided by the number of proteins) that is higher 

than the rate in the whole domain of life. We select 50% of the MoRF-including proteins at 

random ten times and compute the rates of occurrence for these 10 sets of proteins. Next, we 

select 10 times the same number of proteins with matching chain sizes (with tolerance of 10%) at 

random from the entire domain of life and calculate the corresponding rates. The matching is 

motivated by a bias in disorder content related to chain sizes 
98

, which in turn influences 

abundance of MoRFs. We compare the two sets of 10 rates of occurrence using either the t-test 

or the Wilcoxon rank-sum test, depending on the normality of these samples. A given GO term is 

assumed to be enriched in proteins that have MoRFs if the rate of occurrence in these proteins is 

higher by at least 20% compared with the proteins drawn at random and the p-value < 0.01. 
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Results and discussion 

Overall disorder status of proteins in three domains of life  

In order to provide background needed for the subsequent analysis, we analyzed the peculiarities 

of the distributions of protein length and correlation between the disorder content and protein 

length for the considered close to 6 million proteins of the 868 species from Archaea, Bacteria 

and Eukaryota. Results of these analyses are shown in Figures 1A and 1B, respectively, and they 

demonstrate that eukaryotic proteins are different from bacterial and archaean proteins, being 

typically longer and noticeably more disordered. These observations are in agreement with the 

results of previous studies 
13-23

. We emphasize the peculiar shape of the disorder content versus 

protein length plot for the eukaryotic proteins. While short proteins in three domains of life are 

consistently predicted to have significant amount of disorder, longer eukaryotic proteins have a 

much different profile of disorder content when compared to the almost coinciding plots for the 

bacterial and archaean proteins (see Figure 1B). The amount of predicted disorder in the bacterial 

and archaean proteins decreases as protein length increases and reaches a plateau for proteins 

longer than about 300 residues. However, in eukaryotes the disorder content reaches a minimum 

for proteins with the length range between 250 and 500 residues and then it substantially 

increases and reaches a plateau for proteins with length at about 1000 or more residues. This 

peculiar shape of the disorder content versus length of eukaryotic proteins has been described 

earlier in a study that used smaller dataset (110 complete eukaryotic proteomes) 
98

. In other 

words, this analysis revealed that medium sized eukaryotic proteins (length between 250 and 500 

residues) possess smaller amount of predicted disorder than shorter and longer proteins.  

Abundance of MoRF and intrinsically disordered regions in the three domains of 
life 

We estimate the abundance of putative MoRFs and IDRs across the 868 species from Archaea, 

Bacteria and Eukaryota. The abundance is based on content of residues located in the IDRs and 

in the MoRFs; i.e., fraction of disordered and MoRF residues among all residues in a given 

species or domain of life. The results shown in Table 1 suggest that MoRF residues have similar 

content of about 1% across all three domains of life. This is in contrast to the content of the 

disordered residues that vary widely with lowest values in Bacteria and substantially higher 

values in Eukaryota (Figure 1B), which was also shown in other studies 
14, 16, 23

.  

 

Statistical tests reveal that the differences in the per species disorder content between different 

domains of life are significant (t-test; degrees of freedom = 9; p-value<0.01); i.e., eukaryotic 

organisms have significantly larger disorder content than species in Archaea, which in turn have 

significantly larger content values than species in Bacteria. The disorder content in Archaea is 

bimodal (see Figure 2A, blue triangles), with some species at the low end and others above the 

high end of the bacterial range. The Archaea with high predicted disorder are mostly halophiles 
21

 that live in saturated salt and have high internal salt concentrations. To accommodate these 

high salt concentrations, the non-membrane proteins develop an excess of negative charges on 

their surfaces, leading to a stabilizing shell of cations, and a reduced amount of hydrophobic 

residues 
102

. This leads to high prediction of disorder 
40

 even though they are structured in their 
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high salt environment. Indeed, many enzymes and other proteins from halophiles become 

disordered if they are transferred from high salt to the typical “physiological” range 
102

. 

 

The content of MoRF residues is not significantly different between the species from three 

domains of life. Interestingly, we found that the content of disordered residues and content of 

MoRF residues are strongly correlated in Bacteria and Archaea. The corresponding Pearson 

Correlation Coefficients (PCCs) equal 0.89 and 0.98, respectively. However, the abundance of 

disorder and MoRFs in Eukaryotes is characterized by only modest correlation of 0.43.  

 

A plot of content of intrinsically disordered residues vs. MoRF residues for the considered 

species is shown in Figure 2A. The disorder content in Bacteria and Archaea is constrained to a 

relatively narrow range of up to about 15% with the MoRF content ranging between 0.5 and 2%. 

A linear trend where more disorder implies proportionally more MoRFs is evident for species 

from these two domains. In Eukaryotes, the disorder content is on average higher and varies 

more widely between about 5 and 30%, which is agreement with prior results 
14, 23, 103

. 

Surprisingly, the content of MoRF residues is constrained to the range that is similar to the range 

in Bacteria and Archaea and its linear relation with the disorder content is weaker. Overall, 

Figure 2A reveals that content of MoRF residues is similar across the species from each of the 

three domains of life. On the other hand, Figure 2B represents a histogram of the fraction of 

proteins containing different number of MoRFs per protein and shows that, on average, 

eukaryotic proteomes have substantially more multi-MoRF proteins.  

 

Figure 3 shows differences in the relation between the abundance of MoRFs and protein length 

in the three domains of life. Figure 3A illustrates that the relations for the bacterial and archaean 

proteins have very similar shapes, where short proteins have more MoRFs per protein than long 

proteins. In these two domains of life, the smallest per-protein counts of MoRFs (~0.4 MoRF per 

protein) are found for the medium-length proteins (200-400 residues), whereas these numbers 

slightly increase to ~0.5 for the longer proteins. The corresponding relation for the eukaryotic 

proteins is very different. Although short eukaryotic proteins have more MoRFs (0.7 MoRFs per 

protein) and although this number decreases to ~0.55 for the medium-length proteins (~200 

residues), the number of MoRFs per protein increases steadily for proteins longer than 200 

residues. Moreover, the long eukaryotic proteins which are abundant in this domain of life 

(Figure 1A) clearly contain more MoRFs than short ones (Figure 3A). One average, proteins that 

are 1000 or more residues long have one MoRF region, which means that one of their protein 

domains is involved in protein-protein interactions via intrinsic disorder. Although the number of 

MoRFs per proteins is higher for the large proteins, the content of MoRF residues decreases as 

the protein size grows. Figure 3B visualizes the corresponding relation between the number of 

MoRFs versus protein length plots calculated on the per-residue basis. This trend is very 

different from the trend of disorder content for eukaryotes (Figure 1B). Although the disorder 

content in eukaryotic proteins is higher for long proteins, the content of MoRF residues is lower. 

This analysis supports the idea that proteins in all domains of life are characterized by similar 

abundance of MoRFs. 

 

Figure 4 shows distribution of the per-species MoRF and disorder content values grouped by the 

second level in taxonomy that corresponds to kingdoms or phyla. Boxplots, which show spread 

of content values in species from a given kingdom/phylum, are grouped and colored by the 
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corresponding domain of life and sorted in the descending order by the median content of 

MoRFs. We observe a clear trend in Archaea and Bacteria where the median disorder content in 

a given kingdom/phylum follows the median MoRF content. This is not the case in Eukaryotes, 

where additionally the content of MoRFs is substantially lower than the content of disordered 

residues.  

 

Abundance of different types of MoRFs in the three domains of life 

The abundance of different types of MoRFs including α-MoRFs, β-MoRFs, γ-MoRFs, and 

complex-MoRFs (which fold into a mixture of helices and strands upon binding) in the three 

domains of life is summarized in Figure 5. We show that MoRFs fold into secondary structures 

with similar proportions irrespective of the taxonomic classification. The largest fraction of 

MoRFs become structured as coils (71% to 79% of MoRFs depending on the domain of life). 

Between 16% and 21% of MoRFs establish α-helix conformation upon binding. The higher 

proportion of α-MoRFs in Eukaryota compared to Archaea and Bacteria is consistent with prior 

observations 
73, 74

. We note that the overall content of α-MoRF residues in Eukaryota which we 

estimate to be 0.22% is similar the estimate of 0.28% from the contribution that analyzed these 

types of MoRFs 
73, 74

.
 
Figure 5 also reveals that β- and complex-MoRFs account for a relatively 

low fraction of 6 to 8% of MoRFs. 

 

Relation between MoRF and intrinsically disordered regions in the three domains 
of life 

We analyze abundance, size and localization in the sequence of the IDRs and divide them into 

those that include one or multiple MoRFs and those that are free of MoRFs. Figures 6A and 6B 

show the number of IDRs per protein and fraction of IDRs that have one, multiple, and no 

embedded MoRFs for each domain of life. These characteristics are similar in Archaea and 

Bacteria with on average approximately one IDR without MoRFs per protein, one MoRF region 

in every other protein, and 30% of the IDRs having MoRFs. However, Eukaryotic proteins are 

different and have substantially more intrinsically disordered regions without MoRFs (close to 

2.5 per protein) and a similar number of regions with MoRFs. Moreover, nearly 80% of IDRs in 

Eukaryota have no MoRFs. This shows that Eukaryotic species have evolved to introduce 

additional, MoRF-free disordered regions when compared with the other two domains of life. 

Figure 6C compares sizes of IDRs that are normalized by the size of the corresponding proteins. 

We observe that these values are similar between the three domains of life, which suggests that 

the difference in the number of disordered regions without MoRFs is not driven by the difference 

in the size of the disordered regions. Also, IDRs that have MoRFs are longer (Figure 6C) and 

this is particularly true for the small fraction of regions that ranges between 0.3% (in Bacteria) 

and 1.2% (in Eukaryota) (Figure 6B) that include multiple MoRFs. Figure 6D summarizes 

localization of IDRs in the protein sequences. While most IDRs in Archaea and Bacteria are 

localized at the termini of the sequence, this bias is reversed in Eukaryota where 60% of the 

disordered regions are inside the chain. The IDRs that include MoRFs are located almost 

exclusively at the termini in Archaea and Bacteria and similarly in Eukaryota only about 10% of 

these regions are located inside the protein sequence.  
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To sum up, our analysis reveals that the intrinsically disordered regions that have MoRFs have 

similar characteristics across the three domains of life, while the enrichment in disorder in 

Eukaryotes is driven by inclusion of MoRF-free disordered regions which are biased to be 

localized inside the protein chains.  

 

Proteins with MoRFs are significantly enriched in disorder 

Figure 7 shows distribution of disorder content among proteins that include MoRFs (solid lines), 

intrinsically disordered region(s) (dashed lines) and all proteins (dotted lines) partitioned 

according to their taxonomic domain (denoted by colors). Comparison of distributions for the 

proteins with MoRFs and with IDRs (solid vs dashed lined of the same color in Figure 7) reveals 

that the former are depleted for chains with low disorder content (< 0.1) and enriched in chains 

with higher disorder content (>0.1). This enrichment is higher (relative to the value for the 

proteins with IDRs) as the amount of disorder increases.  

 

Overall, the MoRF-including proteins are characterized by a substantially higher amount of 

disorder compared to proteins with IDRs and all proteins universally across the three domains of 

life. This result is consistent with Figure 6C that shows that IDRs that include MoRFs are longer 

compared with the regions that do not. We analyze statistical significance of the differences in 

the disorder content and in the fraction of fully disordered proteins (i.e., proteins composed 

entirely of disordered residues) between the three sets of proteins. For each domain, we compare 

the disorder content and the fraction of fully disordered proteins that is calculated 10 times, each 

time using 1000 randomly chosen proteins from the set of all proteins, proteins with MoRFs, and 

proteins with IDRs. Figure 8 shows the average and standard deviation of these 10 measurements 

for the disorder content (panel A) and for the fraction of the fully disordered proteins (panel B) 

and the p-values associated with the differences between proteins with MoRFs, with IDRs and 

all proteins. The enrichment of the disorder in the MoRF-containing proteins is significant when 

compared with all proteins and with proteins with the IDRs. Moreover, the fraction of fully 

disordered proteins among proteins that has MoRFs, which is between 1% in Archaea and 

Bacteria and close to 2% in Eukaryota, is also significantly higher. The differences in the 

disorder content and in the fraction of fully disordered proteins are significant in all three 

domains of life. 

 

Amino acid composition of MoRF and disordered regions 

Biases in the amino acid composition in MoRFs and two of their types: α-MoRFs and β-MoRFs, 

in IDRs and in structured regions are summarized in Figure 9. The amino acids are sorted by the 

average (over the three domains of life) differences in composition between the MoRF residues 

and a generic set of residues selected at random; note that similar prior plots for IDRs/IDPs were 

sorted by the flexibility index 
104, 105

. Figure 9 shows the averages and standard deviations of the 

differences between composition of MoRF/disordered/structured residues and the composition of 

the generic residues over the 10 repetitions of measurements of content for each of the 20 amino 

acid types; details are provided in Materials and Methods section. Solid bars indicate amino 

acids that have significantly different (enriched or depleted) composition for a given set of 

residues. The patterns of the enrichment and depletion of amino acids in the MoRFs (Figure 9C) 
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and in the IDRs (Figure 9D) are consistent across different domains of life. The correlation 

coefficients between these difference values are relatively high and equal 0.82, 0.81, and 0.72 for 

Archaea, Bacteria and Eukaryota, respectively. Several amino acids are enriched (Proline and 

Glutamine) and depleted (Cysteine, Phenylalanine, Isoleucine, Leucine, and Valine) in both 

IDRs and MoRFs in each of the three domains. However, we also found that Methionine and 

Threonine that are enriched in IDRs are no longer enriched in the MoRFs.  

 

The observed biases in the amino acid composition in the MoRFs in comparison with structured 

regions are in line with the notion that the majority of MoRFs are γ-MoRFs (Figure 5). This 

MoRF type should not be too different from “general” IDRs which also often lack propensity to 

form secondary structures. This is supported by the fact that according to our analysis both IDRs 

and MoRFs are enriched in a couple of major disorder-promoting residues (Proline and 

Glutamine), typically contain in abundance some other disorder-promoting residues (Glutamic 

acid and Serine), and are depleted in major order-promoting residues (Cysteine, Phenylalanine, 

Isoleucine, Leucine, and Valine). However, analysis of the α- and β-MoRFs reveals a more 

substantial difference from IDRs (Figure 9A). The α-MoRFs are significantly enriched in 

Arginine, Glutamate, Lysine, and Glutamine which are enriched to a lesser extend in IDRs and 

have a relatively high propensity to form helical conformations. The β-MoRFs are enriched in 

Valine, Isoleucine and Methionine. The former two are depleted in IDRs and all three amino acid 

types have a relatively high propensity for formation of strands. Both, the α- and β-MoRFs are 

depleted in Proline and Glycine, which are considered as disorder-promoting residues 
10, 106

, are 

known as major structure breaker residues and are commonly found at the ends of regular 

secondary structure elements 
107

. For example, since Proline peptide bonds exhibit structural 

features that differ substantially from those of other residues, also because they do not contain 

backbone amide hydrogen atoms at physiological pH, they do not form stabilizing hydrogen 

bonds in α-helices or β-sheets 
108, 109

. Curiously, eukaryotic β-MoRFs are moderately enriched in 

Tryptophan, Tyrosine, and Phenylalanine; i.e., residues known to be commonly involved in 

specific interactions 
110

. Also, aromatic residues are crucial for folding and stability of proteins, 

and Tryptophan-Tryptophan pairs were, for example, shown to contribute more than any other 

hydrophobic interaction to the stability of β-hairpins 
111

. These results suggests that β-MoRFs 

might use aromatic residues to be specifically zipped to their binding partners.  

 

The residues in the structured regions (Figure 9E) are characterized by lack of significant 

differences, which could be explained by the fact that majority of residues (at least 80% as 

shown in Table 1) are structured. Moreover, the biases are consistent between different domains 

of life. The correlation coefficients between the differences for the same group of residues 

between Eukaryota, Bacteria, and Archaea are high are range between 0.76 and 0.96. 

 

Functional analysis of proteins with MoRFs 

Using Gene Ontology (GO) annotations associated with proteins that have MoRFs we extracted 

cellular component and biological process that are significantly enriched (t-test or Wilcoxon test 

(see Figure 10); degrees of freedom = 9; p-value < 0.01) in these proteins. This analysis was 

performed separately for each domain of life (Figure 10). We compared rate of occurrence of a 

given annotation (defined as number of occurrences divided by the number of proteins) between 

proteins with MoRFs and proteins selected at random from the same domain of life; details are 
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given in Materials and Methods section. We only consider annotations with a large rate of 

occurrence in the MoRF-containing proteins (> 0.25%) for which the relative increase when 

compared with the rate in the random protein is at least 20%.  

 

The results reveal that the ribosomes in all three domains of life are enriched in proteins with 

MoRFs. Furthermore, these proteins are also very common in the nucleus, nucleolus and 

microtubule in the Eukaryota. This is consistent with the results that were obtained for α-MoRFs 

in the human genome, which were found to be enriched in the ribosome and cytoskeleton 
74

. 

Analysis of biological processes shows that MoRF-containing proteins are involved in 

translation, protein transport, protein folding, and interactions with DNAs. They are also 

enriched among eukaryotic proteins that are associated with the regulation of transcription. This 

is in line with the results of a smaller study that considered about 200 proteins with MoRFs and 

pointed to their enrichment in DNA binding and regulation of transcription 
71

. Importantly, we 

found that similar GO terms are enriched across the three domains of life, which is consistent 

with our other finding related to the similar levels of abundance of MoRFs in nature. 

 

Conclusions 

The protein-protein interactions are crucial for many biological processes which rely on protein-

centric recognition, regulation and signaling interactions. Therefore, understanding molecular 

mechanisms underlying such interactions is directly linked to gaining critical insights into 

signaling and regulation within biological systems. Furthermore, on the practical side, better 

understanding of the molecular mechanisms defining these interactions might enable the 

development of small molecule therapies that could be used to modulate protein-protein 

interactions and thereby target various human diseases 
112-116

. 

 

IDPs/IDRs are known to be promiscuous binders that play different roles in regulation of the 

function of their binding partners and in promotion of the assembly of supra-molecular 

complexes 
45

. The conformational plasticity associated with intrinsic disorder provides 

IDPs/IDRs with a wide spectrum of exceptional functional advantages over the functional modes 

of ordered proteins and domains 
4, 6, 9, 25, 27, 28, 31, 32, 37, 38, 43, 46

. Many IDPs/IDRs are known to 

contain specific identification regions via which they are involved in various regulation, 

recognition, signaling
 
and control pathways 

25, 31
. IDPs/IDRs can form highly stable complexes, 

and can be involved in signaling interactions where they constantly cycle between bound and 

unbound forms, thus acting as dynamic and sensitive “on-off” switches. The ability of these 

proteins to return to the highly flexible conformations after the completion of a particular 

function, and their predisposition to gain different conformations depending on the 

environmental peculiarities, are unique physiological properties of IDPs which allow them to 

exert different functions in different cellular contests according to a specific conformational state 
9, 117

. The action of IDPs is further modulated by extensive posttranslational modifications 
6, 48

 

and by alternative splicing 
49

. IDPs/IDRs are commonly involved in various human diseases 

where they often play central roles 
10

. As a result, IDPs and hybrid proteins possessing ordered 

domains and IDRs represent attractive but very difficult drug targets 
118-122

. 

 

Page 14 of 33Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



14 

 

An important first step in developing new drugs targeting protein-protein interactions is the 

ability to predict such interactions from sequence and structure. For ordered proteins, 

combination of structural knowledge with evolutionary information provides means for the 

successful predictions of both binding regions and binding partners from known protein structure 
123-126

. The situation is more complicated with IDPs/IDRs, since they do not have unique 

structures suitable for structure-based rational drug design. However, the known ability of many 

IDPs/IDRs to undergo a disorder-to-order transition upon binding to their partners 
4, 6, 8, 24-28, 31, 38, 

41-44
 combined with the fact this disorder-to-order-transition-based recognition is commonly 

mediated by short specific MoRF elements 
71-74

, simplifies the task of finding such disorder-

based binding regions from sequence alone.  

 

In this work, we developed a novel accurate and fast computational tool, fMoRFpred, for finding 

all types of MoRFs. This tool and the consensus of five high-throughput predictors of intrinsic 

disorder were applied to analyze putative MoRFs and MoRF-free IDRs in over 800 species. 

Various sequence features of these regions in the three domains of life were compared. Functions 

of MoRF-containing proteins were also analyzed based on the Gene Ontology (GO) terms 

collected from the UniProt resource.  

 

Our work demonstrates that MoRFs are similarly abundant across the three domains of life and 

are enriched in the same amino acid types. In fact ~21% of IDRs in Eukaryota and ~29% in 

Bacteria and Archaea have MoRFs and these MoRF-containing regions are substantially longer 

than the MoRF-free disordered regions. In Bacteria and Archaea, there is a strong correlation 

between the abundance of MoRFs and the amount of intrinsic disorder in corresponding 

proteomes. This correlation is much less pronounced in eukaryotic proteins that have twice as 

many MoRF-free IDRs compared to Archaea and Bacteria. This observation can be explained by 

the fact that eukaryotic proteins are noticeably more disordered than bacterial and archaean 

proteins suggesting that the enrichment in disorder in Eukaryotes is driven by inclusion of 

MoRF-free disordered regions which have a bias to be localized inside the protein chains. One 

possibility that might explain the higher incidence of MoRF-free IDRs in eukaryotes is that 

eukaryotic IDRs have many additional protein interaction sites that are different from MoRFs. 

They could be found via alternative approaches that rely on short conserved regions that were 

identified by their binding to the same partner. These have been called eukaryotic linear motifs 

(ELMs) 
68

 or short linear motifs (SLiMs) 
127

, both of which are typically found in IDRs 
128

. 

 

Importantly, our analysis enriches current knowledge of the PPI networks which treat proteins as 

whole entities. We show that these interactions are relatively often driven by disordered regions 

that fold upon binding; that some proteins, particularly in Eukaryota (Figure 2B), have multiple 

such MoRF regions; and that one average every long eukaryotic protein has at least one MoRF 

(Figure 3A).  

 

Moreover, our functional analysis reveals that, in all three domains of life, MoRF-containing 

proteins are commonly found in ribosomes and are involved in translation, protein transport, 

protein folding, and interactions with DNA. Eukaryotic MoRF-containing proteins can also be 

found in the nucleus, nucleolus, and microtubule and can be related to the regulation of 

transcription. Our large scale analysis of the abundance and peculiarities of MoRFs provides new 

insights into the nature and function of MoRFs and enhances our knowledge of the mechanisms 
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underlying the disorder-to-order transition related to the protein-protein recognition and 

interaction. 
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Tables 

Table 1. Abundance of MoRF and intrinsically disordered regions in Archaea, Bacteria and 

Eukaryota. + (=) indicates that content of MoRF or disordered residues for a domain of life in a 

given row is (is not) significantly higher compared to the domain in a given column (t-test (all 

data were normal); degrees of freedom = 9; p-value <0.01). The last column lists Pearson 

Correlation Coefficient (PCC) between the per species content of MoRF and intrinsically 

disordered residues in a given domain of life. 

 

Domain  

of life 

# 

species 
# proteins 

MoRFs residues Disordered residues 

PCC content 

[%] 

significance content 

[%] 

significance 

Archaea Bacteria Archaea Bacteria 

Archaea 72 174,381 1.0   6.8   0.98 

Bacteria 567 2,025,100 0.9 =  5.8 +  0.89 

Eukaryota 229 3,645,837 1.0 = = 19.1 + + 0.43 
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Figure Legends 

Figure 1. A. Distribution of protein length for 5,845,314 proteins of the 868 species from 

Archaea, Bacteria and Eukaryota.  B. Disorder content versus protein length plots for proteins in 

the three domains of life. The proteins were sorted by length of their polypeptide chain and 

binned by every 5% of the sorted proteins. Each plot represents disorder content over all proteins 

in a given bin and given domain of life versus median length in the bin.  

 

Figure 2. A. Relation between content of MoRFs and intrinsically disordered residues for 

species in the three domains of life. Markers represent individual species and lines show linear fit 

between content of disordered residues and content of MoRF residues in a given domain of life. 

B. Histogram of the fraction of proteins (corresponding numbers of proteins are shown above the 

bars) versus number of MoRFs per protein in the three domains of life. 

 

Figure 3. Frequencies of MoRFs in proteins from the three domains of life. Plot A. Number of 

MoRFs per protein versus protein length. The proteins were sorted by length of their polypeptide 

chain and binned by every 5% of the sorted proteins. We plot the average number of MoRFs per 

protein over all proteins in a given bin (total number of MoRFs divided by the number of 

proteins in a given bin) versus median length in the bin. Plot B. Number of MoRFs per residue 

versus protein length. The proteins were sorted by length of their polypeptide chain and binned 

by every 5% of the sorted proteins. We plot the number of MoRFs per residue over all proteins 

in a given bin (total number of MoRFs divided by the number of residues in a given bin) and 

median value of length in the bin.   

 

Figure 4. Content of MoRF and intrinsically disordered residues (y-axis in logarithmic scale) 

across species grouped into kingdoms/phyla (x-axis) in the three domains of life. The box plots 

for each kingdom show the minimal, 25
th

 centile, median, 75
th

 centile and maximal MoRF (lower 

box-plots shown using black lines) and disorder (upper boxplots shown using gray lines) content 

over species in a given kingdom. Solid horizontal lines represent the content of MoRF (in black) 

and disordered (in gray) residues in the entire domain of life. The kingdoms are sorted in the 

descending order by their median content of MoRFs. 

 

Figure 5. Content of the four types of MoRFs in the three domains of life. 

 

Figure 6. Analysis of intrinsically disordered regions (IDRs) in the three domains of life. We 

categorize IDRs into those that include no MoRFs, one and multiple MoRFs. Panels A and B 

shows the number of IDRs per proteins and fraction of the IDRs, respectively. Panel C gives 

boxplots (25
th

 centile, median, and 75 centile) of the normalized size of the IDRs. Panel D 

summarizes fraction of IDRs that are localized at the sequence terminus vs. inside the sequence 

for all IDRs and IDRs that include at least one MoRF region. 

 

Figure 7. Distribution of disorder content values for proteins that include MoRFs, proteins that 

include intrinsically disordered regions, and all proteins in the three domains of life. The overall 

range of disorder content was divided into 10 intervals shown on the x-axis. The left-most point 

where the disorder content is 0 corresponds to fully structured proteins. 
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Figure 8. Average disorder content (panel A) and fraction of fully disordered proteins (panel B) 

computed for the proteins with the MoRFs (dark gray bars), with the intrinsically disordered 

regions (white bars) and for all proteins (light gray bars) in the three domains of life. Since all 

data were normal, the bars and the error bars show the average and the corresponding standard 

deviations based on 10 measurements that utilize 1000 randomly chosen proteins. * indicates that 

the difference is significant (t-test; degrees of freedom = 9; p-value < 0.01; see Materials and 

methods for details). 

 

Figure 9. Differences in the amino acid composition between residues in the α-MoRF (panel A), 

β-MoRF (panel B), all MoRFs (panel C), intrinsically disordered regions (panel D), structured 

regions (panel E) and generic (randomly selected) residues in the three domains of life. The bars 

and the error bars show the median and the corresponding 25
th

 and 75
th

 centiles based on 10 

measurements with 1000 randomly chosen the α-MoRF/β-MoRF/MoRF/disordered/structured 

residues. Solid (hollow) bars indicate that the differences in the composition is (is not) 

statistically significant (t-test or Wilcoxon test; degrees of freedom = 9; p-value < 0.01; see 

Materials and methods for details). Data for which Wilcoxon test was used are annotated with w 

next to the error bar; lack of annotation indicates that data were normal. 

 

Figure 10. Cellular component and biological process GO terms that are significantly enriched 

in MoRF proteins (t-test or Wilcoxon test; degrees of freedom = 9; p-value <0.01). The y-axis 

gives the enriched GO terms. The x-axis shows the relative difference between rates of 

occurrence of a given term in MoRF-containing proteins and a random set of proteins from the 

same domain of life. Colored bars are used to denote the same GO terms that appear in different 

domains of life. Data for which t-test and Wilcoxon test was used are annotated with t and w 

next to the bars, respectively. 
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