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Abstract 1 

 2 

Background 3 

The acquisition of antibiotic resistance in bacterial cells is often accompanied with a reduction of 4 

fitness in the absence of antibiotics, known as the “fitness cost.” The magnitude of this fitness cost is 5 

an important biological parameter that influences the degree to which antibiotic resistant strains 6 

become widespread. However, the relationship between the fitness cost and comprehensive 7 

phenotypic and genotypic changes remains unclear. Here, we quantified the fitness cost of resistant 8 

strains obtained by experimental evolution in the presence of various antibiotics, and analyzed how 9 

the cost correlated to phenotypic and genotypic changes in the resistant strains. 10 

 11 

Results 12 

We measured the specific growth rate of the resistant strains in the presence of various 13 

concentrations of drugs or in their absence. In the absence of drugs, the resistant strains showed 14 

reductions of approximately 20% to 50% in growth rate compared with the parent strain, which 15 

corresponded to the fitness cost. We found that the decrease of specific growth rate was correlated 16 

with overall expression changes between the parent and resistant strains, measured by Euclid 17 

distance between expression profiles. We also found that there are a number of genes whose changes 18 

in expression levels were significantly correlated with the growth rate, which may account for the 19 

observed correlation between the fitness cost and overall expression changes. 20 

 21 

Conclusions 22 

Our analysis provides a basis for quantitative understanding of the mechanism of the fitness cost. 23 

This understanding may provide clues on how to influence the fitness cost that accompanies 24 

resistance acquisition and consequently how to limit the spread of antibiotic resistant strains.  25 
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Introduction 1 

The emergence of antibiotic resistant bacteria is a serious global problem for human health, which 2 

continues to worsen [1, 2]. The clinical dose of antibiotics typically used gives a selective advantage 3 

to naturally emerging resistant bacteria, leading to widespread resistant strains [3, 4]. A number of 4 

genotypic and phenotypic changes that contribute to antibiotic resistance have been identified, which 5 

shed light on how to control the emergence of antibiotic resistant strains [5-9]. 6 

 The acquisition of resistance is often accompanied by a reduction in competitive ability 7 

against antibiotic susceptible strains in the absence of the antibiotics. This is known as the “fitness 8 

cost” [10-12]. Genetic alterations that cause antibiotic resistance can disrupt normal physiological 9 

processes in the cell, which result in detrimental side effects. For example, expression of plasmid 10 

encoded resistant genes require additional resources such as nucleic acids and proteins, interfering 11 

with cell growth [13]. Similarly, some mutations in the rpsL gene of E. coli, which cause resistance 12 

to streptomycin, bring a fitness cost most likely due to altered ribosomes with a reduced 13 

peptide-chain elongation rate [14]. The magnitude of the fitness cost is one essential parameter 14 

which governs i) the dynamics of resistance acquisition, ii) the stability of resistance, and iii) the 15 

decreasing rate of the resistant population to the total population in the absence of the antibiotics. 16 

Thus, the quantification of fitness cost is important for developing adequate treatment protocols to 17 

prevent antibiotic resistance. Various studies have shown quantitative evaluation of the fitness cost 18 

both in vitro and in vivo (e.g., Refs. in [11]). However, few studies link comprehensive phenotypic 19 

and genotypic characterization with the fitness cost.  20 

 In this study, we quantified the fitness cost of resistant E. coli strains to various antibiotics, 21 

by measuring the specific growth rates under varying antibiotic concentrations. These antibiotic 22 

resistant strains were obtained by laboratory evolution experiments in our group [9], in which 23 

genetic alterations were identified by next generation sequencing, and comprehensive gene 24 

expression changes were quantified by microarray. Here, we analyzed the relationship between the 25 

fitness cost and phenotypic and genotypic changes in antibiotic resistant strains. 26 

 27 

Results 28 

 29 

Decreased growth rates in antibiotic resistant strains 30 

We selected nine antibiotics shown in Table 1 that exert their action using a wide range of 31 

mechanisms, including those that disrupt cell wall synthesis, protein synthesis, folic acid 32 

biosynthesis and DNA replication. After 90 days of experimental evolution under each of these 33 

antibiotics, we obtained 36 resistant strains (4 independently evolved strains for 9 antibiotics), which 34 

showed significant increases in minimum inhibitory concentrations (MICs) as described in [9]. We 35 

first quantified the specific growth rate of the resistant strains and their parent strains during the 36 
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exponential growth phase, in the absence or presence of the corresponding antibiotic at varying 1 

concentrations. As shown in Fig. 1, specific growth rates were almost unchanged when the drug 2 

concentration was low, but drastically decreased in concentrations close to their MICs. For the 3 

resistant strains of some drugs, the decrease of the specific growth rates was gradual with increasing 4 

drug concentrations, e.g., chloramphenicol (CP) and trimethoprim (TP), while for other resistant 5 

strains, the decreases in the specific growth rate showed threshold-like behaviors. Interestingly, the 6 

classification of the growth behavior corresponded to the categories of antibiotics, i.e., bacteriostatic 7 

drugs resulted in gradual decreases in the growth rate of the resistant strains while bactericidal drugs 8 

resulted in more drastic changes.  9 

 Notably, the specific growth rates of the resistant strains were generally lower than the 10 

parent strains in the absence of antibiotics. This means that the acquisition of antibiotic resistance 11 

imposed fitness costs for growth even under no-drug conditions. The decrease of the specific growth 12 

rate (Δgrowth rate) in the resistant strains ranged from 20% to 50%. Interestingly, the decrease of 13 

the specific growth rate under no-drug conditions correlated with an increase in MIC, as shown in 14 

Fig. 2. Our result suggests that the larger the increase in resistance imposed, the larger the fitness 15 

cost, regardless of drug type.  16 

 17 

Relationship between fitness cost and transcriptome change 18 

The correlation between the resistance and the fitness cost shown in Fig. 2 might suggest that a 19 

larger acquisition of resistance results in greater phenotypic changes that lead to the larger fitness 20 

cost. To evaluate this possibility, we characterized the magnitude of the phenotypic change based on 21 

the transcriptome data of the resistant strains [9]. For the generation of the transcriptome data, all 22 

resistant strains were cultured in synthetic medium without drugs in order to standardize the culture 23 

conditions among the strains. The overall expression change between the resistant strain and the 24 

parent strains was estimated by Euclid distance between log-transformed expression profiles. Here, 25 

the distance �� between i-th resistant strain and the parent strain was calculated by 26 

�� = ��(��� − ��
)�

���  

where ��� and ��
 show the log-transformed expression level of the j-th gene in the i-th resistant 27 

strain and the parent strain, respectively. N denotes the number of genes used for the calculation of 28 

distance. In this analysis, we removed genes with low expression levels since the quantification of 29 

expression changes were unreliable (see Materials and Methods for details). Fig. 3a shows the 30 

relationship between the decrease in specific growth rates and the distance �� of the resistant 31 

strains. This clear correlation suggests that the magnitude of the fitness cost can be represented by 32 

overall expression changes. Our previous study [9] indicated that different types of expression 33 

Page 4 of 17Molecular BioSystems



5 
 

changes contribute to resistance to different antibiotics. For example, the down-regulation of genes 1 

related to electron transfer systems such as cyo genes, contributes to resistance to aminoglycoside 2 

drugs, while the up-regulation of acrAB, which encodes a well-characterized multidrug efflux pump, 3 

causes resistance to different drugs, including quinolone, beta-lactam, and chloramphenicol. Thus, 4 

the clear correlation in Fig. 3a suggested two possibilities: (i) even though the direction of 5 

expression changes were completely different among resistant strains to different antibiotics, the 6 

magnitude of the fitness cost can be scaled by the distance of expression profiles, or (ii) in addition 7 

to specific expression changes contributing to the resistance of each drug, there were common 8 

expression changes among the resistant strains which were correlated with the growth rate, and the 9 

distance was governed by common expression changes. To examine these possibilities further, we 10 

screened genes whose expression changes were correlated with the change of growth rate in the 11 

resistant strains.  12 

 13 

Common gene expression changes correlated with fitness cost  14 

To analyze the relationship between the fitness cost and changes in gene expression, we calculated 15 

the Pearson correlation coefficient between the change of the specific growth rate and 16 

log-transformed expression levels for each gene in the resistant and the parent strains. Fig. 4a shows 17 

the distribution of correlation coefficients for all the genes we inspected, in which the distribution of 18 

correlation coefficients obtained by randomized data is also plotted for reference. As shown, the 19 

distribution of experimentally obtained correlation coefficients was significantly wider than that of 20 

randomized data (� < 10���), indicating that the expression levels of a certain fraction of genes 21 

were highly correlated to the growth rate as observed for LysA and RplY (Figs. 4b and 4c). These 22 

results suggested that there were common expression changes correlated to the growth rate, which 23 

significantly contributed to the overall expression changes of the resistant strains, resulting in the 24 

correlation between the Euclid distance �� and the growth rate as previously noted. To characterize 25 

the correlation between these expression changes and the fitness cost, we performed a gene set 26 

enrichment analysis (GSEA) [15] to identify gene functions that were significantly enriched in the 27 

genes whose expressions were correlated to the growth rate. Table 2 shows the functional categories 28 

screened by GSEA, which satisfied a false discovery rate (FDR) q-value < 0.1. Using this threshold, 29 

we identified only functional categories in which positively correlated genes were enriched, while no 30 

categories exhibited a significant enrichment of negatively correlated genes. As shown in Table 2, 31 

growth-correlated genes were enriched in the function of amino acid biosynthesis, translation and 32 

some metabolic pathways such as the tricarboxylic acid (TCA) cycle, all relating to generating the 33 

building blocks of cells. Our results suggested that even though these strains acquired resistance to 34 

various drugs in different ways, e.g., activation of efflux pump, changing metabolic fluxes, and so 35 

forth, the fitness cost measured by the change of specific growth rate was caused by common 36 
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expression changes. To further analyze the growth-related common expression changes, we 1 

quantified the relationship between the gene expression changes observed in the drug resistant 2 

strains and those in the previous study [16], in which expression changes by changing the growth 3 

rate were quantified by using a chemostat culture system. The results demonstrated that, the 4 

expression changes observed in the resistant strains generally exhibit significant correlation with the 5 

expression changes caused by growth rate changes as shown in supplementary Fig. S1, which also 6 

suggested that they shared the common growth-related expression changes. 7 

 In addition to the common growth-related expression changes, which were also observed 8 

in the case only changing the growth rate, there can be drug-resistant specific growth-related 9 

expression changes. To extract such expression changes, from the following analysis we removed 10 

genes which changed their expression levels when the growth rate was changed in the previous study 11 

[16]. Here, we removed all genes whose expression was increased (>2 fold) or decreased (<0.5 fold) 12 

when the specific growth rate was changed from 0.2 h
-1

 to 0.5 h
-1

 in the data of [16] (656 genes in 13 

total). As a result, we found that after this gene selection, still there was a significant correlation 14 

between the decrease in specific growth rates and the distance �� of the resistant strains (Fig. 3b). 15 

Then, we screened gene functions that were significantly enriched in the drug-specific perturbed 16 

genes whose expressions were correlated to the growth rate. Table 3 shows the functional categories 17 

screened by GSEA, in which the screened functions were similar with those in Table 2. However, we 18 

found that the function "chromosome condensation" was significantly enriched only after the 19 

removal of the common growth-related genes. In fact, the expression levels of some genes related to 20 

maintenance of chromosome organization, such as mukB and hupB, showed significant correlations 21 

with the growth rate (Figs. 4d and 4e). This result might suggest that the change in chromosome 22 

organization contributes to the drug-resistant specific expression changes that were correlated to the 23 

growth rate. 24 

 Lastly, we considered the relationship between the fitness cost and fixed genomic 25 

mutations in the resistant strains. Our previous study [9] identified fixed mutations in the resistant 26 

strains. Although the fitness cost was commonly observed in all resistant strains, there were no 27 

mutations commonly fixed in these resistant strains. This fact indicated that the observed fitness 28 

costs cannot be explained by a single or a small number of mutations. Also for expression profile 29 

changes, the data of identified mutations and gene expression changes suggested that the relationship 30 

between fixed mutations and gene expression changes was not always a simple one-to-one 31 

correspondence; instead, multiple mutations were suggested to cause similar gene expression 32 

changes. For example, the expression levels of acrB encoding multidrug exporter was commonly 33 

up-regulated in multiple resistant strains including CP1–4, whereas there was no common mutation 34 

in CP1–4. In the CP1–3 strains, mutations were fixed in acrR encoding the repressor of acrB, which 35 

can contribute the up-regulation of acrB. However, there is no mutation that is known to regulate 36 
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directly the expression level of acrB, and thus there is an indirect interaction between the expression 1 

change of acrB and mutations or other factors in the CP4 strain. Such complex relationship between 2 

fixed mutations and expression changes were observed in other genes, including cyo genes related to 3 

electron transfer system and omp genes encoding porin proteins, as discussed in [9]. 4 

 5 

Discussion 6 

In this study, we analyzed the fitness cost in bacterial strains that had acquired resistance to various 7 

antibiotics, by measuring the specific growth rate in the absence of antibiotic or in the presence of 8 

increasing concentrations. We demonstrated that resistant strains obtained by experimental evolution 9 

generally exhibited a reduced growth rate under no-drug conditions, suggesting an inherent fitness 10 

cost when microbial cells acquire antibiotic resistance. By integrating transcriptome data of the 11 

resistant strains, we found that the magnitude of the fitness cost was highly correlated with the 12 

magnitude of overall gene expression changes. We investigated if this correlation originated from 13 

common expression changes in growth related genes.  14 

 The quantification of fitness cost in the experimentally obtained antibiotic resistant strains 15 

provided fundamental information on the stability of antibiotic resistance. For example, several 16 

resistant strains such as those resistant to chloramphenicol showed a decrease in specific growth rate 17 

of approximately 40% compared with the parent strain in the no-drug condition. This means that 18 

replacement of 99.9% of the population by susceptible bacteria would only take approximately 24 19 

hours. Of course, these results were obtained in laboratory settings (e.g., liquid medium with 20 

sufficient nutrients, exponential growth without tight cell-cell interactions), which are quite different 21 

from bacterial population in vivo. Furthermore, the effect of compensatory evolution [17, 18], which 22 

recovers the growth activity of resistant strains in the absence of drugs, is not included in this 23 

analysis. Further quantitative analysis including these factors will be important to understand 24 

population dynamics of antibiotic resistant strains in vivo.  25 

 Our results demonstrated there were a number of genes, whose expression levels were 26 

significantly altered correlating with changes in the growth rate of the resistant strains, which were 27 

involved in the molecular mechanisms of the fitness cost. Although to extract a causal relationship 28 

between resistance acquisition and these expression changes is difficult based only on the correlation 29 

between them, we expect that the common expression changes contributing to the fitness cost could 30 

provide clues on how to influence the fitness cost that accompanies resistance acquisition. Such 31 

information may be useful to design novel drugs that inhibit the emergence of antibiotic resistant 32 

strains. 33 

 34 

Materials and Methods 35 

Bacterial strain and culture conditions 36 
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The IS elements-free E. coli strain MDS4251 was purchased from Scarab Genomics and used 1 

throughout this study. Bacterial cells were cultured in 200 µL modified M9 medium [19] in 96-well 2 

microplates (Corning Inc. 3595) with shaking at 900 strokes min
−1

 on a microplate shaker 3 

(TITRAMAX1000, Heidolph Instruments) at 34°C. All antibiotics used in this study were purchased 4 

from Wako Pure Chemical Industries, Ltd. Antibiotic stock solutions were made by dissolving 5 

powder stocks in specified solvents according to the manufacturer’s instructions. All antibiotic 6 

stocks dissolved in water were 0.2 µm filter-sterilized and stored at −80°C prior to use. 7 

 8 

Measurement of specific growth rate and MIC 9 

Serial dilutions of each antibiotic were made in 96-well microplates using modified M9 medium and 10 

stored at −80°C prior to use. For the measurement of specific growth rate, precultured cells calculated 11 

to yield an initial OD600 of 1 × 10
−4

 were inoculated into each well of freshly thawed 96-well plates 12 

with antibiotics to a final volume of 200 µL. After the inoculation, the cell density was quantified at 13 

OD600 using a 1420 ARVO (Perkin-Elmer) at one-hour time intervals. The specific growth rate was 14 

calculated based on three data points with minimum OD600 values under the condition OD600 >0.02 15 

and the initial OD600 value using linear regression. When the OD600 value did not exceed 0.02 by 24 16 

hours post inoculation, the specific growth rate was set to zero. MIC was defined as the minimum 17 

concentration of antibiotics whose addition to the culture reduced the specific growth rate to zero.  18 

 19 

Data analysis 20 

Transcriptome and genome resequencing data of the resistant and parent strains were obtained from 21 

our previous paper [9] (supplementary data 1 and 2; the data have been deposited in the GEO 22 

database under accession code GSE59408 and DDBJ Sequence Read Archive under accession code 23 

PRJDB2980). To ensure only quantitatively reliable data were used, genes with low expression 24 

levels (less than 300 a.u. in any strain) were excluded from the analysis. Gene set enrichment 25 

analysis (GSEA) [15] was performed using the online tools (www.broadinstitute.org/gsea/index.jsp). 26 

The functional categories of E. coli genes were obtained from gene ontology 27 

(http://geneontology.org/). For supplementary figure S1, the expression data in [16] were obtained 28 

from Escherichia coli Multi-omics Database (http://ecoli.iab.keio.ac.jp/) and were used after quantile 29 

normalization. All other statistical analyses were performed using R statistical language 30 

(http://www.r-project.org). 31 

 32 

33 
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 1 

Figure legends 2 

 3 

Figure 1 4 

The effect of antibiotics on the specific growth rate. The specific growth rates of the parent strain 5 

and four independently evolved resistant strains were quantified in the presence of various 6 

concentrations of corresponding drugs or in the absence of the drug. The plots are (a) CPZ, (b) CFIX, 7 

(c) AMK, (d) ENX, (e) CPFX, (f) DOXY, (g) CP, (h) AZM, and (i) TP resistant strains, respectively.  8 

 9 

Figure 2 10 

The relationship between the fitness cost and the increase of MIC in the resistant strains. The fitness 11 

cost was defined by the difference in the specific growth rate between resistant and parent strains in 12 

the absence of drug. The increase of MIC on the vertical axis was calculated by the log2-transformed 13 

ratio of the MIC compared to the parent strain. Throughout the paper, "CPZ/CFIX" and 14 

"ENX/CPFX" are grouped together because they share same action mechanisms, i.e., both of CPZ 15 

and CFIX are beta-lactam antibiotics, while both of ENX and CPFX are quinolone.  16 

 17 

Figure 3 18 

The relationship between the fitness cost and overall expression changes. (a) The relationship 19 

between the fitness const and the overall expression changes quantified by ��, the Euclid distance 20 

between log-transformed expression profiles of the parent and resistant strain. (b) The relationship 21 

between the fitness cost and overall expression changes after removal of the common growth-related 22 

genes. The overall expression changes quantified by �� was calculated after removing the genes 23 

which change their expression levels when the growth rate was changed in the previous study [16]. 24 

 25 

Figure 4 26 

The correlation of gene expression and growth rate. (a) The distribution of correlation coefficients 27 

between log-transformed gene expression levels and the specific growth rates in the resistant strains 28 

and the parent strain. For reference, we show the distribution obtained by randomized data sets 29 

generated by randomly permuting the gene coordinates at each expression profile. (b,c) Examples of 30 

genes whose expression levels exhibited significant correlation with the growth rate, including (b) 31 

lysA encoding diaminopimelate decarboxylase in the lysine biosynthesis pathway, and (c) rplY 32 

encoding the 50S ribosomal subunit. (d, e) Examples of drug-specific responding genes whose 33 

expression levels exhibited significant correlation with the growth rate. (a) mukB whose product 34 

contributes to chromosome organization and (b) hupB encoding transcriptional regulator HU-β.  35 

 36 
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 1 

Supplementary figure S1 2 

The growth-related common expression changes in the resistant strains. (a) The relationship between 3 

the expression changes in CPZ2 strain (Cefoperazone resistant strain No.2) and the expression 4 

changes in the previous study [16], in which expression changes by changing the growth rate were 5 

quantified by using a chemostat culture system. The x-axis shows the log-transformed expression 6 

changes between CPZ2 strain and the parent strain, while the y-axis shows the log-transformed 7 

expression changes between different growth rates (0.2 h
-1

 and 0.5 h
-1

) obtained in the previous study. 8 

Each dot represents the expression change of each gene. (b) The correlation coefficients between 9 

expression changes in the resistant strains and the previous data. The correlation coefficients of 10 

expression changes in all resistant strains we used and expression changes between different growth 11 

rates (0.2 h
-1

 and 0.5 h
-1

) in the previous study were calculated. The correlation coefficients were 12 

generally positive, suggesting that they shared the common growth-related expression changes. 13 

 14 

 15 

Table 1. List of antibiotics used for experimental evolution 16 

Name Abbr. Class Cellular target Type of function 

Cefoperazone CPZ beta-lactam Cell wall bactericidal 

Cefixime CFIX beta-lactam Cell wall bactericidal 

Amikacin AMK Aminoglycoside Protein synthesis, 30S bactericidal 

Doxycycline DOXY Tetracycline Protein synthesis, 30S bacteriostatic 

Chloramphenicol CP 
 

Protein synthesis, 50S bacteriostatic 

Azithromycin AZM Azalide, Macrolide Protein synthesis, 50S bacteriostatic 

Trimethoprim TP 
 

Folic acid synthesis bacteriostatic 

Enoxacin ENX Quinolone DNA gyrase bactericidal 

Ciprofloxacin CPFX Quinolone DNA gyrase bactericidal 

 17 

  18 
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13 
 

 1 

Table 2. Representative gene sets in which growth-correlated genes were enriched 2 

Name of functional category 
Size 

 (# genes) 
p-value 

FDR  

q-value 

Arginine biosynthetic process 10 <10-3 <10-3 

Translation 100 <10-3 <10-3 

Cellular amino acid biosynthetic process 90 <10-3 1.3×10
−4

 

Pyrimidine nucleotide biosynthetic process 11 <10-3 1.5×10
−4

 

tRNA binding 23 1.3×10
−3

 3.0×10
−2

 

Isoleucine biosynthetic process 10 7.6×10
−3

 5.1×10
−2

 

Aromatic amino acid family biosynthetic process 17 9.4×10
−3

 5.7×10
−2

 

Tricarboxylic acid cycle 17 1.9×10
−2

 5.8×10
−2

 

Carbohydrate transport 13 2.2×10
−3

 8.8×10
−2

 

 3 

 4 

Table 3. Representative gene sets in which drug-specific growth-correlated genes were enriched 5 

Name of functional category 
Size 

 (# genes) 
p-value 

FDR  

q-value 

Translation 73 <10-3 4.5×10
−3

 

Cellular amino acid biosynthetic process 67 <10-3 1.8×10
−2 

Arginine biosynthetic process 5 <10-3 3.0×10
−2 

Tricarboxylic acid cycle 13 4.4×10
−3 3.2×10

−2 

Isoleucine biosynthetic process 8 9.3×10
−3 8.7×10

−2 

Chromosome segregation 5 8.4×10
−3 1.2×10

−1 

 6 

 7 
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Suzuki et al., Figure 2
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Suzuki et al., Figure 4
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