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details of transcriptional regulation10.

The probabilistic graphical model based methods, such as

Bayesian network11–13 and graphical Gaussian model14,15, em-

ploy the graphical modeling techniques and the probability

knowledge to infer the gene network. These methods mainly de-

scribe the gene network by a graph and then learn the parameters

of the models through analyzing the multivariate joint probabil-

ity distributions over the observations. However, learning the pa-

rameters from the expression data is computationally intensive,

especially when the number of parameters is large. As a result,

the methods based on probabilistic graphical model are unsuit-

able for the large scale gene regulatory network inference. The

ordinary differential equation based methods16–18 are mainly de-

signed for the time series gene expression data and model the

dynamics of a regulatory network by a set of ordinary differen-

tial equations. The ordinary differential equation based methods

are the best analysis approaches for non-linear systems to analyze

network dynamics, such as to locate limit cycles and to investigate

bifurcation behaviour. However, as the ordinary differential equa-

tion based methods have high-dimensional parameter spaces, a

large amount of experiment data is required. Without the disad-

vantages of the methods described above, such as unsuitability

for large-scale network inference and computational intensive-

ness, the information theory based methods have led to several

robust and reliable algorithms for gene network inference and

have emerged as a standard in this field19–22. The information

theory based methods mainly depend on the mutual information

between the expressions of all pairs of genes to infer the inter-

action. Several improved methods, such as ARACNE21, CLR23

and MRNET22,24, have also been proposed to remove the indi-

rect and reduce redundancy interactions. The ARACNE algorithm

utilizes the data processing inequality to remove the indirect con-

nections from triplets of genes, while the CLR algorithm utilizes

the adaptive background correction algorithm to modify the value

of mutual information to improve the precision. The MRNET al-

gorithm uses a forward selection strategy to identify maximally

independent set of neighbors for each gene.

Recently, machine learning theory based methods, such as the

TIGRESS and GENIE3 methods, developed for supervised fea-

ture selection, have been introduced to solve the problem of gene

regulatory network inference. Both the TIGRESS25 and GENIE3

methods26 decompose the gene network inference problem into

separate regression problems with respect to the target genes.

The main difference between the two methods lies in the algo-

rithm to solve the regression problems. The TIGRESS method

solves the regression problems with the least angle regression

algorithm combined with stability selection, while the GENIE3

method uses the random forest to solve the regression problems.

Most strikingly, the GENIE3 method won the best performance

in both the DREAM4 in silico 100 multifactorial challenge and

the subsequent DREAM5 network inference challenge. Inspired

by the idea of decomposing the gene network inference problem

into separate regression problems, several other effective meth-

ods also proposed in recent years3,10,27,28.

The method proposed in this paper also inherits the idea of de-

composing the gene network inference problem into individual

regression problems and the algorithm used to solve the regres-

sion problems is the guided regularized random forest algorithm.

To further improve the performance of inference, we propose a

multi-level strategy which consists of three levels. In the first

level, the guided regularized random forest algorithm is used to

solve the individual regression problems. In the second level, the

results returned in the previous level are normalized. In the last

level, the results are refined according to the topology property

of the large scale gene regulatory network. The benchmark net-

works provided by the DREAM4 and DREAM5 projects are used to

evaluate the performance of our proposed method. Through com-

parison with the state-of-the-art methods, our method is proven

to perform more accurately and robustly.

Method

Problem statement

In this paper, we focus on recovering the network solely from

multifactorial perturbation data. The multifactorial perturbation

data can be obtained from the steady states of series of different

perturbation experiments. A typical source of the perturbation

data is gene expression profiles obtained from different patients.

Let the recovered gene regulatory network is a directed graph

with p nodes, each of which represents a gene. An edge directed

form one gene i to another gene j indicates that gene i directly

regulates the expression of gene j.

Suppose that we have a set of gene expression data, including

p genes and n samples, which can be expressed by a p×n matrix:

D = [x1,x2, . . . ,xp]
T, where xi ∈ ℜn, i = 1,2, . . . , p, is the expression

vector of genes i across all the samples: xi = (xi,1,xi,2, . . . ,xi,n)
T.

We need to design a gene regulatory network inference algorithm

that utilizes the gene expression data to predict the regulatory

interaction graph, which is represented by an adjacency matrix

W = {wi, j : wi, j ≥ 0}, i, j = 1,2, . . . , p. The value of wi, j is used to

assess the confidence of the regulation relationship between gene

i and gene j. A larger wi, j indicates that the predicted regulatory

interaction between gene i and gene j is more reliable.

We decompose the inference of a gene regulatory network,

which contains p target genes, into p independent regression

problems. In each regression, the interaction between the reg-

ulator genes, such as transcription factors, and the target gene

will be inferred. For the jth regression, the inputs are the expres-

sion vector of target gene j and the expression vectors of potential

regulator genes across all the samples (we suppose that the po-

tential regulator genes belong to the set of the p target genes).

The aim of the regression analysis is to infer an unknown func-

tion f j that discovers the relationship between the expression of

the target gene and the expressions of the potential regulatory

genes as follows,

f j : x j = f j(xi)+ ε j, ∀ j ∈ {1,2, . . . , p}, (1)

where i∈ {1,2, . . . , p : i 6= j} and ε j is a random noise. We desire to

select a small subset of genes, from which f j can give an optimum

regression result and the selected genes are supposed to be true

regulators of gene j.
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Random forest and regularized random forest algorithms

Random forest is an ensemble of multiple decision trees and is

one of the most successful supervised learning models for classi-

fication and regression. The gene regulatory network inference

method GENIE3, which won the best performance in both the

DREAM4 in silico 100 multifactorial challenge and the subsequent

DREAM5 network inference challenge, was developed based on

the random forest algorithm. The random forest algorithm can

provide the information gain for each variable selection. Suppose

that in one tree, variable x is used to split the tree at node v, the

information gain of x at node v can be calculated as follows,

Gain(x,v) = H(x,v)−α lH(x,vl)−αrH(x,vr), (2)

where H(x,v) is the Shannon entropy of x at node v, vl (vr) is

the left (right) child node of v, and α l (αr) is the proportion of

observations assigned to the left (right) child node in the input

observation of node v. The importance score of variable xi can be

obtained through averaging all the information gains of xi in each

decision tree,

Ix =
1

ntree
∑

v∈Vx

Gain(x,v), (3)

where ntree is the number of decision trees used for the ensemble

and Vx refers to the set of all the nodes split by variable x in each

decision tree.

The regularized random forest algorithm introduces a regular-

ized constraint to penalize the redundant and unimportant se-

lections which are the disadvantages of the traditional random

forest algorithm. The regularized constraint is employed in the

information gain calculation step. In particular, the regularized

information gain is computed as follows,

GainR(x,v) =

{
λGain(x,v) x ∈ F,

Gain(x,v) x 6∈ F,
(4)

where F is the set of variables used for splitting in the previous

nodes, which is an empty set at the root node in the first tree,

and λ ∈ (0,1] is the regularization parameter used for the penalty

adjustment, with a larger λ leading to less penalization.

Gene regulatory network inference with the guided regular-

ized random forest algorithm

In inferring the gene regulatory network with regularized random

forest algorithm, as described above, a key factor is the selection

of the regularization parameter λ . Following the suggestion in29,

we use the preliminary random forest results as a guideline for

the λ selection. We penalize the genes with larger importance

scores in the preliminary result less and vice versa. For ease of

description, we represent the assignment of the regularization pa-

rameters with a p× p matrix Λ = {λi, j}, i, j = 1,2, . . . , p. In the jth

regression, suppose that gene j is selected as the target gene and

other genes are regarded as potential regulator genes. With the

preliminary random forest result, we obtain an importance score

λi, j, i 6= j, for potential regulator gene i. After all regressions, we

set the regularization parameter matrix Λ as follows,

λi, j = γ
λi, j −min{Λ}

max{Λ}−min{Λ}
, (5)

where 0 < γ ≤ 1 is a constant used to control the global penaliza-

tion degree and min{Λ} and max{Λ} are the minimal and maxi-

mal values among elements of matrix Λ. For further details, we

explain these procedure as follows.

Algorithm 1 The regularization parameters assignment

Input: p×n gene expression matrix D; parameter control

coefficient γ.

output: p× p regularization parameter matrix Λ.

Initialize: Initialize Λ with 0; γ = 0.7.

1. for each gene j, j ∈ {1,2, . . . , p} do

(a) Select all the potential regulator genes.

(b) Importance score vector is obtained through random

forest regression.

(c) Assign these importance scores to the corresponding

positions in the jth column of Λ.

end for

2. Obtain the final Λ with equation 5.

Once the assignment of regularization parameters is achieved,

the regularized random forest algorithm is applied to solve the

p independent regression problems. We can construct a p × p

adjacency matrix W = {wi, j}, which represents the graph of the

inferred gene regulatory network after all the regression problems

are solved. The value wi, j reflects the confidence level of the edge

outgoing from a potential regulator gene i to a target gene j (i 6=

j). The adjacency matrix W was obtained by stacking all the p

independent regression solutions column by column.

Normalization and network refinement

In most published methods, such as the TIGRESS and GENIE3

methods, edges among all gene pairs are ranked according to

their confidence level to form the final gene regulatory network.

However, as the p regression problems are solved individually, we

hold the opinion that the results should be normalized to make

them comparable to each other. In this paper, the q-norm based

method27 is introduced to address this issue and the the normal-

ized weight matrix Ŵ is calculated as follows,

ŵi, j =
wi, j

(
∑

p
j=1 w

q
i, j

)1/q
. (6)

It is important to note that the diagonal elements are not consid-

ered in the normalization. Our experimental studies, which are

described in detail in the results section, indicate that the infer-

ence performance is improved more significantly if q is selected

in the range [2,4].

Additionally, we also apply a refinement procedure to improve

the accuracy of our method. The main assumption is that the
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gene regulatory network is sparse, which means that only a small

subset of the target genes are regulated by a regulator gene. In

other words, the confidence levels of the edges outgoing from a

regulator gene should be easily distinguishable. Based on this

assumption, the edges outgoing from a regulatory gene with a

better distinguishability may be more important and reliable. As

the value of ŵi, j reflects the confidence level of the edge outgoing

from regulator gene i to target gene j, the ith row of Ŵ contain

the confidence levels of the regulation relationships between the

regulator gene i and all the target genes. The distinguishability of

regulator gene i can be measured by the variance of the ith row of

Ŵ , which is then used as a guideline of the refinement procedure.

The refined adjacency matrix w̃i, j can be obtained as follows,

w̃i, j = σ2
i · ŵi, j, (7)

where σ2
i is the variance of the ith row of Ŵ .

Summary: the GENIMS algorithm

The overall GENIMS algorithm is summarized as follows. First,

the gene regulatory network inference problem is divided into

several individual regression problems and the guided regular-

ized random forest algorithm is introduced to solve these regres-

sion problems. The solutions of these regression problems are

combined to form the first level’s results of the proposed method.

Second, considering the regression problems are solved sepa-

rately, we use the q-norm method to normalize these solutions

to make them comparable. The normalized results can be con-

sidered the second level’s results. At last, we give a refinement

step to further improve the performance based on the sparsity

assumption. The variance of the normalized weights of each reg-

ulator gene are used as a guide in this step to achieve the third

level’s results.

Results

Data source and performance evaluation

In this paper, we mainly use two series of benchmark networks,

the DREAM4 in-silico multifactorial networks and the DREAM5

networks, to evaluated the proposed method and all the meth-

ods involved in comparisons. The detailed information of these

networks are listed in Table 1.

The results of the inference algorithms are compared with the

gold standard structure of networks provided by the DREAM

projects organizers. Two evaluation metrics are considered, the

area under the precision-recall curve (AUPR) and the area un-

der the receiver operating characteristic curve (AUROC). The p-

values of the two metrics measure the probability of the results

if a random prediction is equal to or better than the result of the

proposed method. For each network, the score of the prediction

performance can be defined as,

scorek =−0.5log10

{
pk

AUPR × pk
AUROC

}
,k = 1,2, . . . ,N, (8)

where N is the number of networks, pk
AUPR and pk

AUROC indicate the

p-values of AUPR and AUROC, respectively. Obviously, the overall

score scoreall of the prediction performance on all the networks

can be computed as their mean,

scoreall =
1

N

N

∑
k=1

scorek. (9)

Parameter selection

There are two parameters to consider in performing our proposed

method. They are the global penalization parameter γ and the

normalization parameter q. In what follows, we will discuss the

influence of the selection of these two parameters to the final per-

formance of the proposed method. The five DREAM4 networks

will be used as the benchmark networks.

We use cross validation to choose the values of γ and q. Ten

values of γ are chosen uniformly over the range of [0.1,1] and

one hundred values of q are chosen uniformly over the range

of [1,20]. For each parameter combination and each benchmark

network, we perform the GENIMS method and obtain the corre-

sponding prediction score. The results are shown in Fig. 1, in

which we can see that the value of the global penalization pa-

rameter γ does not significantly influence the network inference

performance, while the value of the normalization parameter q is

crucial to the performance of the algorithm performance. We ob-

serve that our algorithm performs well for each network when the

value of normalization parameter q is larger than 2 and less than

4. In this paper, we set q = 3 and γ = 0.7 as the default values.

Performance evaluation on the DREAM Dataset

We first evaluate the proposed method with the five DREAM4 in-

silico multifactorial networks. Each of the five networks consists

of 100 genes and each network has been obtained through ex-

tracting some important and typical modules from actual biolog-

ical networks of E. coli and S. cerevisae. We compare the pro-

posed method with seven state-of-the-art methods, the ARACNE,

CLR, MRNET, TIGRESS, GENIE3, NIMEFI and ENNET methods.

The ARACNE, CLR and MRNET methods are implemented by

the minet R package22 with the default paramters, while the TI-

GRESS, GENIE3, NIMEFI and ENNET methods are implemented

by their respective authors. As the NIMEFI method is the en-

semble of several different methods, we only select the results

of the G+E-SVR+E-EL version to represent the performance of

the NIMEFI method. The details of the comparison are shown

in Table 2. The values of AUROC, AUPR, and the corresponding

p-values are given for each network. The overall score for each

algorithm is also given in the last column and the best results

for each column are typed in bold. In this table we can see that

the performance of the proposed method ranks top in the overall

score and performances best in all but one instance.

The second evaluation is based on the DREAM5 networks.

There are four networks provided in the DREAM5 network in-

ference challenge. AS no verified TF-TG interaction is provided

for the second network, we only use the other three benchmark

networks to evaluate the performance of the gene regulatory net-

work inference methods. These three networks are different in

size and structure. The expression of the first network is simu-

lated using the GeneNetWeaver simulator30. The expression data
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Table 1 Details of the data source

Name #Networks #Samples #Genes #Transc Factors Type

DREAM4 in-silico multifactorial 5 100 100 100 Artificial

DREAM5 in-silico 1 805 1643 195 Artificial

DREAM5 E. coli 1 805 4511 334 Real

DREAM5 S. cerevisae 1 536 5950 333 Real
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Fig. 1 The influence evaluation of the parameters selection. The x-axis indicates the selection of normalization parameter q, the y-axis indicates the

selection of global penalization parameter γ and the color indicates the prediction performance.
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Table 2 Results of different methods on DREAM4 in-silico multifactorial networks

Method Metric Network 1 Network 2 Network 3 Network 4 Network 5 Overall Score

ARACNE

auroc 0.616 0.574 0.664 0.643 0.654

23.554
p.auroc 1.67E −6 6.99E −5 1.06E −13 1.02E −10 1.46E −11

aupr 0.130 0.107 0.222 0.180 0.190

p.aupr 1.70E −28 7.92E −32 2.03E −52 2.83E −40 2.03E −42

CLR

auroc 0.685 0.687 0.731 0.713 0.729

26.887
p.auroc 4.47E −12 7.77E −20 8.62E −25 7.04E −20 4.86E −22

aupr 0.131 0.110 0.174 0.172 0.170

p.aupr 1.36E −28 4.32E −33 2.85E −40 3.97E −38 1.99E −37

MRNET

auroc 0.675 0.691 0.740 0.716 0.733

28.455
p.auroc 3.56E −11 1.62E −20 1.74E −26 2.69E −20 1.41E −22

aupr 0.128 0.119 0.194 0.176 0.185

p.aupr 8.21E −28 2.31E −37 3.23E −45 3.86E −39 3.12E −41

TIGRESS

auroc 0.769 0.717 0.781 0.791 0.764

38.848
p.auroc 6.81E −21 1.92E −25 4.00E −35 5.68E −33 5.65E −28

aupr 0.165 0.161 0.233 0.228 0.234

p.aupr 6.47E −37 1.87E56 4.16E −55 5.08E −52 5.51E −53

GENIE3

auroc 0.745 0.733 0.775 0.791 0.798

37.482
p.auroc 3.3E −18 1.1E −28 9.7E −34 6.7E −33 1.9E −34

aupr 0.154 0.155 0.231 0.208 0.197

p.aupr 3.3E −34 7.9E −54 1.8E −54 5.5E −47 4.6E −44

NIMEFI

auroc 0.76 0.73 0.78 0.81 0.80

40.762
p.auroc 4.0E −20 3.3E −28 1.0E −35 9.1E −37 2.2E −34

aupr 0.16 0.16 0.25 0.23 0.24

p.aupr 1.2E −37 3.7E −57 6.0E −60 1.9E −51 1.8E −53

ENNET

auroc 0.731 0.807 0.813 0.822 0.829

52.839
p.auroc 1.13E −16 1.29E −46 1.02E −42 5.86E −39 6.10E −41

aupr 0.184 0.261 0.289 0.291 0.286

p.aupr 1.49E −41 9.39E −106 2.62E −69 1.44E −67 1.38E −65

GENIMS

auroc 0.750 0.826 0.832 0.842 0.860

58.212
p.auroc 9.34E −19 5.30E −52 1.26E −47 3.93E −43 5.78E −48

aupr 0.184 0.296 0.303 0.300 0.311

p.aupr 1.67E −41 3.72E −124 8.78E −73 7.31E −70 1.35E −71
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of the other two networks corresponding are real world network

for E. coli and S. cerevisiae. The DREAM5 was the first challenge to

infer gene regulatory network on a genomic scale. A comparison

similar to the previous comparison is carried out and the results

are shown in Table 3. As only the first two DREAM5 network re-

sults are provided by the original NIMEFI article3, we only show

these two results for NIMEFI method in this paper. The best re-

sults for all the methods are typed in bold. We can see that our

proposed method performs best with the metric of AUROC. From

the results we also find that all methods achieve better results for

the in-silico network than for the real world network. One impor-

tant reason for the poor performance of the inference methods

for the real world networks is that the gold standard information

may not be complete.

Robustness and generalizability evaluation

The robustness is an important indicator of an inference al-

gorithm. To further illustrate the robustness of our proposed

method, we respectively generate ten gene expression datasets

for the five DREAM4 benchmark networks for evaluation. We

perform the GENIE3, ENNET and our proposed method on these

datasets, and the results are shown in Fig. 2 in the form of box-

plots. In the figure we can see that our proposed method outper-

forms these two methods, and the robustness of our method also

can be guaranteed.

To further evaluate the performance of our method, we use the

t-test to evaluate the statistical significance of the hypothesis that

our method outperforms the GENIE3 and ENNET methods. The

p values are listed in Table 4, Table 5 and Table 6, in which we

can see that our method performs significantly better than the

GENIE3 method with all metrics and in all instances. Our method

also performs significantly better than the ENNET method with

the most evaluation metrics and in most instances.

The above evaluations are all based on the benchmark net-

works of the DREAM projects. To illustrate the generalizability

of the proposed method, we extract ten networks from the real

E.coli and Yeast gene regulatory networks, respectively. Using

the GeneNetWeaver simulator30, we generate a gene expression

dataset for each extracted network. We use both the normal and

the log-normal noises to model the deviations. The results are

shown in Fig. 3, in which we can see that the proposed method

gives better and more robust inference results than the other five

methods.

Performance improvement of the multi-level strategy

In this paper, we apply a multi-level strategy to improve the per-

formance of the gene regulatory network inference algorithm.

There are three levels in our method, which are the original

guided regularized random forest result, the normalized result

and the final refinement result. We record the results return by

all the levels and evaluate the dynamic change of the perfor-

mance. To ensure high reliability, we respectively generate ten

gene expression datasets based on the five DREAM4 benchmark

networks, and each level of our method is performed on these

datasets. The results are shown in Fig. 4.

In the figure, we can see that the multi-level strategy improves

the performance of inference significantly, especially the value of

AUPR and the prediction score. For the value of AUROC, the nor-

malization step improves over the original regularized random

forest results by 1.4% on average and the refinement step im-

proves over the normalized results by 6.5% on average. For the

AUPR value, the normalization step improves over the original re-

sults by 13.5% on average and the refinement step improves over

the normalized results by 27.4% on average. For the prediction

score, the normalization step improves over the original results

by 11.4% on average and the refinement step improves over the

normalized results by 40.4% on average. The above results indi-

cate that the normalization and refinement plays a large role in

achieving the performance of our proposed gene network infer-

ence method.

Conclusion

In this paper, we proposed the GENIMS method to solve the prob-

lem of gene regulatory network. The GENIMS method adopts

a three-level strategy and obtains better performance. The first

level is to solve the individual regression problem with the guided

regularized random forest algorithm, the second level is to apply

q-norm normalization to reduce of the bias among different re-

gression results and the third level is to refine the previous results

according to the sparsity property of large scale gene regulatory

networks. We first discussed the influence of the selection of dif-

ferent parameters in the GENIMS method. The performance is

not sensitive to the selection of the global penalization parameter

γ, but we can obtain better performance when the normalization

parameter q is selected in the range of [2,4]. Then, we evalu-

ated our method with the benchmark networks provided by the

DREAM4 and DREAM5 projects. The evaluation results indicate

that the GENIMS method can obtain more accurate and robust

performance than the state-of-the-art methods. Additionally, we

also evaluated the robustness and generalizability of the proposed

methods.
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