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Abstract 

Microarray analysis is a powerful tool to simultaneously determine the pattern of 

transcription of large amounts of genes. For data post-processing distinct 

computational methods are currently used that, however, lead to different results 

regarding the genes differentially expressed. A new methodology for microarray 

data analysis named Q-GDEMAR is herein presented. It combines the quantile 

characterization of the entire distribution together with the Gaussian 

deconvolution of the central region of the microarray data distribution. Three 

discriminant variable variants are proposed that allow summarizing data and 

comparing groups even when their size is strongly unbalanced. In addition, a 

simple procedure to compute the false discovery rate (FDR) is also presented. 

The performance of the method is compared with that observed when using 

LIMMA (Linear Models Microarray) software as reference.  In 58 out of 68 cases, 

Q-GDEMAR showed a higher sensitivity than LIMMA to detect differentially 

expressed genes (p=1x10-10). The proposed method does not produce biased 

information, detecting genes with high sensitivity equally well in both tails of the 

distribution (p=0.7428). Moreover, all detected genes were associated to very low 

levels of FDR (median value=0.67%, interquartile range=0.87%). Q-GDEMAR 

can be used as general method for microarray analysis, but is particularly 

indicated when the conditions to be compared are unbalanced. The superior 

performance of Q-GEDEMAR is the consequence of its higher discriminative 

power and, the fact that it yields a univocal correspondence between the p-

values and the values of the discriminating variable. Q-GDEMAR was tested only 

with Affymetrix microarrays. However, given that it operates after the step of data 

standardization, it can be used with the same quality features on any of the 

available mono- or dual-channel microarray platforms. 
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1. Introduction 

cDNA- and oligonucleotide-based microarrays are routinely applied in the 
study of complex diseases in several biomedical fields, ranging from 
neurobiology and cancer to connective tissue or infectious pathologies.1-3 There 
are multiple protocols and software packages for the data analysis of 
microarrays.4-10 However, the meta-analysis of different microarray studies 
related to a same pathology usually yields very different results, no matter if the 
studies were carried out with the same or different analytical platforms,11-15 thus 
limiting the translation of the microarray’s findings to the clinical practice.16,17  

Although microarray discrepancies can be partially attributed to some 

unavoidable biological and analytical variability, the observed differences can 

also be the consequence of operational factors during the post-processing steps, 

once the data have been standardized as we discuss below.    

Microarray data are routinely subjected to logarithmic transformation in order 

to “normalize” the distribution of such data. Normalization should increase the 

Gaussian character of the distribution (a feature required for t-Student, ANOVAs, 

and estimation of Bayesian probabilities). Hence, skewness and/or kurtosis 

should be minimized while the problem of variances heterocedasticity 

alleviated.18 However, the efficiency of the logarithmic transformation in achieving 

an improved Gaussian character is not always guaranteed.19 An alternative to 

avoid these problems is the use of non-parametric methods, but these methods 

are far less powerful than the parametric ones when the size of the samples is 

not big enough.20 

One of the main objectives pursued through the microarray studies is to 

identify the “differentially expressed genes”, i.e., those genes whose level of 

expression changes along the different conditions tested (e.g., age, sex, disease 

stage, treatments). The differentially expressed genes are recognized on the 

basis of their associated “statistical effects”, which usually requires the 

comparison of the “treatment groups” against a “control group” in terms of their 

mean values.  

In order to discriminate the statistical effects of the tested conditions upon the 

genes, there are two forms to summarize the means’ comparisons: by the “Fold-

Change (FC)-Difference”21 or by the log2(FC).22 Importantly, one or other form 

lead to identify different sets of differentially expressed genes.23 In addition, 

neither of these forms account for the differences in the sizes of the groups. 

Optimal experimental designs require of balanced groups. Otherwise, the means 

of the groups will have different reliability. Nevertheless, due to practical 

limitations the balance condition frequently cannot be fulfilled. In these cases, the 

detection of differentially expressed genes poses additional problems.24 

The statistical effects are assessed by ranking the values of the summarizing 

variable selected according to the significance of two magnitudes: the p-value 

(p=probability(error type I≤α)=probability(false positive)),25 and the false 

discovery rate (FDR).  This latter is defined as the “expected” value of the ratio 
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between the number of false positives and the total number of significant values 

declared. From the Bayesian perspective, and according to the type of 

assumptions considered, there are several forms to estimate the expected value 

for the ratio that defines FDR.26-29 In any case, while the p-values give the 

significance of the statistical effect of a gene as if its expression were determined 

independently, the FDR protects against false inferences due to the problem of 

multiple comparisons involved when thousands of genes are being determined 

simultaneously.29  

Another important question driving our search for an alternative procedure to 

compute the FDR values, is our verification that current algorithms, such as 

Empirical-Bayes26 and Benjamini-Hochberg27, actually do not provide a univocal 

correspondence between the p-values (or FDR) computed and the discriminating 

variable as should be expected (Figure 1). 

 

Figure 1. Failure of the current algorithms implemented in LIMMA to establish a univocal 

correspondence between the magnitudes of fold-change (FC) and its associated probability level 

of significance (p-value). This analysis was performed on data from GSE48060
30

 but a similar 

result is obtained with data from other eleven microarrays. A similar profile of dispersion is also 

observed for the FDR values of this and other microarrays (results not shown). Roman numerals 

in the graph indicate the presence of six regions. The three upper regions differ in their 

significance with respect to the corresponding homologous at the bottom. Current algorithms as 

Empirical Bayes and Benjamini-Hochberg, lead to a situation in which the same value of FC 

admits multiple p-values (or FDR). Some of them can be interpreted as significant while others 

are interpreted as non-significant.  

 

A practical consequence of the absence of a univocal relation between the p-
values (or FDR values) and the fold-change (FC) in Figure 1, is that this situation 
will contribute to some degree of misclassification of the genes in the microarray 
data. In fact, by taking two vertical lines at two feasible cut-off values of the 
discriminant variable at the x-axis (e.g., log2(FC)= ± 0.5), and one horizontal line  
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at a feasible  limit of significance (e.g., p-value=0.05), six regions are generated. 
The lack of unicity can be seen by comparing any of the juxtaposed regions (I 
and IV, II and V, III and VI) because a same value of FC appears associated with 
very low and very high p-values in all these cases.  

Hence, while regions I and III are associated to potentially false negative cases, 
the region V is associated to potentially false positive results. Note that due to the 
problem of multiple simultaneous comparisons, the horizontal line should actually 
be taken at values quite lower than p=0.05. This last situation will improve 
identifying the significant points located in the new, diminished regions IV-V-VI, 
but at the cost of worsening the reliability of the significance of the points located 
in the new, expanded regions I and III.  

From Figure 1 it can be concluded that of the six regions generated, only the 
regions named as IV and VI are suitable for the detection of the differentially 
expressed genes. This explains why the current methods need to apply a double 
filtering criterion (FC and p-value) instead of a unique one, filtering either for FC 
or for p.31,32 

Importantly, the absence of a univocal correspondence between the p-values 
and fold-change values can explain the dissociation between the biological and 
the statistical criteria observed with the interpretation of some microarrays.12,33 It 
is worth to note that if the log(1/p) were considered instead of the p-values at the 
y-axis, Figure 1 will turn into the well-known “volcano” plot.31,32 

Likewise, when current algorithmic methods  was tested for the reliability of the 
FDR values generated, we observed that sometimes none of the thousands of 
analysed genes resulted acceptable according to their FDR values, even when 
many of the same genes were associated to highly significant p-values. 
Moreover, in other instances the current algorithmic methods yield very 
significant p-values (p=10-8 to p=10-12) even when the empirical distribution of the 
experimental data cannot produce values beyond the order of p=10-5 to p=10-6.  

Again, the excessive dispersion of the p-values for a given value of  fold-change 
in Figure 1 indicate that these values don’t act as asymptotic limits to the p-
values obtained empirically from the microarray samples as can be expected. 
This is a shortcoming of the method because the computation of the FDR by 
current algorithms depends strongly on the accuracy of the individual p-values 
previously obtained.33,34 

In view of the methodological limitations previously commented, in the present 
paper we introduce a novel alternative for the post-processing analysis of the 
microarray data. At the same time, we introduce an alternative method to 
compute FDR. Both methods are oriented to optimize the identification of the 
differentially regulated genes. Finally, we will assess the performance of the 
proposed methodology by comparing it with LIMMA, a program included in the 
Bioconductor Project (https://wwww.bioconductor.org).  

LIMMA is a particularly reliable reference for this comparison. First, it is a classic, 
almost standard method that is routinely updated.35,36 Also, because to make the 
comparison we have to make combined use of its underlying algorithms 
(Empirical Bayes and Benjamini-Hochberg), which with slight variants are 
common to other programs.8 Finally, the core of LIMMA services can be 
additionally accessed by friendly interfaces, such the cases of the portal 
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Babelomics 9,37 and GEO2R (NIH, USA),38 both facilitating the operation of this 
program to any user.  

In the Material and Method section the rationale of the Q-GDEMAR is presented 
as well as the logic of the flux of operations implied in our algorithms and the 
definition of the discriminant variables used. In the Results and Discussion, we 
examine the efficiency of the current procedure of microarray normalization; we 
assess the overall performance of Q-GDEMAR when compared with LIMMA and 
characterize the relative efficiency of the discriminant variables used. Finally, we 
discuss the differences of Q-GDEMAR with respect to Cauchy Distribution. Note 
that detailed protocols for computing the p-values and FDR by our alternative 
approaches, as well as three tables containing data of interest for the analysis 
performed are provided as Electronic Supplementary Materials (ESI).  

 

Materials and Methods 

2.1 Compared microarrays. The following twelve sets of microarray data were 
downloaded from the NCBI Gene Expression Omnibus database (GEO): 
GSE48060,30 GSE54992,39 GSE5713,40 GSE5281,41 GSE1919,42 GSE36297,43 

GSE48754,44 GSE28619,45 GSE34308,46 GSE1297,47 GSE11882,46 
GSE46922,48 where GSE indicates the code of accession to the GEO Data-Sets 
(http://www.ncbi.nlm.nih.gov/gds). As proof of concept, the data-sets were 
processed in parallel following the proposed method and the LIMMA,35 being this 
latter processed through the web interface GEO2R provided by NIH (USA, 
http://www.ncbi.nlm.nih.gov/geo/info/geo2r.html). It is worth mentioning that our 
study was designed to address a heterogeneous group of biomedical conditions. 
In addition, the data-sets cover an ample range of unbalanced situations 
regarding the number of control and treatment samples. These two experimental 
groups were being subjected to three discriminant variables in Q-GDEMAR (see 
Table S1, ESI), as well as tested with the standard method LIMMA. With the aim 
of gaining statistical power in the assessment of the methods, we decided to 
restrict the comparison of their performance to unique contrasts between the two 
experimental groups in each microarray, even when more complex analysis 
could be also possible in some cases.   

 

2.2 Q-GDEMAR: Quantile characterization and Gaussian DEconvolution of 

the central region of the MicroARray data distribution 

Microarrays can determine the expression of up to fifty five thousand genes 

simultaneously. Each gene is monitored by specifically designed “probe-sets”, 

comprising several synthetic probes targeted to different segments of the gene 

sequence (Microarray Probing Mapping, available in: 

http://www.ensembl.org/info/ genome/microarray_probe_set_mapping.html).   

The experimental evidence supports that most of the monitored genes usually do 

not vary their expression along the tested conditions, or if they do, only moderate 

stochastic fluctuations around a well-identifiable mean value are observed. In 

addition, two minor groups of genes, those that are up- and down-regulated can 

also be recognized. Hence, the problem of microarray analysis seems to lie on 
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the deconvolution of three different populations of genes. However, given that the 

entire distribution of the data can be known, it is only necessary to identify 

precisely the genes whose expression does not vary in order to spot the 

occurrence of deregulated genes at the tails of the curve.    

 

 2.2.1 Parametric and Non-Parametric Combined Approach 

A key feature of our method is that the central region of the microarray data 

distribution usually shows a Gaussian behaviour even when the entire 

distribution does not. So, it is always possible to determine a linear central region 

of the distribution by plotting the cumulated probability (following a “normal” 

probability scale) against the values of the discriminating variable chosen to 

represent the experimental data (see Figure 2.A). There are also two regions that 

depart from the central straight-line; the deviation from the Gaussian model is 

caused by the occurrence of deregulated genes. We will take advantage of these 

two opposite features (see Figure 2.B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Evidences and principles that support the Q-GDEMAR method. A. The intersection 

between the experimental data (crossed, blue markers) and the theoretical straight-line expected 

for a Gaussian distribution (dashed, black line) shows that the Gaussian model fits well in the 

central region of the data (i.e., the region of genes whose expression does not change 

significantly). B. Consequently, it is possible to establish the variation in the probability profile of 

the entire set of experimental data (solid, blue curve) with respect to the Gaussian model fitted to 

the central region (dashed, red curve). Herein, “Data” refers to the expression of each gene as 

summarized by the difference ∆=median(log2(Treatment Group))-median((log2(Control Group)). 

Original data were taken from GSE48060
30

 but the profiles depicted are also representative of the 

rest of the microarrays analysed. 

Note that in the case presented above, the “entire” data-set does not match a 

true Gaussian model (Figure 2.A) despite its bell-shaped distribution (Figure 2.B). 

However, the central region of the distribution complies with a Gaussian model in 

both plots (Figure 2.A and 2.B). Importantly, the narrow dispersion of the 
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Gaussian central region observed in Figure 2.B allows us to establish well-

defined limits to the normal stochastic fluctuation for genes whose expression 

does not change significantly. This deconvolution process results in a gain of 

sensitivity in the determination of the differentially expressed genes (significant 

genes are given by the difference of areas between the blue and the red curves 

at the tails of the entire distribution in Figure 2.B). At the same time, the risk of 

accepting a high number of false positive results is greatly diminished (note the 

reduced area under the tails of the red curve of Gaussian central region in Figure 

2.B). Hence, the value of FDR will result drastically reduced.  

2.2.2 Q-GDEMAR Operations 

The logic behind the Q-GDEMAR method is shown in Figure 3. As Q-GDEMAR 

operates down-stream of the standardized data, a pre-processing step has to be 

applied when raw data of the microarray are used. This can be accomplished by 

the usual routines using free software available (e.g., RMA-Express, GC-RMA or 

MAS5, among others).18, 50-52 Note that data downloaded from the GEO database 

is already standardized. 

 

 

Figure 3. Flux diagram of the Q-GDEMAR method. See Appendices 1-2 (ESI) for technical 

details. 

 

In microarray analysis, the variations between treatment conditions are 

determined by computing the “statistical effects”, i.e., the differences (or ratios) 

between the means of the groups compared. Means summarize the distribution 

of the experimental data in a unique, “representative” value but it is not the only 

possible parameter of centrality. In Q-GDEMAR the comparisons are 
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implemented by using three types of discriminating variables: one based on the 

difference between the means but corrected by their weighted average, and 

other two which are direct variants of median-based comparisons.   

Note that if non-balanced groups are compared in terms of means, each mean 

has a different degree of reliability and hence, some form of weighted average 

should be applied. In this regard, current methods have limitations.22 Instead, as 

used in the present method and shown in Figure 2, the control group, with 6 

replicates, and the treatment group, with 9 replicates, were compared on the 

basis of the  difference of their log2(medians) along  n=43742 genes without 

considering the actual number of replicates. Further details about the three types 

of discriminating variable used to deal with unbalanced groups are presented in 

Section 2.3.  

In order to deal with the determination of the “significance” of the computed 

differences, in our method the deregulated genes are assessed by two 

complementary techniques. The first technique relies on the empirical modelling 

of the entire data distribution; the second is based on the identification of genes 

showing expression values beyond the extreme limits expected for the central 

Gaussian population of data. 

The first approach is suitable to compute the significance of individual effects for 

each gene analysed. In this case, p-values will be computed based on the 

determination of some critical quantiles from the entire data distribution (see 

Appendix 1, ESI). In doing so, the individual p-values are obtained without the 

need of assuming the Gaussian character of the overall data distribution. The 

second approach is suitable to compute the false discovery rate (FDR) (see 

Appendix 2, ESI).  

In contrast with current algorithms, such as that used by LIMMA, our method 

does not compute FDR for individual genes but for the set of differentially 

expressed genes on each tail of the overall distribution. Note that working 

together, the features of both combined approaches lead to a situation in which 

the identified groups of up- and down-regulated genes acquire different values of 

FDR and comprise different number of genes. 

 

2.3 Discriminating Variables: In order to account directly or indirectly for the 

possible unbalance in size among the compared groups, we assayed three 

variants of discriminating variables. These variants are the following:  

 

2.3.1 Differences of means considering the size of the groups  

To alleviate the detrimental effect of unbalanced groups, we define a 

discriminating variable named as ∆1-Difference. It allows to summarize the 

contrasts as is shown in equation 1, where the sub-indices X and C denote the 

“treatment condition” and the “control condition” respectively.  

∆1 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
1

𝑊𝐴
 ( 𝑀𝐸𝐴𝑁𝑋 − 𝑀𝐸𝐴𝑁𝑐)                                                                         

(1) 
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Note that MEANX and MEANC refer to means computed on the previously log2-

transformed data (equation 2 and equation 3), while WA is a correction factor 

computed as weighted average between the means of transformed data, being n i 

the number of samples included in each of the compared groups i (eq.4).  

𝑀𝐸𝐴𝑁𝑋 =  𝑚𝑒𝑎𝑛(𝑙𝑜𝑔2(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠𝑋))                                                               

(2) 

𝑀𝐸𝐴𝑁𝐶 =  𝑚𝑒𝑎𝑛(𝑙𝑜𝑔2(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠𝐶))                                                               

(3) 

𝑊𝐴 =
∑ 𝑛𝑖 𝑖  𝑀𝐸𝐴𝑁𝑖 

∑ 𝑛𝑖𝑖
                                                                                                                          

(4) 

2.3.2 Differences of medians without considering the size of the groups  

In contrast with the mean value, median is a “robust” statistical parameter. It can 
deal with the problem of the excessive within-group heterogeneity, being less 
sensitive to outliers. Moreover, the median provides reliable estimation of the 
centrality value of any distribution, particularly when significant skewness and /or 
kurtosis are present.  On these basis, we define the discriminating variable 
named ∆2-Difference as follows:  

∆2 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑙𝑜𝑔2 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠𝑋)) 

                                                             −𝑚𝑒𝑑𝑖𝑎𝑛 (𝑙𝑜𝑔2(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠𝐶))                 

(5) 

 

2.3.3 Ratio of medians without considering the size of the groups  

Under the same considerations of robustness and variability of the medians that 

applied in the case of ∆2-Difference, another discriminating variable Ratio 2 can 

be defined as:  

𝑀𝑒𝑑𝑖𝑎𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑚𝑒𝑑𝑖𝑎𝑛 (𝑙𝑜𝑔2 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠𝑋) )

𝑚𝑒𝑑𝑖𝑎𝑛 (𝑙𝑜𝑔2(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠𝐶))
                                                  (6) 

In spite that the proposed median-based discriminatory variables only 
indirectly consider the fact that median behaves itself as a random variable, this 
does not result detrimental (see Section 3.5). In this median-based approach, the 
effects of the main comparisons (i.e., treatment vs. control) are “confounded” with 
the possible effects associated to the variation of the median with the size of the 
samples. We have not knowledge about a law governing this type of variation, 
such neither about some equivalent to Central Limit theorem, accounting for the 
distribution of replicated means, but for the case of the medians since it could 
compensate the variation of the median value with the size of the sample.  

Since median is a more robust parameter than the mean, it is expected that 
the median values performance will be better that the obtained by the mean 
values. Particularly in the case of microarrays, the impact on median variation 
with the size of the sample might be lower that the impact due to other sources of 
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variation present, such as the biological and technical variability. In fact, classic t-
student fails to deal with the low-expression genes, forcing current methods of 
microarray analysis to use modified forms of the t-statistic (regularized, 
penalized, or stabilized t-tests).8,28,32 From this “adapted” t-statistics, the p-values 
and the FDR are derived but neither of these forms are free of some strong 
assumptions.8,28   Hence,  results obtained from the current algorithms are valid 
up to a given extent8,55 (see Section 4). 

In the median-based approach, the implementation of the Gaussian-
deconvolution operation imposes practical boundaries to the confounding effect. 
The analysis carried out on twelve real microarray data-sets, showing that the 
sensitivity of gene detection and FDR of our median-based approach out-
performed the one by LIMMA algorithms (see section 2.3) let us to conclude that 
variation of the median with the size of the sample is not significant relative to 
other major sources of variation present in the system. 

 

2. Results and Discussion 

3.1 How normalizing are the current normalization procedures? 

As was already commented, it is usually assumed that log-transformation is a 

universal recipe to get “normalized” data. However, an important residual trend 

between the variance with respect to the mean was verified when analysing the 

microarray data obtained from GSE54992, being both in log2-transformed units 

(see Figure 4.A and Figure 4.B). 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Pattern of dispersion in microarray data taken from GSE54992.
39

 A. The variance is 

represented as function of the mean value for the group with pathology. B. The semi-distance 

between pathology and control groups is presented as a function of the average of expression in 

the same groups. 

 

Different degrees of residual trend also persist with the regression of the variance 

over the mean in the other microarrays analysed herein. For example, the 

GSE48060 (potential function, R2=0.362), GSE46922 (polynomial 5th degree, 

Page 10 of 25Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



11 
 

R2=0.6359), and GSE11882 (linear trend, R2=0.8020), all of them showed 

significant patterns of residual trend of data after the log-transformation (data not 

shown). 

In order to avoid this residual trend, we assayed other types of data 

transformation. By doing so, we observed that sometimes the type of 

transformation needed depends on the combination of factors analysed (e.g., 

“old-female” could require a transformation different from that for “old-male”, and 

different from “young-female” or “young-male”). Therefore, it appears not to be 

recommendable to apply different data transformation when analysing different 

factors such as sex and gender simultaneously. 

Note that equality of variances is a desirable requisite to be fulfilled when 

applying Empirical Bayes, which is the main method implemented when using 

LIMMA and many other programs. However, the presence of residual trends 

does not constitute a problem in the Q-GDEMAR method because it operates on 

the empirical distribution of the data, without any further assumption. 

3.2 Overall method performance assessment 

The biological interpretation of microarrays results is influenced by the type of 
discriminant variable chosen as well as for the type of computational algorithm 
applied for the data post-processing. To assess both effects, we tested the three 
discriminant variants of Q-GDEMAR (Median Ratio, ∆1-Difference, ∆2-
Difference) (Section 2.3), and their performance was compared against LIMMA 
program.  

To that purpose, twelve microarray data-sets (Section 2.1) were evaluated by the 

number of up- and down regulated genes detected (Section 2.2). We also 

computed the FDR associated to each microarray analysed by Q-GDEMAR, but 

using our own approach (Appendix 2, ESI). In the case of LIMMA, the number of 

genes detected depends on the combined use that this program makes of the 

Empirical Bayes (for the estimation of the p-value),26 and the FDR (computed by 

Benjamini-Hochberg approach on the basis of the p-values).27 

 

Actually, there is a unique definition for FDR, independently of the way in which 

its value is estimated.26-29 Thus, the number of genes considered as differentially 

expressed in LIMMA was taken from the set of genes obtained by this program, 

but fulfilling the condition that their FDR values were lower or equal than the FDR 

value determined by Q-GDEMAR. In this way, the comparisons between both 

methods were done at the same level of FDR (see Figures 5A, 5B, and 5C).  
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Figure 5: Comparative performance of Q-GDEMAR and LIMMA methods along twelve micro-

array data sets according to the number of genes detected and the FDR achieved. Q-GDEMAR 

was evaluated through three discriminating variants: Median Ratio (top figure, A), ∆-2 Difference 

(middle figure, B), ∆-1 Difference (lower figure, C). The values above the bars indicate the 

percentage of FDR achieved in each case, at which comparison is done. The values between 

parentheses indicate the number of control and treatment samples which are being compared in 

each microarray. For details on the data, see Table S1 (ESI). 

 

Figure 5 shows some relevant features. First, LIMMA shows many gaps in 

gene-number count. This indicates that LIMMA was able to detect just a few 

genes (or none at all) at the low level of FDR. This is in strong contrast with the 

performance showed by Q-GDEMAR. Second, in 58 of the 68 comparisons done 

at similar level of FDR, Q-GDEMAR detected more genes than LIMMA did (see 

Table S1, ESI). Finally, different non-parametric statistical tests (Wilcoxon’s Rank 

Test, Sign Test, and Fisher’s Exact Test) confirmed the highly significant 

differences when Q-GDEMAR variants are overall compared against LIMMA 

method (probability p ranges from 1x10-9 to 9.85 x10-10 depending on the 

statistical method).  
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Also important is the finding that algorithms implemented through LIMMA are 

affected by a bias. In fact, analysis of results from Table S1 shows that LIMMA 

detect systematically a higher number of up-regulated genes with respect to the 

number of down-regulated genes (Sign Test, p=2.74x10-4). Instead, this bias was 

not present in Q-GDEMAR even when different number of up- and down-

regulated genes were always detected (Sign Test, p=0.7428). 

Very often, researchers are forced to accept FDR values as high as 10-30% 
due to the difficulties found with their microarray data. In fact, in three of the 
twelve microarrays  tested  (GSE36297,  GSE1297,  and  GSE46922),  LIMMA  
showed  a  median value of FDR ranging between 17% and 46%, even 
considering only those genes with extreme expression (absolute t-Student ≥4). 
Instead, with the combined use of Q-GDEMAR and our method to compute FDR 
we can circumvent this limitation. In fact, we have obtained very low levels of 
FDR (median value=0.67%, interquartile range=0.87%; see Figures 5A-5C). It is 
worth noting that our FDR evaluations included the detection of genes in three 
microarrays (the GSE 46922, GSE5281, and GSE1297) for which the LIMMA 
algorithms did not detect any significant gene at all (FDR varied between 88.5% 
and 98.9%, see Table S1). 

We thus conclude that Q-GDEMAR shows a superior performance with respect 

to LIMMA in the sensitivity to detect differentially expressed genes. Moreover, it 

does at very low levels of false discovery rate (FDR).   

 

3.3 Discriminating variants’ performance assessment 

Although Q-GDEMAR outperformed LIMMA in 85.3% of the analysed cases, a 

ranking of efficiencies for the individual variants can be established within each 

data-set (see Table S1, ESI). The Median Ratio was the best discriminating 

variable in 50% of the cases analysed, ∆2-Difference followed (33.33% cases), 

and lastly ∆1-Difference (16.66% cases). This differential distribution is 

statistically significant (Chi2=12.04, p<5x10-3), thus confirming that discriminating 

variants differ in the number of genes detected in a given instance.   

We have determined that the distribution curves of the three variants show quite 

similar profiles, but they do not keep a “strict” relation along their domains. 

Although each curve evolves monotonically, their mutual relations change 

according to the number of genes detected (see Figure 6).  
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Figure 6.  Comparative hierarchical order of the distributions curves corresponding to Q-

GDEMAR variants as a function of the number of significant genes detected along the twelve 

microarrays analysed in Table S1. The discriminant variants compared are the Median Ratio 

(blue line), the ∆2-Difference (red line) and, the ∆1-difference (green line). Regions (I to IV) are 

defined by the zones of the domain where the change in the hierarchical order takes place.  

 

The trends displayed in Figure 6 can explain the data observed in Table S1 

(ESI), in the sense that Median Ratio outperforms the ∆2- or ∆1-Difference in 

some microarrays, but only within a given range of detected genes. The fact that 

hierarchical order among the curves in Figure 6 does not change point to point, 

but along a few, discrete intervals, suggests that the observed variations reflect 

true differences in the behaviour of the variants rather than mere noisy data .   

Differences due to the unbalance in size among the compared groups can 

also influence the variants performance. This was observed in GSE5281 

microarray, where a poor correlation between the average and the median values 

(R2=0.625) is found in three samples of the treatment group. Nevertheless, the 

control group of the same microarray, which comprised ten samples, shows an 

excellent correlation (R2=0.999; data not shown). Hence, the median ratio variant 

out-performs the ∆1-Difference in the case of the GSE5281, because the better 

variant is based on median values, responding more accurately to the nature of 

the data (see Table 1S, ESI).  

Moreover, “unbalanced sampling” could exert an “interaction effect” rather 

than a “fixed effect”. That is, the effect produced by size differences between the 

groups could vary depending on the high or low number of replications involved 

in a particular comparison. This is the case of the microarrays GSE35713 (44 

control samples against 11 treatment samples) and GSE54992 (6 control 

samples against 9 treatment samples). In both cases, the ∆1-Difference out-

performed the median-based discriminating variants. This seems justified since in 

these cases, a high correlation between means and medians within each 

condition is guaranteed due to the high number of samples considered. In 

addition, the weight factor used as correction in ∆1-Difference seems able to 

compensate the strongly unbalanced experimental design used. Besides, the 

number of genes detected in GSE35713 fall into the Region II of Figure 6, 

providing an additional reason for ∆1-Difference variant out- performing the other 

discriminating variants.   
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In brief, given that the relative performance of each discriminant variant 

depends on the number of genes detected in each particular microarray, but the 

number of genes that will be detected is unknown beforehand, a practical 

consequence of Figure 6 is that there is no a priori preferred form for calculation 

of a suitable discriminating variable. The three variants have to be tested by Q-

GDEMAR, and best selected for a given micro-array.    

 

3.4 What determines the efficiency of the discriminant variants? 

In order to quantify the efficiency of the discriminating variables we introduce 

the index Phi (Φ), defined as Φ = [1-(σcentral /σglobal)], where σcentral is the standard 

deviation for the Gaussian central region of the data distribution (computed 

through the Gaussian deconvolution operation), and σglobal is the apparent 

standard deviation (computed upon the entire data distribution).  

The index Φ characterizes how good is a given discriminant variant in separating 

the largest population of genes with invariant expression from those small groups 

of genes which are deregulated in a given condition. Note that if Φ index is zero, 

there is no gained discrimination from the central region (i.e., σCentral= σGlobal). On 

the contrary, an ideal value of 1 would imply that the genes without significant 

variation would have a unique, constant value of expression (i.e., σCentral=0). In 

this case, the discrimination between the genes belonging to the Gaussian 

central region and those de-regulated genes localized at the tails of the “entire” 

data distribution will be maximum. Otherwise, as in general could be expected, 

the Φ index will take some value comprised between zero and one (i.e., σCentral < 

σGlobal). 

Importantly, the “index Φ” shown to be significantly correlated with the 
“number of genes detected” by Q-GDEMAR variants (R-Pearson=0.806, p<1x10-

4), and this correlation persists even after being corrected by the kurtosis (partial 
correlation Rgenes_Φ(kurtosis) =0.8418) or the skewness (partial correlation 
Rgenes_Φ.(skewness) = 0.8194). Because other co-linear relations also occurred, the 
correlation matrix of system’s variables (see Table S3, ESI) was subjected to 
principal component analysis (see Figure 7). 
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Figure 7: Eigen-decomposition of the correlation matrix of Table S3. The correlation matrix 

(apparent dimension=5) was projected on two bi-dimensional sub-spaces (PC1-PC2, PC2-PC3). 

A. The scores of the projected points are disaggregated according to the type of discriminant 

variables used for processing: Median Ratio (●), ∆2-Difference ( ), ∆1-Difference (▲). B and C.  

Biplot representations of the points projected, but without disaggregation of the discriminating 

variants. The axis are the principal components (PC), and the values between parentheses give 

the percentage of variance explained by them. The relative position of the analysed variables in 

each sub-space is given by the eigenvectors of the correlation matrix (blue arrows). The closer 

the vectors, higher the cosine of the angle comprised, and hence, higher the correlation between 

the variables that they represent.  

 
Figure 7A shown that no particular pattern of the data is detected among the 

three discriminating variants used. This is in line with our previous finding 
concerning the “shape” similarity  observed with the distribution  profiles 
associated to each variant (Figure  6). Importantly, data in Figure 7A support the 
hypothesis that differences among the discriminant variants are not produced by 
intrinsic differential features, but for the fact that discriminant variants could share 
a common, still unidentified factor that is present at different levels in a given 
microarray condition.   
 
Moreover  the  eigen-analysis  performed  confirms  the  trend  of  “Φ  index”  to  
be positively correlated with the “number of genes detected” (see Figure 7C and  
Figure 7B).  That  is,  “Φ  index”  can  be  the  unifying  factor,  shared  by  the  
three discriminant  variants,  differing  only  in  the  level  of  efficiency  achieved  
in  each particular case.   

 
Because PC1 together with PC2 explain 75% of the data variability, a main 

trend  
of  “FDR”  to  negatively  correlate  with  the  “number  of  genes  detected”  can  
be established (see Figure  7B).  However, a minor trend in which these variables  
appear in positive correlation also is observed (see Figure  7C).  Logically, the 
index Φ correlated negatively with FDR in the first case (see Figure 7B), but 
positively in the second case (Figure 7C). Anyway, from a practical point of view, 
it should be remembered that although a high value of the Φ index could 
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increase the value of FDR, in our method FDR was usually very low (median 
value: 0.67%, interquartile range: 0.87%).   

Concerning “kurtosis” and “skewness”, there is with both a main trend to 
worsen the FDR by increasing its value (see Figure 7B), but some minor cases 
exist in which neither of these variables affected the FDR (see Figure 7C). 
Moreover, skewness and kurtosis appeared as nearly orthogonal to “Φ index” 
(see Figure 7B), which is opposite to the shown in the matrix of correlations 
where these variables have significant correlations (see Table S.2, ESI).  

The apparent discrepancies are explained because correlations in Table S.2 
were computed on the raw values of the variables, whereas in Figure 7 the 
variables are Z-standardized for the principal component analysis given that they 
come from a correlation matrix. Hence, while in the first case correlations are 
dominated by those variables with higher variance, in the second case this 
influence is neutralized.  

A near orthogonality was observed between the pair skewness-kurtosis with 
respect to Φ index. This could mean either a non-linear relation between the 
“shape” of the initial distribution of the data and the level of gain of discriminating 
efficiency achieved through the Gaussian deconvolution or that there is no 
relation at all between these variables. A method based on specific algorithms to 
deal in complex way with the skewness and the kurtosis has been proposed to 
address the problem of the (non-linear) interactions between the variables.10 

However, in our approach, these structural features of the entire distribution are 
not treated separately, but subsumed in the operation of Gaussian 
deconvolution.  

The occurrence of several main trends in the principal component analysis 
coexisting with other minor cases in which previous relationships appear inverted 
or relaxed, denote segmentation of the data. By cluster analysis, we verified this 
segmentation (results not shown). This open the possibility of occurrence of 
“local” correlations rather than overall correlations. In spite of the data 
segmentation, we have verified by using the R Pearson correlation that “Φ index” 
is strongly related to the “number of genes detected”. Analyses by partial 
correlation and principal component also confirm this relation. Although 
correlations do not necessarily imply causality, these findings strongly suggest 
that the efficiency of Gaussian deconvolution (i.e., the Φ index), effectively 
conditions the number of genes detected in the microarrays. 

3.5 Is Cauchy distribution an alternative to Median Ratio in Q-GDEMAR? 

It has been proposed that genes differentially expressed can be determined by 
models based on the Cauchy distribution,53 a subtype of “alpha-stable” 
distributions.54 Cauchy distribution is generated by the quotient of two normal, 
independent variables. Its main advantage is that median ratios of the samples 
converge to the true median ratio of the population while the tails of the 
distribution are “heavier” than the expected for a normal distribution, being thus 
closer to the microarrays reality.  

 
Our Median Ratio discriminating variant is also computed as the quotient of 

two independent variables. However, neither the control nor the treatment 
conditions followed a normal distribution in the microarray data-sets that we have 
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analysed. Hence, it is not to be expected that Median Ratio follow a Cauchy 
distribution.  
 
Moreover, Cauchy distributions are symmetric. Instead, in our Median Ratio 
distributions only a sub-set of microarrays are free of significant skewness. 
Interestingly, some particular subtypes of alpha-stable distributions allow some 
degree of a restricted asymmetry.54 However, neither Cauchy nor alpha-stable 
distributions account for kurtosis, another prominent characteristic frequently 
observed in the Median Ratio distributions (see Table S2, ESI). Therefore, it 
should not be expected that Cauchy or alpha-stable distributions can be used as 
general method for microarray analysis.  
 
As practical example of the consequences generated when the requisites of 
Cauchy distributions are not fulfilled, we analysed the microarray GSE 36297 
with this method. The results are depicted in Figure 8.  
 

 

 

 

 

 

 

 

 

 

 

Figure 8: Q-Q plot between the “expected” cumulated probability distribution according to a 

Cauchy-based model and the “empirical” cumulated probability distribution. Computations were 

done upon data from microarray GSE36297,
43

 which result in a Cauchy model with two 

parameters (location t=0.9798 and scale s=0.0389).   

 

As can be seen in Figure 8, the fitting by a Cauchy distribution model is very 

poor. In fact, there is no quantile correspondence at the tails among of the 

compared distributions. The reason explaining the lack of fitting is the moderate 

level of kurtosis present in the data. This result is in contrast with the excellent 

performance obtained with the same microarray by Q-GDEMAR (see Tables S1 

and S2, ESI).  

 

It should be noted that neither Q-GDEMAR nor Cauchy-distribution assume that 

the overall data distribution is Gaussian. Hence, Q-GDEMAR also recognizes the 

problem of the “heavier tails”. But, Q-GDEMAR deals with “heavier tails” in a less 

restrictive and more accurate way than Cauchy-based models do. 
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3. Conclusions 

The rigorous analysis of the microarray data is a hard, complex task. Its 

complexity arises from de convergence of multiple non-linear interacting factors. 

Some of them are the analytical variability, the biological variability inherent to the 

sampled subjects, the type of discriminating variable adopted, the absolute and 

the relative degree of unbalance between the compared groups. In order to fully 

rationalize these factors and to obtain an exhaustive explanation, a mathematical 

model where the multiple interrelations are represented is required.  

Because such a model is rarely available, other alternatives should be 

envisaged. Our proposal intends to fill this need. Being aware of its shortcomings 

and limitations, the proposed method has nonetheless some significant 

advantages. First, in 58 over 68 cases compared Q-GDEMAR showed a higher 

sensitivity to detect genes differentially expressed (p=1x10-10). Second, it allows 

computing in a simple straightforward way two-tail FDR values, which are 

associated to the sub-populations of up- and down regulated genes rather than 

to each individual gene. Third, in addition to its higher sensitivity, the procedure 

that we have developed allowed us to achieve very low levels of FDR 

(median=0.67%, interquartile range=0.87%). Fourth, the method is statistically 

sound because univocal, well-defined p-values are assigned to the different 

values of the discriminant variable. Fifth, the outputs of the method, such as p-

values and FDR, are independent from any particular theoretical assumption and 

thus, the risk to be under- or over-estimating the number of genes of interest is 

minimized.  

Importantly, our method achieved high sensitivity for gene detection while 

maintaining very low levels of FDR, in strong contrast with algorithms commonly 

applied. For example, simulation studies of Yang and co-workers’ using five 

popular methods for microarray post-processing analysis showed that their  

power of  detection ranges between 10 to 60% when the size of replication varies 

between 3 to 12 samples; a maximum power of 80% is achieved only if more 

than 25 samples are used, an experimental condition rarely fulfilled.8 On the 

other hand, simulation studies of Mc Carthy and Smyth practiced on six current 

methods for post-processing analysis showed that these methods can maintain 

low FDR values only if the number of differentially expressed genes considered is 

limited to less than 200 genes. If the list were increased to 400 genes, a FDR 

value as high as 33% is generated.55  

 
There are no rules about what should be considered an “acceptable” value of 
FDR. A cost-benefit criterion based on practical considerations has to be used. 
The cut-off value of FDR should be decided taking into account the aim of the 
analysis, the inherent level of biological variability, the analytical variability of the 
microarrays, and the cost of the polymerase chain reaction (PCR) validating the 
analysis. In any case, the FDR values condition the number of genes that can 
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potentially be accepted as differentially expressed (the lower the FDR achieved, 
the higher is the number of identifiable deregulated genes). Many published 
microarray studies report a range from 10 to 500 top dysregulated genes. 
However, this criterion implicitly links the supposed biological importance exerted 
by one gene with the magnitude of the fold-change observed with it. However, it 
is a fact that many genes showing slight changes (~15-20%) can also exert 
important effects. In addition, the consistency of the microarray findings can also 
be tested through network analysis and ontology analysis, besides being 
validated by PCR and/or proteomics. These two complementary procedures, 
being context-dependent techniques, would require lists of candidate genes as 
long as possible. Again, the importance of obtaining  high sensitivity of detection 
together with low FDR values, both features of our method, makes our approach 
very valuable (Section 3.2).  

Although Q-GDEMAR was primarily devised to deal with the detection of 
differentially expressed genes in unbalanced groups, actually it is a general 
method for the post-processing analysis of c-DNA and oligonucleotide-based 
microarrays. As such, its application can be extended to other experimental 
designs not included in the present study. Hence, Q-GDEMAR can deal with 
paired samples, (1-way) ANOVA, and factorial designs, time-regressions, 
dosage-regression, or survival (COX) analysis. Importantly, the post-processing 
analysis of the dual-channel microarrays2 can also be addressed by our method.   

The common reason that justifies the ample scope of Q-GDEMAR is that in all 

the referred cases, the relation between treatments and control conditions finally 

converges in a unique, continuous, unimodal distribution to be analysed. 

Q-GDEMAR and our procedure to compute FDR rely on the fact that most of 

the genes within a microarray, do not vary significantly their expression and 

follow a Gaussian distribution. This is not a supposition guided by mathematical 

convenience, but a fact supported by our analysis of the twelve microarray data-

sets dealt with in this work (Figure 2.A, Section 2.1). What can change between 

different microarrays is not the presence of Gaussian central region, but the 

extent of its dispersion. According to the features of each microarray distribution, 

the operation of deconvolution provides an estimation of its interquartile range 

(IQR=Q0.75-Q0.25), which is related with the apparent SDGaussian_central_region through 

equation 7 (Appendix 2, ESI). Different SDGaussian_central_region values, through the 

interplay among equations 7-14, lead to different levels of FDR, and hence, to 

different number of genes detected as differentially expressed (Appendix 2, ESI).   

So, either Q-GDEMAR or our procedure to compute FDR can function through 

the Gaussian deconvolution process, whichever the profile of the overall data 

distribution of the microarray.  
 

Electronic Supplementary Materials (ESI) 

Annex 1: Computation of p-values 

Annex 2: Computation of false discovery rate (FDR) 

Table S1: Comparison of the performance of the Q-GDEMAR method against 
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the results obtained by the reference LIMMA 

Table S2: Efficiency of the different discriminant variants and shape 
characterization of the data distributions. 
 
Table S3: Matrix of correlation between some intrinsic characteristics of the 
data  
distributions  (Skewness  and  Kurtosis)  and  several  output  measurements  

(Φ index,  Total  genes  detected, FDR̅̅ ̅̅ ̅̅ )  computed  upon  the  Q-GDEMAR  
variants shown in Table S2. 
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