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Abstract 

1
H NMR-based urinary metabolic profiling is used for investigating the unstable 

angina pectoris (UAP) metabolic signatures, in order to find out candidate biomarkers to 

facilitate medical diagnosis. In this work, 27 urine samples from UAP patients and 20 

healthy controls were used. The metabolic profiles of the samples were analyzed by 

multivariate statistics analysis, including PCA, PLS-DA and OPLS-DA. The PCA 

analysis exhibited slight separation with R2X of 0.681 and Q2 of 0.251, while the 

PLS-DA (R2X= 0.121, R2Y = 0.931, Q2= 0.661) and the OPLS-DA (R2X =0.121, R2Y= 

0.931, Q2=0.653) demonstrated that the model had good performance. By OPLS-DA, 20 

metabolites were identified. A diagnostic model was further constructed using the 

receiver-operator characteristic (ROC) curves (AUC = 0.953), which exhibited satisfying 

sensitivity of 92.6%, specificity of 90% and accuracy of 89.1%. The results demonstrated 

that the NMR-based metabolomics approach possessed good performance to identify 

diagnostic urinary biomarkers, providing new insights into metabolic process related to 

UAP.  

Keywords: Unstable angina pectoris (UAP), Metabolomics, Urine, NMR 
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Introduction 

Unstable angina pectoris (UAP), a common complication of coronary heart disease 

(CHD), which accounts for more than one million hospitalizations annually, has affected 

as many as one third of individuals before the age of 70 years and contributed to a major 

cause of mortality and morbidity in developed countries
1-4

. 

In clinical practice, the symptoms of patients, such as high levels of cholesterol, 

triglyceride-rich lipoprotein particles (mainly VLDL and LDL) and lower levels of 

cholesterol in HDL particles, are critically important in making the diagnosis of UAP 
5
. 

The most prevalent method is the angiography which is a kind of invasive imaging 

technique
2
. However, the current clinical management of UAP depends on assessing risk 

rather than on definitive diagnosis.  

The pathogenesis of many diseases is associated with metabolite abnormalities in 

metabolism of body fluids and tissues
6
. Metabonomics broadly aims to measure the 

global, dynamic metabolic response of living systems to biological stimuli or genetic 

manipulation
7
. It enables the differential assessment of the levels of a broad range of 

endogenous and exogenous molecules and has been considered to have a great impact on 

the investigation of physiological status, diagnosis of diseases, discovery of biomarkers, 

and identification of perturbed pathways due to disease or treatment 
8, 9

. 

High-resolution NMR spectroscopy, a quantitative and non-destructive technique, is a 

robust and reliable analytical method with paramount reproducibility and 

repeatability
10-12

. A NMR-based metabolomic approach instituting a sensitive 

high-throughput molecular screening has already demonstrated promising results in 

diagnosing a variety of cardiovascular system disorders
13−17

.  
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Urine is an excellent biological fluid for various medical studies due to its easy 

collection from patients of all ages, low cell and protein content, and rich chemical 

composition.
18-20

 Urinary metabolomics has emerged as a powerful non-invasive tool for 

diagnosing and monitoring variety of human diseases 
21-26

. In the present study, we 

attempted to determine the features in urinary metabolites of UAP patients and healthy 

controls. The differences in metabolite profiles are identified between the urine of UAP 

patients and that of healthy controls as a result of physiological and pathological 

variations. Further characterization and validation with large sample size might help 

establish their utility as biomarkers of clinical benefit.  

Materials and methods 

Clinical Participant 

All study participants were given informed consent for the investigation, which was 

approved by the Ethical Committee of Beijing University of Chinese Medicine. The 

study included 27 unstable angina pectoris patients from the Affiliated Dongfang 

Hospital of Beijing University of Chinese Medicine between May 2010 and August 2011. 

Healthy control subjects were 20 volunteers derived from the medical examination center 

of the Affiliated Dongzhimen Hospital of Beijing University of Chinese Medicine. 

Detailed data about patients and controls were presented in Table 1. 

(1) Inclusion, Exclusion, and Rejection Criteria 

All selected patients were diagnosed and confirmed by coronary angiography. 

Diagnosis criteria of UAP refer to “Treatment guide of stable angina” (ACC/AHA, 2002) 

and “Diagnosis and treatment recommendations of unstable angina” (Chinese Society of 
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Cardiology, 2000). 

Inclusion criteria of UAP patients are as follows: (1) aged 20–90years old, male or 

female; (2) meeting the unstable angina diagnostic criteria. Inclusion criteria of healthy 

people cases are as follows: aged 20–90 years old, gender should correspond with the 

inclusion of patients; examination results were normal. All hospitalized patients had 

signed informed consent voluntarily. 

Excluded cases were patients who suffered from acute myocardial infarction, 

myocarditis, pericardial disease, cardiac neurosis, intercostal neuralgia, menopausal 

syndrome, or severe spondylosis; angina caused by rheumatic fever, syphilis, congenital 

coronary artery abnormalities, hypertrophic cardiomyopathy, aortic stenosis, or 

regurgitation; stroke, lung infection, nephritis, renal failure, urinary tract infections, 

rheumatism, severe arrhythmia, heart failure, cancer, and other primary and serious 

diseases of liver, kidney, and hematopoietic system. Pregnant or lactating women, 

patients with allergies or psychosis, were also excluded. 

Rejection Criteria. Violation of inclusion criteria or meeting the exclusion criteria was 

removed; persons missing the clinical data and who could not be statistically analyzed 

were removed. 

(2) Collections of Clinical Data 

General information, history, past medical history, family history, personal history, 

and signs were collected within 24 hours after the patients were admitted. Details of 

information from traditional four diagnostic methods were also recorded. Collections of 

patient histories and information from traditional four diagnostic methods were 

determined by the relevant professionals. Specific requirements include having the 
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occupation qualification, attending physician or above, and having relevant clinical 

experience more than two years. 

Urine sample collection and preparation 

The urine sample was collected from all patients in the morning after fasting for at 

least 12 hours and put into ice-cooled vessel containing 1% sodium azide and promptly 

placed in a freezer (–20°C).Within 3 hours of collection, the urine samples were stored in 

a –80°C freezer until urinalysis.  

Urine samples were thawed only once in a biosafety fume hood , and were prepared 

by mixing 550 μl of urine with 55 μl of 1.5 mol/L deuterated phosphate buffer (NaH2PO4 

and K2HPO4, including 0.1% TSP (sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4), pH 

7.47), adding D2O up to 550 μl if the urine is not enough. The urine-buffer mixture was 

left to stand for 5 min at room temperature and then centrifuged at 10000 rpm at 4 ℃ for 

10 min to remove suspending debris. The supernatant (550μl) was then transferred into a 

5 mm NMR tube. TSP served as a chemical shift reference (δ0.0)，and D2O provided a 

lock signal. 

1
H NMR spectroscopic measurement of urine 

The urine samples were analyzed at 298 K using a VARIAN VNMRS 600 MHz 

NMR spectrometer (Varian Inc, Palo Alto, Calif) operating at 600.042 MHz using a  

5-mm inverse-proton (HX) triple resonance probe with z-axis gradient coil. NMR spectra 

of the urine samples were acquired using the standard sequence: one dimensional 

spectrum using the first increment of the NOESY pulse sequence 

(RD–90°–t1–90°–tm–90°–ACQ) with water suppression, which was achieved with an 
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irradiation on the water peak during the relaxation delay (RD = 2.0 s) and a mixing time 

(tm) of 100 ms, t1 was set to 4 μs. The 90° pulse length was adjusted to approximately 10 

μs, and 128 transients were collected into 64K data points for each spectrum with a 

spectral width of 20 ppm. The FIDs were weighted by an exponential function with a 0.5 

Hz line-broadening factor prior to Fourier transformation. Standard COSY, TOCSY, 

HMBC and J-resolved spectra were also acquired for metabolite identification of the 

selected urine samples.  

All of the 
1
H NMR spectra were corrected for phase and baseline distortions 

manually by MestReNova7.1.0 (Mestrelab Research, Spain). The spectral region δ 

9.0-0.5 for each urine sample was automatically data reduced to 1700 integral segments 

of equal length (0.005 ppm). The area under the spectrum was then calculated for each 

segmented region and expressed as an integral value. The regions of water resonance 

(δ5.20-4.70) were removed to eliminate baseline effects of imperfect water signal. The 

choice of an appropriate normalization method should consider several aspects. The 

optimal normalization method should be chosen carefully after consideration of the data, 

experimental design, statistical aims, and the balance of accuracy and precision 

ascertained through the use of auxiliary information
27

. As the concentration of creatinine 

exist a little difference between different clinical samples, the integral data of each 

spectrum were normalized to a constant sum of all the integrals in a spectrum to reduce 

any significant concentration difference between the samples and then exported to text 

files for further multivariate statistical analysis. 

Multivariate statistical analysis 

The resulting integral data were imported into SIMCA-P+12.0 (Umetrics, Sweden) 
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for multivariate statistical analysis. An unsupervised principal component analysis (PCA) 

model was performed using a mean-centered approach and data were visualized by the 

principal component (PC) score plots to identify general trends and outliers. To improve 

the separation due to patients and to minimize other biological analytical variation, 

sample classes were modeled using the PLS-DA (partial least-squares discrimination 

analysis) and O-PLS-DA (orthogonal projection to latent structure with discriminant 

analysis) algorithm at a unit variance-scaled approach. R2 and Q2 values were used to 

assess the amount of variation represented by the principal components and robustness of 

the model, respectively. The validity of the models against overfitting was assessed by 

the parameters R
2
X and R

2
Y, and the predictive ability was described by Q

2
. All models 

were cross-validated by permutation tests (permutation numbers 200) 
28,29

. The variable 

importance in the projection (VIP) value and the correlation coefficient (r) were used to 

reflect the importance of the metabolites, In our study, A |r| value > 0.432(for degree of 

freedom=19) and a VIP value > 1 were a priori considered as the cutoff value for the 

statistical significance on the basis of the literature
28

. The loading plots and differential 

metabolite peaks were displayed as positive and negative signals to represent the 

corresponding changes of metabolites by means of a MATLAB script (downloaded from 

http://www.mathworks.com) with some in-house modifications and were color-coded 

with absolute values of coefficients (|r|). On the loading plot, positive signals correspond 

to those metabolites that had an increased concentration in the urine of patients with UAP. 

Conversely, a negative signal corresponds to those metabolites that had an increased 

concentration in the urine of healthy controls. The main metabolites responsible for class 

discrimination were also manually calculated by peak integration.  
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In addition, an independent samples T-test was used to detect significant differences 

in selected signals between the two groups by SPSS Statistics Base 17.0 (SPSS Inc, USA). 

p value less than 0.05 was considered to be statistically significant. Additionally, 

diagnostic model was constructed by the marker metabolites alone using linear 

discrimination analysis method. We used random forest clustering to interrogate the top 

20 biomarkers with significant alterations in the patients as compared to the control from 

the web site (http://www.metaboanalyst.ca/). The classification performance (sensitivity 

and specificity) of the OPLS-DA model and the area under the curve (AUC) of ROC 

were also calculated from the respective Monte-Carlo cross validation (MCCV) 

prediction ( http://www.roccet.ca/). 

Results 

1
H NMR Spectra of Urine Samples 

Urine is the most readily available biological fluids and contains a large number of 

metabolites secreted by the kidney after a series of biochemical process, thus it can 

provide valuable bio-information on the organism’s metabolism. The representative 

spectra for 
1
H NMR analysis of urine samples from unstable angina pectoris (UAP) 

patients and healthy controls (HC) were shown in Figure 1. Resonance assignments were 

performed according to the existing literature 
30–32

 and in-house NMR database and 

further confirmed with analysis of the 2D NMR spectroscopy (COSY, TOCSY, HMBC 

and J-resolved spectra). The spectra were dominated by a number of metabolites, 

including several kinds of short-chain fatty acids such as 3-Hydroxybutyrate and 

3-Hydroxyisovalerate, some organic acids such as indol-3-acetate, hippurate and 
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methylmalonate, some amino acids such as lysine, proline, glutamine and phenyalanine 

etc. And some waste metabolites such as trimethylamine-N-oxide (TMAO), formate, 

trimethylamine(TMA), creatinine, choline, N-methylnicotinamide and carnosine. The 

urinary profile of the UAP group was characterized by lower levels of creatinine, 

histidine, choline, N-methylnicotinamide and carnosine, and higher levels of lysine, 

indol-3-acetate, hippurate and aspartate. 

Metabonomics Analysis of Urine Samples of UAP and HC 

PCA was first performed to detect any group separations based on NMR signal 

variability and the score plot was obtained with the first two PCs presenting 41.4 % and 

26.7% variance, respectively (Figure 2; R2X = 68.1%, Q2 =25.1%). Figure 2 showed a 

good trend of separation between UAP group and HC group along PC1, but there was 

also a partial overlap, so there was no significant difference between healthy controls and 

UAP patients according to the PCA score plot.  

Then, a cross-validated PLS-DA model with satisfactory discriminating ability was 

established to assess the metabolic differences between UAP and HC (Figure 3). PLS-DA 

is a supervised method of data analysis which could maximize differences between 

groups and aid in the screening of the metabolite responsible for class separation by 

removing systematic variations unrelated to pathological status 
16

. On the score plot of 

the PLS-DA model (Figure 3A), UAP patients and healthy controls were discriminated 

obviously with R2X = 12.1%, R2Y = 93.1%, and Q2 = 66.1%. The parameters for 

describing the PLS-DA model were significantly elevated (R2Y, Q2 > 0.5), suggesting 

that the PLS-DA model was robust. To validate the performance of the PLS-DA model, a 

200-iteration permutation test was performed. The validation plot (Figure 3B) 
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demonstrated that the original PLS-DA model was not random and overfitting as both 

permutated Q2 and R2 values were significantly lower than the corresponding original 

values. 

To eliminate the influence of individual difference and have an insight into the 

changed metabolites responsible for the separation between two groups, the OPLS-DA 

model was constructed using the first principal component and the second orthogonal 

component. The quality of model was described by the cross-validation parameters Q2Y, 

indicating the predictability of the model, and R2Y, representing the total explained 

variation for the matrix. In OPLS-DA score plot (R2Y=0.931, Q2Y=0.653), a significant 

biochemical distinction between the UAP patients and healthy controls was identified 

(Figure 4A). The metabolic changes in UAP patients were reflected in the color coded 

coefficient plot (Figure4B). Metabolites exhibiting significant changes (P < 0.05) were 

identified based on the absolute cutoff value of correlation coefficients (|r|) and VIP value 

and were listed in Table 2. With a |r| value > 0.432(for degree of freedom=19) and a VIP 

value >1, the urine samples of UAP patients showed up-regulation of lysine, 

indol-3-acetate, hippurate, aspartate and down-regulation of 3-hydroxybutyrate, 

methylmalonate, proline, glutamine, TMA, creatinine, cis-aconitate, citrulline, histidine, 

choline, tryptophan, phenylalanine, τ-methylhistidine, carnosine, N-methylnicotinamide, 

trigonelline. 

In addition, the hierarchical cluster analysis (HCA) could readily be used to assess 

relatedness and distance of any type of samples characterized by any type of descriptors, 

and the result was displayed as ‘heatmap’. We used the metabolites listed in Table 2 as 
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the variables to conduct the HCA, and got the heatmap(Figure 5). The heatmap showed 

that the UAP patients and healthy controls were almost completely separated from each 

other, as the change of the metabolites was similar in the same group, and different in the 

different group. It could be observed that the metabolic state of UAP patients resulted in 

the decreased urine levels of 3-hydroxybutyrate, methylmalonate, proline, glutamine, 

TMA, creatinine, cis-aconitate, citrulline, histidine, choline, tryptophan, phenylalanine, 

τ-methylhistidine, carnosine, N-methylnicotinamide and trigonelline, as well as elevated 

levels of lysine, indol-3-acetate, hippurate and aspartate. The result of HCA further 

illustrated that these metabolites could distinguish the UAP patients and healthy controls, 

so these endogenous metabolites could be used as the potential biomarkers. 

Prediction and diagnostic performance test 

To validate the proposed OPLS-DA model and test its applicability in diagnosing UAP, 

ROC curves analysis was performed to validate the clinical efficacy of these potential 

biomarkers. Areas under the ROC curve (AUC) were generally considered as the method 

of choice for evaluating the performance of potential biomarkers: the greater the AUC, 

the better the prediction of the model. Figure 6A showed a set of ROC curves for SVM 

models created using different subsets of metabolites selected by the filter approach, six 

models were developed. The top 2 important variables (choline and 

N-methylnicotinamide ) were used to build classification models, the AUC value was 

0.82 and 95% confidence interval (CI) was 0.665-0.947. The AUC using a larger number 

of variables achieved even greater areas under the ROC curves, and got the maximum 

value 0.953 (95%CI, 0.849-1) when we used 18 metabolites as the variables. Meanwhile, 

the predictive accuracy was the maximum value 89.1% (Figure 6B). The metabolites in 
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Figure 6C were ranked by their contribution to distinguishing the UAP from controls. 

The greater the distance from the Y-axis, the greater the contribution of a particular 

metabolite in distinguishing cases from controls. This plot also indicated whether the 

metabolite concentration was increased or decreased in cases related to controls. The 18 

metabolites in Figure 6C include choline, N-methylnicotinamide, citrulline, 

trimethylamine, creatinine, carnosine, aspartate, tryptophan, trigonelline, cis-aconitate, 

indol-3-acetate, hippurate, 3-hydroxybutyrate, glutamine, lysine, methylmalonate, 

τ-methylhistidine and phenylalanine, and the importance decreased in this order. The 

predicted class probabilities (average of the cross-validation) for each sample using the 

best classifier (based on AUC) is illustrated in Figure 6D. The verification results 

showed that in the 27 UAP samples, 25 were predicted correctly, and in the 20 healthy 

control samples, 19 correctly. Therefore, the OPLS-DA prediction model exhibited a 

sensitivity of 92.6% and a specificity of 90% for UAP diagnosis. On the basis of selected 

biomarkers, ROC analysis revealed that UAP not only generate signature biomarkers and 

that these biomarkers can be used to diagnose them. 

Metabolic Pathway and Function Analysis 

In addition, based on the identified biomarkers, the urine metabolic pathway 

analysis was performed using MetPA to reveal the most relevant pathways related to 

UAP. The impact value of these pathways calculated from pathway topology analysis 

above 0.1 was screened out as potential target pathway. According to the impact value, 

we finally found 7 potential target pathways related to 12 metabolites indentified in this 

research. The 5 pathways (aminoacyl-tRNA biosynthesis, arginine and proline 

metabolism, histidine metabolism, alanine, aspartate and glutamate metabolism  and 
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phenylalanine metabolism) , which included more than one target, were disturbed when 

UAP occurred (Figure 7). The details of pathways were displayed in supplementary 

Table S1 and Figure S1-5, Supporting Information.  

Discussion 

Unstable angina pectoris (UAP) involves the sense of chest pain, pressure, 

or squeezing, often due to ischemia of the heart muscle from obstruction or spasm of 

the coronary arteries and it had been a great threat to the human health. The UAP can be 

controlled well when the diagnosis is timely, accurate, and definitive. Although humoral 

markers of plaque vulnerability [C-reactive protein; interleukin (IL)-6, IL-10 and IL-18 

and CD-40L] had been identified, these markers were of limited clinical use for diagnosis 

and risk stratification in individual patients. However, it should be noted that the 

metabolic state of the heart was at least partly reflected in urine metabolites that clearly 

pointed to an altered energy metabolism in UAP patients, which could be harnessed as 

markers of disease. Further mechanistic studies regarding this issue were warranted. 

In the present study, a 
1
H NMR-based metabonomic approach was employed to 

demonstrate metabolic differences between UAP patients and healthy controls. 

Subsequent analysis of the metabolite profiles of urine samples from UAP patients could 

distinguish patients from healthy normal controls and provide a fingerprint of metabolic 

changes that characterized the disease, and highlighted the potential of metabolomic 

analysis in the evaluation of a disease condition. Moreover, this approach was used to 

assess its accuracy and reliability in diagnosing UAP, which showed better performance 

in terms of both specificity and sensitivity. The 20 key metabolites responsible for 

discrimination between UAP patients and healthy controls were identified. These 
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metabolites include energy metabolism-related molecules (creatinine, cis-aconitate, 

methylmalonate and 3-hydroxybutyrate), amino acids (glutamine, citrulline, tryptophan, 

phenylalanine, τ-methylhistidine, lysine and aspartate), and the other metabolism 

molecules (TMA, choline, carnosine, hippurate, trigonelline N-methylnicotinamide and 

indol-3-acetate). And the combination of 18 metabolites appeared to be highly accurate 

predictors of UAP status. The sensitivity of this combination of metabolites was 92.6% at 

a specificity threshold of 90%. In our study, seven unique metabolic pathway of 

aminoacyl-tRNA biosynthesis, arginine and proline metabolism, histidine metabolism, 

alanine, aspartate and glutamate metabolism, phenylalanine metabolism, lysine 

degradation and tryptophan metabolism were identified from UAP patients. 

Creatinine is derived from creatine and phosphocreatine. The phosphagen system is 

very important for cellular energy transfer, and can be viewed as the body's energy buffer 

solution to maintain the balance of ATP in the body
34,35

. Under normal circumstances, 

most creatine transforms into phosphocreatine and generates ATP by the function of 

enzyme which process is reversible. In other cases it turns into creatinine without enzyme. 

The decreased level of urine creatinine in the UAP group illustrates that the UAP patients 

could not produce ATP normally, and need more creatine transformed into 

phosphocreatine to generate ATP
36

. Cis-aconitate is an important intermediate of TCA 

cycle, the decreased level may stem from the suppressed TCA cycle. The confusion of 

energy metabolism may come from the cardiac abnormality and insufficient oxygen 

supply to the body. Methylmalonate can transform into succinyl-CoA finally by the 

function of a series enzyme to get into TCA cycle. This is one of the anaplerotic reactions 

in the organism. Seok-Min Kang et al.
37

 found that there was a perturbation in 
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methylmalonate metabolism in patients with ischemic HF. The changes in the 

concentrations of methylmalonate also show the confusion of Krebs cycle indirectly. 

Glutamine is a kind of glucogenic amino acid, and it is also an important fuel for 

gluconeogenesis. The glutamine is the central part of the TCA cycle and plays an 

important role in many metabolic pathways, especially in maintaining the amino acid 

homeostasis. Turer et al 
38

 used metabolomic profiling to compare cardiac extraction and 

plasma substrates, and demonstrated that patients with CHD had decreased concentration 

of glutamate/glutamine. In this study, its reduced content maybe caused by the disorder of 

amino acid metabolism, Lysine can lower the levels of blood triglycerides to prevent 

cardiovascular and cerebrovascular disease, and its elevated content is the result of the 

organism self-adjustment. By the catalysis of enzyme, histidine could be transformed into 

histamine in the organism. The role of histamine is to dilate blood vessels and lower 

blood pressure. John et al
39

 illustrated that histidine was an effective quencher of singlet 

oxygen and could significantly improve the functional recovery of ischemic myocardium, 

and the decreased level of histidine aggravates the disease. Aspartate can be used as the 

carrier of K
+
, Mg

2+
 into myocardial areas by improving the myocardial systolic function 

and lowering oxygen consumption.  

In the organism, PCho/Cho can regulate lipid metabolism, and the choline also can 

soften the cholesterol to prevent it from accumulating in the blood vessel walls. Choline 

deficiency is also associated with increased lipid accumulation
40

. The decreased level of 

choline is not conducive to the recovery. 3-Hydroxybutyrate is a ketone body. In human 

body, 3-hydroxybutyrate can be used as an energy source by the brain when blood sugar 

is low. Ketone bodies serve as an indispensable source of energy for extrahepatic tissues, 
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especially the brain and lung of advanced mammals. Another important function of 

ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, 

fatty acids, and complex lipids, so the 3-Hydroxybutyrate deficiency is helpful to the 

recovery.  

Conclusion  

In the present study, 
1
H NMR-based metabolomics method combined with 

multivariate data analysis was used to distinguish independently UAP patients from 

healthy controls with high reliability. 20 potential biomarkers related to UAP disease 

were found by analysis and using 18 of the 20 metabolites as the biomarkers in 

diagnosing UAP disease exhibited a sensitivity of 92.6%, a specificity of 90% and an 

accuracy of 89.1%. The metabolomic approach is proved to be useful in improving the 

under diagnosis of UAP. However, compared with other new diagnostic approach, there 

are some limitations in our study attributed to the effects of other combinations on the 

metabolic profiles. This potential confounding factor can be analyzed by subgroups, and 

therefore, may be an interesting subject for further study. 
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Figure 1. Representative 600 MHz 
1
H NMR spectra of urine samples from UAP patient 

and healthy control subject, Distinguished metabolites: 1 3-hydroxybutyrate, 2 

methylmalonate, 3 lysine, 4 proline, 5 glutamine, 6 trimethylamine, 7 creatinine, 8 

cis-aconitate, 9 citrulline, 10 histidine, 11 choline, 12 tryptophan, 13 aspartate, 14 

hippurate, 15 indol-3-acetate, 16 phenylalanine, 17 τ-methylhistidine, 18 carnosine, 19 

N-methylnicotinamide, 20 trigonelline, 21 threonine, 22 3-hydroxyisovalerate, 23 alanine, 

24 Acetoacetate, 25 succinate, 26 citrate, 27 TMAO, 28 glycine, 29 taurine, 30 formate 
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Figure 2. PCA score plot (PC1 VS PC2)of UAP patients and healthy controls (HC), 

Score plots showing discrimination between UAP (black triangles) and HC (red 

squares)( R2X = 68.1%, Q2 =25.1%)  
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Figure 3. PLS-DA score plot(A) of UAP patients and healthy controls(HC), Score plots 

showing the degree of separation of the model between UAP (black triangles) and HC 

(red squares)( R2X = 12.1%, R2Y = 93.1%, and Q2 = 66.1%) and Statistical validation of 

the PLS-DA(B). A permutation test performed with 200 random permutations in a 

PLS-DA model showing R2 (green triangles) and Q2 (blue boxes) values from the 

permuted analysis (bottom left) significantly lower than the corresponding original values 

(top right). 
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Figure 4. OPLS-DA score plot(A) of UAP patients and healthy controls(HC), Score plots 

displaying the degree of separation of the model between UAP (black triangles) and HC 

(red squares)( R2X = 12.1%, R2Y = 93.1%, and Q2 = 65.3%) and OPLS-DA 

Corresponding color-coded correlation coefficient loading plots (B) of key metabolites, 

demonstrating discrimination of key metabolite levels between UAP patients and healthy 

controls. 
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Figure 5. Heatmap visualization constructed based on 20 biomarkers implemented in 

MetaboAnalyst2.0. Rows: samples; columns: biomarkers. Green: UAP patients; red: 

healthy controls. Color key indicates metabolite expression value: dark blue: lowest; dark 

red: highest. 
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Figure 6. Comparison of different variables based on ROC curves (A),the legend shows 

the feature numbers and the AUCs of the six models, the predictive accuracies(B) with 

different features based on ROC curves, the average importance(C) of the 18 metabolites 

based on ROC curves, Variable Importance in Projection (VIP) plot indicating the most 

discriminating metabolite in descending order of importance, and (D)Prediction of UAP 

patients and control using MCCV analysis. The class membership of the left-out sample 

was predicted using an a priori cut-off value of 0.5 (dashed line).  
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Figure 7. Summary of pathway analysis with MetPA (a) Aminoacyl-tRNA biosynthesis, 

(b) Arginine and proline metabolism, (c) Histidine metabolism, (d) Alanine, aspartate and 

glutamate metabolism, (e) Phenylalanine metabolism. 
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Table 1 Characteristics of UAP Patients and Healthy Controls 

 patients controls 

total individuals (n) 

age (years), range 

sex (F/M) 

BMI 

Smoker (Y/N) 

Triglycerides(mmol/L) 

Cholesterol(mmol/L) 

HDL(mmol/L) 

LDL(mmol/L) 

Use of antiplatelet drugs 

Use of nitrate esters drugs 

Use of statins 

Use of ACEI/ARB 

Use of beta blocker 

Use of calcium channel 

antagonist 

27 

62±5.98, 35-75 

14/13 

23.1±2.6, 

10/17 

1.91±1.10 

4.55±1.04 

1.11±0.27 

3.02±0.86 

27 (100%) 

12 (44.4%) 

19 (70.3%) 

2(7.4%) 

16 (59.3%) 

27 (100%) 

20 

57.63±3.84,42-65 

11/9 

24±4 

5/15 

0.84±0.24 

3.87±0.86 

1.23±0.31 

2.35±0.51 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

Data are presented as mean ± SD. There was no significant difference in demographic data between 

control and UAP patients. 
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Table 2 Quantitative comparison of metabolites found in urine of UAP patients and healthy controls 

a 
the relative integrals of metabolites were determined from 1D 

1
H NMR analysis of urine of each group. 

b
 The values of correlation number extracted 

from the correlation plots of OPLS-DA models. The cutoff values are 0.432 in the correlation-loading plot of UAP vs HC. 
c
 The p values were obtained 

from student’s t-test. The chemical shifts in boldface were that we used in calculating integrals and p values. The arrows (↑/↓) were used to show the 

metabolite levels increase/ decreased compared with healthy controls. 

metabolites Chemical shift HMDB ID Integral in UAP 

group
a 

 

(mean ± std)×10
-2

 

Integral in HC group
 

a
 

(mean ± std)×10
-2

 

r
 b 

(|r|>= 0.432) 

VIP p
c
 

(p < 0.05) 

3-hydroxybutyrate 1.21(d), 2.32(m), 2.41(m) HMDB00357 4.48 ± 1.74 7.32± 5.37 0.433 (↓) 1.96 0.03 

methylmalonate 1.25(d), 3.18(m) HMDB00202 5.19 ± 1.31 6.26 ± 2.41 0.450 (↓) 2.05 0.05 

lysine 1.74(m), 3.04(t), 3.77(t) HMDB00182 3.93 ± 1.24 3.22 ± 0.40 0.439 (↑) 1.62 0.009 

proline 2.03(m), 2.36(m), 3.43(m) HMDB00162 11.54 ± 2.85 13.08 ± 2.18 0.482 (↓) 1.98 0.05 

glutamine 2.14(m), 2.46(m), 3.79(m) HMDB00641 6.74 ± 2.71 8.24 ± 1.38 0.498 (↓) 2.14 0.03 

trimethylamine 2.91(s) HMDB00906 2.97 ± 1.20 4.22 ± 0.86 0.461 (↓) 2.17 0.002 

creatinine 3.05(s), 4.07(s) HMDB00562 357.6 ± 136.1 493.9 ± 84.3 0.587 (↓) 2.28 0.003 

cis-aconitate 3.12(s), 5.71(s) HMDB00072 7.70 ± 3.24 11.31 ± 5.32 0.518 (↓) 2.36 0.006 

citrulline 3.15(m), 3.77(t), 1.88(m) HMDB00904 10.19 ± 3.73 15.51 ± 4.0 0.638 (↓) 2.63 0.003 

histidine 3.14(m), 3.26(m), 7.11(s) HMDB00177 12.06 ± 2.86 15.35 ± 3.04 0.579 (↓) 2.27 0.001 

Choline 3.21(s), 3.53(m), 4.08(m) HMDB00097 10.10 ± 2.59 17.82 ± 7.03 0.621 (↓) 2.87 0.001 

tryptophan 3.32(m), 3.50(m), 4.07(m) HMDB00929 6.73 ± 1.74 10.44 ± 5.44 0.493 (↓) 2.27 0.008 

aspartate 2.69(m), 2.82(m), 3.91(m) HMDB00191 21.25 ± 8.95 13.67 ± 3.25 0.466 (↑) 1.86 0.001 

hippurate 3.98(d), 7.54(t), 7.65(t) HMDB00714 36.23 ± 18.42 22.44 ± 14.55 0.481 (↑) 2.47 0.008 

indol-3-acetate 7.17(t), 7.26(m), 7.52(d) HMDB29738 2.27 ± 1.20 1.34 ± 0.62 0.461 (↑) 2.04 0.001 

phenylalanine 7.33(d), 7.39(t) HMDB00159 5.52 ± 2.56 7.33 ± 3.48 0.453 (↓) 1.71 0.05 

τ-methylhistidine 3.70(s), 7.02(s), 7.66(s) HMDB00479 9.84 ± 2.73 11.70 ± 2.55 0.500 (↓) 1.86 0.02 

carnosine 7.10(s), 8.12(s) HMDB00033 0.52 ± 0.30 0.93 ± 0.43 0.533 (↓) 2.25 0.001 

N-methylnicotinamide 8.19(t), 8.91(d), 8.98(d) HMDB00699 0.74 ± 0.54 1.97 ± 1.19 0.713 (↓) 3.41 0.001 

trigonelline 4.45(s), 8.85(m), 9.13(s) HMDB00875 0.65 ± 0.69 1.48 ± 0.94 0.503 (↓) 1.98 0.002 
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