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Introduction

Computational modeling of cytokine signaling in
microglia’

Warren D Anderson,®?< Hirenkumar K Makadia,* Andrew D Greenhalgh,? James S
Schwaber,*?< Samuel David,? and Rajanikanth Vadigepalli®?-<*

Neuroinflammation due to glial activation has been linked to many CNS diseases. We developed

a computational model of a microglial cytokine interaction network to study the regulatory mecha-
nisms of microglia-mediated neuroinflammation. We established a literature-based cytokine net-
work, including TNFa, TGFS, and IL-10, and fitted a mathematical model to published data from
LPS-treated microglia. The addition of a previously unreported TGFf autoregulation loop to our
model was required to account for experimental data. Global sensitivity analysis revealed that
TGFB- and IL-10-mediated inhibition of TNFa was critical for regulating network behavior. We
assessed the sensitivity of the LPS-induced TNFa response profile to the initial TGFS and IL-
10 levels. The analysis showed two relatively shifted TNFa response profiles within separate
domains of initial condition space. Further analysis revealed that TNFo exhibited adaptation to
sustained LPS stimulation. We simulated the effects of functionally inhibiting TGFf and IL-10 on
TNFa adaptation. Our analysis showed that TGFf and IL-10 knockouts (TGFf KO and IL-10 KO)
exert divergent effects on adaptation. TFGS KO attenuated TNFa adaptation whereas IL-10 KO
enhanced TNFa adaptation. We experimentally tested the hypothesis that IL-10 KO enhances
TNFa adaptation in murine macrophages and found supporting evidence. These opposing ef-
fects could be explained by differential kinetics of negative feedback. Inhibition of IL-10 reduced
early negative feedback that results in enhanced TNFa-mediated TGFf expression. We propose
that differential kinetics in parallel negative feedback loops constitute a novel mechanism under-
lying the complex and non-intuitive pro- versus anti-inflammatory effects of individual cytokine
perturbations.

chemokines?=. At the extreme end of this continuum, microglia

Neuroinflammation is implicated in the pathophysiology of many
disease conditions including Alzheimer’s disease, epilepsy, stroke,
traumatic brain injury, and infection. Microglia are the resident
macrophages of the central nervous system (CNS) and these
cells are key regulators of immune functions of the brain such as
responses to bacterial infection, injury, or neurodegeneration!.
Following an injury or inflammatory stimulus, microglia often
adopt a non-ramified morphology and release a number of
pro- and anti-inflammatory substances including cytokines and
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acquire an ameboid phenotype that supports mobilization to
the lesion site for phagocytosis of damaged cellular material or
pathogen®3. Microglia also express receptors for many secreted
factors such that autocrine and paracrine signaling coordinate the
inflammatory microenvironment in CNS parenchyma following
glial activation®. The morphological and neurochemical effects
of glial activation can lead dysregulation of synaptic physiology
and intrinsic neuronal excitability 91>, thus highlighting the
important functional implications of microglial activation.
Furthermore, given the well established role of microglia in the
development and maintenance of synaptic function 1618,

infection- or injury-driven microglial inflammation during devel-
19-21

acute

opment exerts chronic deleterious effects on CNS functions

It is well known that neuroinflammation often entails a
complex panoply of interactions amongst neurons, astrocytes,
endothelial cells, and various immune cells2%22,  However,
microglia-mediated coordination of the inflammatory microenvi-

ronment is integral to the regulation of neuroinflammation2#25,
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Despite the critical role of microglia in CNS homeostasis, the
mechanisms regulating microglial inflammation are not well
understood. Microglial secretion of pro-inflammatory cytokines is
often considered to be harmful, although prevention of microglial
activation has been shown to yield pathological consequences.
For instance, antibodies directed against tumor necrosis factor-o
(TNFo) have been shown to exacerbate multiple sclerosis, and
mutations in a TNFo receptor gene have been shown to be asso-
ciated with this disease26. Further, anti-inflammatory cytokine
interleukin-10 (IL-10) has been shown to produce inflammatory
effects in the periphery?’. Hence, understanding how dynamic
interactions amongst cytokines coordinate the inflammatory
microenvironment is an outstanding goal in neuroinflammation
research.

It is clear that microglia both secrete and respond to a number
of inflammatory cytokines?. A expansive intracellular cytokine
signaling network has been utilized in computational studies of
microglia in Alzheimer’s disease 2829, However, a comprehensive
network of microglial cytokine/chemokine autocrine/paracrine
inter-cellular interactions has not been assembled to our knowl-
edge. The elucidation of this network structure is necessary
for defining the roles of secreted cytokines in coordinating
processes such as cellular adaptation. Cells often adapt to a
sustained stimulus by responding briefly and then returning to
baseline, and this adaptation is supported by signaling network
architectures involving negative feedback3?. Bacterial toxin
lippopolysacharride (LPS) elicits TNFa release from cultured
microglia followed by response adaptation in the continuous
presence of the stimulus3!.
stimulate negative feedback from IL-10 and transforming growth
factor-B (TGFB)31-33. While TNF is an important component
of the microglial innate immune response, its adaptation to LPS
is likely to be equally important for restraining inflammation and
preventing unnecessary tissue damage. However, the mechanistic
basis for TNFa adaptation, and the relative contributions of
feedback inhibitors such as TGFS and IL-10 to adaptation, has
not been established. Computational analyses have provided
useful insight as to the mechanisms of adaptation30-3*. For
instance, in a model of TLR-4-mediated NF«B responses to LPS,
occlusion of an anti-inflammatory negative feedback loop was
counter-intuitively shown to enhance adaptation3®. Such results
highlight the value in studying the mutual influences of network
structure and kinetics on system dynamics3°.

Many investigations of cytokine signaling in microglia ex-
amined the pairwise interactions between two cytokines, or
the effects of one cytokine on a set of others37-38. More com-
prehensive examinations of microglial phenotypic properties
under varied inflammatory conditions, accomplished using next
generation sequencing technologies 3940, were limited to studies
of few time points. Hence, we do not currently understand how
the interplay amongst secreted cytokines, to which microglia
are responsive, is coordinated to render physiological response
characteristics such as adaptation. Furthermore, defining the
interactions of the microglial cytokine network, as has been
accomplished for astroglia®!, is necessary but insufficient for
providing insight as to the control mechanisms that govern

TNFo has also been shown to
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the physiological responses of the integrated network and the
coordination of such responses over time.

Computational modeling approaches have provided valuable
insights into the mechanisms of peripheral and CNS inflamma-
tory regulation. Such models vary according to level of analysis,
cell type specificity, and model formulation. Levels of analysis in-
clude intracellular biochemical signaling#2, autocrine/paracrine
regulation of cell signaling, intercellular interactions*3, global
tissue level inflammatory regulation*+4°, and various multiscale
models incorporating integrated levels of analysis“6~4°. Intracel-
lular signaling models are generally cell type-specific, where cell
types include microglia?8:42%50 and peripheral macrophage®1>2,
as well as other cell types>3-°*. Modeling formalisms range from
Boolean logic representations28 to differential equations 425154
We employed a novel com-
putational approach to study microglial autocrine/paracrine
cytokine interactions with a model characterized by differential
equations. We focused on studying the LPS response in microglia.
Simulations and analyses of our model revealed that TGFf and
IL-10 have distinguishable kinetics and opposing contributions to
adaptation of TNFa responses to LPS.

and agent based models*6-48:55,

Experimental and computational methods

Mathematical model of autocrine/paracrine cytokine signal-
ing in microglia

We employed a variant of the classic S-systems model formula-
tion>®, based on the successful application of such an approach in
recent models incorporating cytokine-cytokine interactions®7->8,
We used the following formulation to simulate the expression dy-
namics of each cytokine,

dcCy
dr = kxf(cl)f(cj) - YXCx - YYS,XCSS.X (D
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where C, = Ci(t) is the expression of cytokine x (TNFo, IL-13,
IL-6, TGFf, IL-10, or CCL5) that is produced at rate k, upon acti-
vation by cytokine C; at time = 7 — 7, ;,. Thus, the delay term 7 ;,
is time between the activation of C; and its subsequent activation
of Cy. The activation of C, depends on C; according to a Hill func-
tion characterized by half-maximal activation constant K;, and
cooperativity coefficient n;,. Similarly, inhibitory cytokine C; re-
duces C, production with time delay 7, ;, according to a decreas-
ing sigmoidal function characterized by K, and nj,. The degra-
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dation of C; occurred with both concentration-dependent and
concentration-independent components determined by rate con-
stants ¥ and Y, respectively. The concentration-independent
degradation term encompassed the initial value of cytokine x,
which was set to Cysx = 0.1 for all cytokines, and a degradation
constant that was set to maintain a constant steady state (equa-
tion 2) in the absence of stimulation®?. According to available
data, LPS directly stimulates the production of all species in our
model aside from TGFf. Hence, LPS was included among the C;
terms for all species other than TGFf.

The model was implemented in MATLAB 2013a (The Math-
Works Inc., Natick, MA) using ode45 to integrate the differential
equations. We found that odel5s gave approximately identical
results. All parameter values appear in Supplementary Materi-
als and code to implement the model is available on the mod-
elDB database (http://senselab.med.yale.edu/modeldb/; acces-
sion number:170029) ©0.

Parameter estimation

We followed a procedure similar to our previous work®! (see Sup-
plementary Materials “Parameter estimation and model compari-
son" for further details). First, we initiated all coupling constants
(Kix and Kj,) based on available data. We then fitted the en-
tire model parameter set to normalized experimental waveforms
because our primary interest was to recapitulate the relative ex-
perimental kinetics (Fig 1). Furthermore, it was not possible to fit
our model to cytokine concentrations, given the available data, so
the model was set in arbitrary units. We constrained the fits such
that all model outputs were of the same order of magnitude (Fig
S1). The model includes a total of 93 parameters. We modeled
cytokine interactions without explicitly incorporating mechanistic
detail, hence, there is not an explicit relation between parameter
values and biological mechanisms. In particular, our model is
phenomenological and does not include details such as the dy-
namics of receptor-ligand interactions, intracellular signaling in-
teractions, and gene expression regulation regulation. Hence, it
is not entirely appropriate to explicitly associate the model pa-
rameters with specific biological referents. Rather, each param-
eter aggregates a number of biological processes (e.g., cytokine
production rate depends on transcription, translation, and post-
translational modification). As described in the Supplement, we
used numerical optimization to fit parameters based on minimiza-
tion of summed square differences between model prediction and
experimental data. We implemented a global sensitivity analysis
prior to selecting a final parameter set and manually tuned the
most sensitive parameters, as well as parameter associated with
the most sensitive network interactions (see Fig 2 and Fig 4D).

Global sensitivity analysis

We implemented variance-based global sensitivity analysis as de-
scribed previously®:02. We used the high dimensional model
reduction technique to decompose model output variance with
respect to parameter variations imposed across 100,000 sam-
ples. This implementation of global sensitivity analysis is superior
in evaluating parameter sensitivity in terms of parameter sam-
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pling®3 and accurate performance on non-linear models®4. The
total contribution of parameter 6; to Cy, including effects due to
first and higher order interactions, was given by

v (E(CX|BN,-))
V(Cy)

. E(V(Cx|6~,~))

T vy

€]

where E(.) is the expectation of the argument and Var(Cy|6-;)
is the variance of C, conditioned on all parameters other than 6;.
We determined the global parametric sensitivities of the TNFo re-
sponse to LPS by numerically estimating Sz, for all model param-
eters according to a previously described algorithm®2. Two-fold
variations were implemented for all parameters®!. See Supple-
mentary Materials for further detail on sensitivity analyses and
their implementation (“Sensitivity analyses", Figs S2,3).

Analysis of sensitivity to initial conditions

To assess the sensitivity of the LPS-mediated TNFa response to
the initial conditions of anti-inflammatory cytokines TGFf and
IL-10, we varied their initial values from 0.01 to 20 and evalu-
ated the effects on the TNF response. In addition, we performed
all of these anti-inflammatory variations over the same range of
initial TNFa values (TNFog). For these variations, we used 20
initial values from the aforementioned range, varied incremen-
tally in log space. All combinations of TGFf, IL-10, and TNF«
initial values were considered, thus generating 8000 simulations.
To assess TNFo sensitivity, we computed the normalized gradient
of the LPS-induced TNFa response with respect to either TGFS or
IL-10 (see Results, equations 5,6). We computed these gradients
over a range of time points and TNF ¢ levels and plotted the data
in a coordinate system defined by TGFf, and IL-10y.

Experimental techniques and data analysis

Animals: All procedures were approved by the Animal Care Com-
mittee of the Research Institute of the McGill University Health
Centre (RIMUHC). Male homozygote IL-10 KO mice (obtained
from Dr Radzioch, RIMUHC) or C57BL/6 control mice (WT;
Charles River Laboratories, CA) at 8 to 12 weeks of age were
used to obtain bone marrow derived macrophages for cell culture.

Macrophage culture and treatment: Macrophages were generated
as previously described®. Briefly, mice were euthanized and
their hind leg bones were removed. Bone marrow was flushed
out, homogenized and red blood cells were hypotonically
lysed. After washing, cells were cultured in RPMI media
containing 10% fetal bovine serum (FBS; 10%. Invitrogen,
CA), L-cell-conditioned media (10%; a source of M-CSF), peni-
cillin/streptomycin, and vitamins solution (1%; Invitogen, CA)
for 7 days. Mature macrophages were re-plated at a density of
80,000 cells/well in 24—well plates and left to adhere overnight.
Cells were treated with lipopolysaccharide (LPS; 100 ng/mlL) or
vehicle control (PBS) in RPMI containing FBS (10%) for 6 and
18 h durations.

Following LPS treatment, cells were lysed and total RNA
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Fig. 1 Network model and mathematical simulation of complex signaling dynamics involving pro- and anti-inflammatory cytokines. (A) The
literature-based network model depicts activation and inhibition of cytokine production, respectively, with black arrows and red T-connectors. The
dashed line representing the TGFf autoregulation loop indicates that this interaction is hypothesized rather than demonstrated experimentally. All
model species aside from TGFf were activated by LPS in our simulations. (B) The results of our calibrated model are shown along with normalized
experimental kinetic profiles. Simulations were performed in which a saturating stimulus of LPS = 1000 was applied at t = 0 and maintained
throughout the simulation. Traces are shown with and without the TGFJ autoregulatory loop.

was extracted using the RNeasy Lipid Tissue Kit (Qiagen, CA).
Reverse-transcription was performed with the Omniscript Re-
verse Transcription Kit (Qiagen, CA), and gPCR was performed
using 1 uL of ¢cDNA with Fast SYBR Green Master Mix (Applied
Biosystems, CA) on a Step-One Plus qPCR machine (Applied
Biosystems). Peptidylprolyl isomerase A (PPIA) was used as an
internal control gene. TNF primer sequences for were as follows:
Forward: 5'- TTG CTC TGT GAA GGG AAT GG-3’; Reverse: 5'-
GGC TCT GAG GAG TAG ACA ATA AAG-3'.

Data analysis: We calculated TNFa expression following
LPS application with standardization relative to PPIA. The effects
of LPS on TNFa gene expression levels were computed as —AACt

values®:

ACtpps = CtryFa,pes — Cippia,PBS

ACtrps = Ctynpo,Lps — Cippia,Lps
AACt = ACILPS — ACIPBS

Statistical comparisons of LPS responses from WT versus
IL-10 KO macrophages were performed using the two factor
analysis of variance (ANOVA). The Tukey honestly significant
difference (HSD) test was applied for multiple comparisons.
The Mann-Whitney-Wilcoxon test was applied to check ANOVA
results with a non-parametric test. Adaptation of the TNFx
response to LPS from 6 to 18 hrs was computed as follows:

4| Journal Name, [year], [vol.],1-16

4)

) —AACrg
Adaptation=1— | ——

—AACtg

where —AACy; represents the average gene expression change at
time i. To compare adaptation between WT and KO genotypes,
we used an ’error propagation’ metric to estimate the standard
deviation of adaptation ®7:

2 2
6= \/SEM62 (97#) +SEM, 2 (‘97#) (5)
d(—AACt) d(—AACts)

where A = Adaptation (equation 3) and SEM; is the standard
error of the mean (i.e., —AACt) at time i. Statistical analyses
were completed using functions aov, TukeyHSD, and wilcox.test
in the statistical programming language R°8.

Results and discussion

Network structure and simulation of cytokine signaling in mi-
croglia

Our first goal was to establish a cytokine signaling network, based
on microglial time-series data, that could be simulated with a
mathematical model. Experimental data show the temporal pro-
files of cytokine release following the application of bacterial
toxin lipopolysaccharide (LPS) to cultured microglia®. We cre-
ated a network including the following cytokines/chemokines:
TNFa, TGFS, IL-10, IL-6, IL-13, and chemokine (C-C motif) lig-

This journal is © The Royal Society of Chemistry [year]
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and 5 (CCL5). These species were chosen as network nodes for
the following reasons: (1) there exist time-series data document-
ing the microglial release profile following LPS application for all
network species, (2) a wealth of data exist with characterizations
of the interactions amongst these cytokines (e.g., the application
of TGFp to LPS treated microglial cultures attenuates TNFa re-
lease33), (3) these species are particularly relevant to our interest
in CNS-mediated control over cardiovascular physiology, based on
in vitro and in vivo data’%72, and (4) these cytokines are of broad
interest in neuroinflammation and neurodegenerative disease re-
search”3-75,

We distilled the results of our literature search into the interac-
tion network shown in figure 1A. All species in the network other
than TGFf have been shown to be directly activated by LPS, while
TGFB activation following LPS treatment depends on TNFa 7°.
With one exception (see below), every edge in the network was
derived from experimental data from microglia demonstrating an
activating or inhibitory effect of the source node on the target
(Supplementary Table 1). We assessed the topological properties
of the network and found that TNFo exhibited connectivity fea-
tures indicative of a prominent role in network control. TNFo
had the highest in-degree, out-degree, and number of shortest
path connections between other nodes. This suggests that TNFo
is topologically situated to globally control the dynamics of the cy-
tokine network, as expected based on experimental work 7>77-79,

To examine the dynamic coordination of microglial cytokine
signaling, we developed a mathematical model based on the
network of microglial cytokine/chemokine signaling interactions
(Fig 1A). A modified S-systems model formulation permitted cali-
bration to experimental data (Fig 1B) °°. A key assumption of our
model formalism was that AND logical gating governs the com-
bined effects of a group of cytokines on their target. For instance,
if cytokines A and B both activate the production of cytokine C,
cytokine C will only be produced if both A and B are active. In
OR gating, if cytokines A and B both activate the production of
cytokine C, cytokine C will be produced if either A and B is ac-
tive. We attempted to implement OR gating, in which the se-
quence product operator was replaced by the summation operator
in equation 1, but the model could not be calibrated to data with
this configuration (see Supplement, “OR gating model"). Hence,
we hypothesize that AND gating characterizes the collective in-
fluences of a group of cytokines on their mutual target. We also
assumed that the model rests at a steady-state state with arbitrar-
ily low species levels in the absence of LPS. This assumption is
consistent with data from cultured microglia in which cytokine
expression is nearly undetectable in the absence of a perturba-
tion”®, and data suggest that the brain in vivo contains low cy-
tokine levels under baseline conditions relative to disease states
or responses to inflammatory stimuli®0.

While we did not find evidence in the published literature on
microglia showing that TGFf coordinates its own release, we hy-
pothesize the existence of this autoregulatory loop because its in-
clusion in our mathematical model was necessary to recapitulate
the time-series data. Without the positive feedback autoregula-
tion loop for TGFf, cytokine/chemokine data from experiments
in which LPS was applied to cultured microglia could not be repli-
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cated by our model (Fig 1B; see Supplement, “Experimental data
used for parameter estimation" for further information). In partic-
ular, this autoregulation loop was necessary to obtain delayed and
relatively slow LPS responses for TNFo,, TGFf3, and CCL5. Sup-
porting the plausibility of this hypothesized TGFf autoregulatory
loop, data from astrocytes (a CNS parenchymal cell-type involved
in cytokine release with many functional similarities to microglia)
show that TGF application stimulates TGF upregulation*!,81,
TGF autoregulation has also been demonstrated in the CNS in
vivo®2, and in other non-CNS cell types83-8>, Our model predic-
tion of similar TGFf autoregulation in microglia thereby yields a
novel hypothesis for experimental evaluation. The final calibrated
model recapitulated the relative experimental kinetics. These re-
sults suggest that our modeling formalism captures a complex set
of interactions triggered by inflammatory stimulation by LPS.

In subsequent simulations, we found that our model with de-
lay differential equations (DDEs, see Methods, equations 1,2) was
computationally demanding to implement, and occasionally the
model generated sharp deflections in the dynamic variables (see
arrows in Fig S1C; see also Fig S10). These sharp deflections were
likely related to a numerical integration issue. However, DDEs
did not provide a significant advantage, in terms of the model fit
to data and model predictions, in comparison to ordinary differ-
ential equations (ODEs). To test whether we could obtain com-
parable results using ODEs, we set all time delay terms to zero
(ty =0 in equation 1) and verified that the resulting ODE model
yielded qualitatively similar simulation results (Fig S1C). Thus,
even though the DDE model provided a better fit to data, the per-
formance of the ODE model was optimal for our model analyses
(see Supplement, “Parameter estimation and model comparison",
Tables S2,3). The model fits appeared qualitatively similar and
other simulation results were nearly identical for the ODE and
DDE models. These results, along with others noted below, sug-
gest that the DDE and ODE models are comparable. We examined
the ODE model in the simulations and analyses presented below
unless otherwise noted.

TNFo is sensitive to anti-inflammatory feedback inhibition

To determine the relative influences of model parameters on cy-
tokine expression, we performed a global sensitivity analysis °1:62,
This analysis entailed the variation of all parameters in tandem
followed by the decomposition of model output variance into the
relative contributions of each parameter. Because our initial anal-
ysis of the cytokine network revealed that TNFq is topologically
positioned to exert robust control over network dynamics, and
given the well documented role of TNF¢ in neuroinflammatory
disease states’>, we focused on the sensitivity of TNFa to the
model parameters. Our sensitivity analysis showed that the TNFo
response to sustained LPS input was most sensitive to parameters
associated with TGFf production, IL-10 inhibition of TNFe, IL-
1B activation of TNFa, and IL-6 activation of IL-10 (Fig 2). All
other parameters had a relatively insignificant impact (i.e., to-
tal sensitivity < 0.2) on the global variability of TNFa. Of all
model parameters, 5.7% of the parameters exerted a prominent
influence on the LPS-induced TNF« response, thereby indicating
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model robustness.

To enhance our confidence in model robustness and the ab-
sence of deleterious parameter uncertainty, we evaluated the first
order sensitivity indices of each parameter and estimated the con-
fidence bounds on the entire set of TNFa responses included in
our global analysis. Furthermore, we conducted a local (i.e., sin-
gle parameter) sensitivity analysis and found independent vali-
dation of the results from our global analysis. The results from
these analyses were consistent with model robustness (see Sup-
plement, “Sensitivity analyses", Figs S2,3). To further address
whether multiple parameter sets could predict the experimental
data equally well, we performed parameter estimation starting
from 20 randomly selected initial parameter sets (Supplemen-
tary section “Parameter variation analyses"). The results show
that several distinct parameter fits describe the data comparably,
though none of the fits were significantly better than the reference
parameter set (see Fig S4A and Supplementary Table 2). These
findings are thoroughly described and discussed in the Supple-
mentary Materials (Figs S4,5).

) Total
f(- Sensitivity
) 0 1
o (.
12 hr
parameter network
connection
K112
ny TGFp
I | Ny IL-18 = TNFa
| | ny IL-6 = IL-10

12 hr

Fig. 2 Global sensitivity analysis reveals that TNFo is highly
sensitive to TGFf and IL-10. Total sensitivity indices (Sr) were
computed for each parameter and data are shown for all parameters
with Sz > 0.2. The temporal profile of the LPS-induced TNF o response,
for saturating stimulus (LPS = 1000}, is shown above the sensitivity
index heatmap. Sensitivity indices were computed at times
corresponding to the simulated waveform. All identified parameters
involve one of the following cytokines: IL-18, TGFf, IL-10, or IL-6.

Endotoxin tolerance simulations support model validity

An important aspect of computational modeling is model vali-
dation using data that were not used for parameter estimation.
Given that tolerance in the TNFa response to sequentially applied
LPS stimuli has been experimentally observed in microglia®®, we
tested whether our model could recapitulate such endotoxin tol-
erance. Our results demonstrate that our model exhibits toler-
ance of the TNFa response to LPS over a range of inter-stimulus
intervals (ISIs) and relative levels of the two LPS stimuli (Fig 3B).
To further examine the validity of our model, we tested whether
TGFf regulated endotoxin tolerance, as was observed experimen-
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tally for microglia®’. The relative effects of TGFS were isolated
by simulating a functional knockout (KO) of this cytokine (i.e.,
TGFfS KO). This KO condition simulates the effect of pharmaco-
logical antagonism or genetic mutation. We found that TGFf§ KO
enhanced response Gain, thereby occluding tolerance (Fig 3B).
Our results supported the experimental finding that TGFf en-
hanced tolerance of the TNFa response to LPS over a range of
stimulus conditions. These results are consistent with model va-
lidity.

Gain = logy <

6 of 16
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Fig. 3 Simulations of endotoxin tolerance support model validity.
(A) Tolerance is evaluated by applying two sequential LPS doses,
separated by an interstimulus interval (ISl), where the first dose is
smaller than the second dose (LPS| = 500, LPS; = 1000). In general
sensitization occurs when the peak response to the second LPS dose is
greater than the peak response to the first dose (Gain > 0, see
equation). Tolerance occurs when the peak response to the second LPS
dose is smaller than the peak response to the first dose (Gain < 0). (B)
Gain of the TNFa response to LPS was evaluated over a range of [Sls
(2 hrs LPS pulse duration). For these simulations we set LPS = 0.1
during the ISI to maintain network coupling. Negative Gain was
observed for the wildtype condition for ISI > 6 hrs, thereby indicating
tolerance. Simulated functional knockout (KO) of TGFp resulted in the
absence of negative Gain, thereby eliciting sensitization.

TNFc is prominently inhibited by kinetically distinct TGFf
and IL-10 inputs

Our sensitivity analysis motivated us to further examine the rela-
tive influences of TGFB and IL-10 on TNFa. In agreement with
the sensitivity analysis, experimental data suggest that TGFf3 and
IL-10 are critical regulators of TNFo production in peripheral
macrophages and microglia®88?. Upon closer examination of
the TGFf and IL-10 response profiles during LPS stimulation, we
found that IL-10 activation temporally preceded TGFS activation
(Fig 4A). This temporal shift in the LPS-mediated activation
of IL-10, relative to that of TGFf, resulted in an accelerated
inhibitory input to TNFo from IL-10 compared to TGFf (Fig 4).
We evaluated the cumulative LPS-induced activation levels of
TGFfS and IL-10 by computing area under the expression curve
(AUC) over time, as well as the relative contribution of total IL-10
expression (Fig 4C). The results showed that IL-10 expression
contributed more than 50% of the combined inhibitory input to
TNFa throughout the upstroke, peak, and approximately half of
the adapting decay in the continuous presence of LPS. Similar
findings were obtained for the DDE model (Fig S6). Our results

This journal is © The Royal Society of Chemistry [year]
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were not surprising given similar experimental findings31-33.90,

These results suggest that while IL-10 and TGFf jointly impose
negative feedback on TNFq, the effects of IL-10 precede those
of TGFB and play a greater role in shaping the peak TNFa
response to LPS. Based on the above results, we chose to further
investigate the relative contributions of IL-10 and TGFf to the
regulation of TNFa. These interactions are highlighted in figure
4D.

A seperatrix distinguishes anti-inflammatory initial condition
effects on TNF« gradients

Because TGFf and IL-10 levels were believed to be particularly
important for determining the TNFa response to LPS, we system-
atically evaluated the effects of initial TGFf, IL-10, and TNFo
levels on the effects of continuously applied LPS. This analysis al-
lowed us to assess the dependence of the TNFo response on the
configuration of anti-inflammatory initial conditions. We simu-
lated the LPS response for a set of permutations in the initial con-
ditions of TNFa, TGFf, and IL-10. From these simulation results
we computed the normalized TNF¢ gradients in the directions of
both the TGFf and IL-10 initial levels (i.e., TGFf3, and IL-10):

dlog TNF o)

VINFalrGrp, = — log TGF By ©
dlogTNFa(t
VINF o110, = WLN{E) 7

These gradients elucidate the sensitivity of the LPS-induced TNF«
response changes in the initial conditions of either TGFf or IL-10.
Further, these gradients showed how sensitivity to initial condi-
tions varied depending on the relative baseline levels of TGFf and
IL-10. Our analysis entailed VI'NF |7, and VINF|1710, compu-
tations over a range of simulation times and TNF ¢, values.

Our results revealed that the TNFo response to LPS declined
with increases in the initial IL-10 level for particular pairings of
the TGFf and IL-10 initial expression levels (see blue bands in
Fig 5A). Combinations of the initial TGFf and IL-10 levels along
the diagonal of the TGFf, — IL-10, space rendered decreases in
the TNFa response to LPS for increases in initial IL-10 levels
when TNFo, was relatively low (Fig 5A; see Supplementary Fig
S7 for similar plots of the TNFa gradient with respect to the ini-
tial TGFf level). In addition to the negative TNFa response gra-
dients for increases in IL-10y observed for certain combinations
of the TGFf and IL-10 initial levels, positive gradients were ob-
served for other initial condition permutations (see red bands in
Fig 5A). VI'NF |10, > 0 occurred when increases in the initial IL-
10 level led to increases in the TNFo response to LPS. The find-
ing of such positive TNFo gradients with respect to IL-10, was
surprising given that IL-10 inhibits TNFa expression and thus, in-
creases in initial IL-10 levels would be expected to only reduce
TNFo responses, as found for TGEf (Fig S7). Hence, a seperatrix
defined by adjacent negative and positive gradients, extending
along the negative diagonal of the TGFf, — IL-10, space, was ob-
served for low TNFq, values at simulation times around t = 48

This journal is © The Royal Society of Chemistry [year]
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Fig. 4 TGFfS and IL-10 provide temporally distinct feedback
inhibition to TNFa. (A) Relative waveforms of TNFa, TGFf, and IL-10
are plotted for comparison (LPS = 1000 starting at t = 0). (B) Normalized
TGFB and IL-10 contributions to the TNFo activation rate equation show
that IL-10-mediated inhibition of TNFa precedes that of TGFf. These
quantities were computed as Kygpryp"T6FTNF [(T GF"TGFATNF ¢
KTGF%TNF”TGIHTNF) and K]LLCHTNF”ILI(HTNF/(ILIO”ILI(HTNF +

K 1047w mioirar )y, (C) Normalized area under the curve (AUC) was
computed as a function of time for the TGFf and IL-10 inputs to TNFo
shown in panel A. The AUC ratio trace represents the fractional
contribution of IL-10 relative to TGFf: AUC ratio = AUC;;10/{ AUCrgr+
AUCy19). (D) Cytokine interaction network where sensitive interactions
that will be the focus of the remainder of the paper are highlighted.

hr of LPS stimulation (Fig 5A,B).

The evaluation of sample traces showed that the TNFq re-
sponse amplitude and gradient varied inversely with respect to
both TGFf, and IL-10, (Fig 5B,C). We specifically examined the
LPS-mediated TNFo response for a series of initial IL-10 levels at
three levels of initial TGFS (Fig 5B). For the highest initial level
of TGFf, increases in the initial amount of IL-10 resulted in de-
creases in the TNFo response amplitude, thereby producing the
negative TNFa gradient with respect to IL-10y (Fig 5C, top). At
intermediate initial TGFf levels, increased IL-10, resulted in re-
duced TNF«a response amplitude along with a temporal shift in
the response profile (Fig 5C, middle). These temporal shits in the
TNF« response resulted in delays in both the response peaks and
decays, the latter of which produced negative TNFa gradients
with respect to initial IL-10 levels. Increasing IL-10y resulted in
reduced kinetics of the LPS-mediated TNFa response. These re-
sponses were characterized by slower recovery from the peak and
thus higher levels at late simulations times compared to the TNFa
expression profile observed for lower initial IL-10 levels (Fig 5C,
middle). For the lowest TGEf, level, negative TNFo gradients
were found for earlier time points and regions of TGFfy — IL-10¢
space, whereas positive gradients were observed at relatively later
simulation times (Fig 5C, bottom). Similar to the case for inter-
mediate TGFf levels, increases in initial levels of IL-10 resulted
in peak reductions and temporally right-shifted TNFa response
profiles. This shift yielded both negative and positive gradients

Journal Name, [year], [vol.], 1-16 |7
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Fig. 5 A seperatrix distinguishing TNF«a response profiles exists in the TGFf — IL-10 initial condition space. Simulations in which a saturating
dose of LPS = 1000 was applied continuously starting at t = 0 were performed for range of TNFo, TGFf, and IL-10 initial condition permutations. (A}
The normalized TNFo gradient is plotted in the direction of the IL-10 initial condition (see equation in upper right). In each plot, the y-axis is defined by
the TGFS initial condition range and the x-axis is defined by the IL-10 initial condition range. Each column corresponds to a different time point at
which the gradients were computed and each row corresponds to a different value of the initial TNFa level. (B) The plot shows the gradient for a low
initial level of TNFo (TNFop = 0.01) at a late time point (i = 48 hr). A seperatrix cuts across the diagonal distinguishing negative versus positive
gradients of the TNF« response to LPS with respect to increases in the initial IL-10 level. Colored circles denote the regions of initial condition space
for which TNFa temporal profiles are shown in panel C. (C) Temporal profiles of TNFa (left) and VINF |10, (right) are shown for TNFog = 0.01 at
three levels of TGFfy and four levels of IL-10y as indicated in panel B. (D) Gradient plots for TNFog = 0.01 are shown at t = 12 hr (left) and t = 48 hr
(right) along with numerical indicators of regions of TGF—IL-10 initial condition space examined in panel E. (E) Temporal profiles of TNFa and
VINF |10, are shown for each of two adjacent values of IL-10,. This illustrates the correspondence between the temporal profile and computed
gradient. Zone 1 in panel D is characterized by high TGFS, and low IL-10q. Increasing IL-10y from 0.01 to 0.15 resulted in a TNFo peak reduction
associated with a negative gradient at corresponding times. Zone 2 depicts the TNFo gradients observed for relatively high initial TGFjS and IL-10
levels. Under these conditions, TNFa is unresponsive to LPS and the TNFa gradients are approximately zero. For zones 3 and 4, we compare the
TNFo response to LPS at two adjacent IL-10y levels (1.2 and 1.8) at TGF, levels on either side of the seperatrix observed at 48 hrs. The data for
zone 3, in which the TGFf, and and IL-10 levels are relatively high (both 1.2), the TNFa response over three days of LPS stimulation is monotonically
increasing and the gradient as a function of IL-10, is negative. If TGFf, is lowered to 0.07 (zone 4), the same increase in IL-10y results in a temporal
shift in the TNFo profile along with a peak reduction. Due to the temporal shift, the gradient shows a negative deflection followed by a trajectory
reversal into the positive range, thereby instantiating the positive gradient range demarcating the seperatrix.
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with respect to IL-10y. In general, as TGFf, was reduced, the
TNFo response was larger with a faster decay.

To further elucidate the basis for the seperatrix observed at low
initial TNFo levels (Fig 5B), we examined adjacent temporal pro-
files of TNFo and VI'NF|;p10, at select zones in TGFf, — IL-10
space (Fig 5D,E). For zone 1, the TNFa response to LPS was small
due to high TGFf, and an incremental increase in IL-10, resulted
in a modest peak reduction associated with a negative gradient
at corresponding times (Fig 5E). When both TGFf, and IL-10,
were high (zone 2), TNFo was unresponsive to LPS and this un-
responsiveness was insensitive to changes in IL-10y. In contrast,
zone 3 was characterized by negative gradients at all time points,
due to the moderately high levels of both TGFf, and IL-10y. In
zone 4, the presence of negative gradients, temporally followed
by positive gradients, resulted from the combined effects of re-
duced TNFa response amplitude and decrease in response kinet-
ics (Fig 5D,E). To further evaluate the effects of initial conditions
on the network response, we performed a Lyapunov exponent
analysis (see Supplement, “Lyapunov exponent analysis"). This
analysis showed that regions of TGFf, — IL-10y space with the
highest sensitivities to initial conditions corresponded to the neg-
ative gradients observed with low TNFq in figure 5A (Supple-
mentary Fig S8). This suggests that VI'NF |1, is indicative of
global network sensitivity under such conditions. Overall, these
results show that the cytokine network is sensitive to initial anti-
inflammatory conditions. For low TNF« levels, a single negative
TNFa gradient with respect to initial IL-10 expression temporally
precedes the instantiation of a seperatrix defined by adjacent neg-
ative and positive gradients in TGFfy — IL-10, space.

TGFp and IL-10 exert divergent effects on the adaptation of
TNFo to LPS

The preceding analyses identified TGFf and IL-10 as critical reg-
ulators of TNFa and established that the effects of IL-10 on TNFo
are instantiated before those of TGFf. We next examined the rel-
ative effects of TGFf and IL-10 on TNFo adaptation to sustained
LPS stimulation. The relative effects of TGFS and IL-10 were iso-
lated by simulating the KO of each cytokine (i.e., TGFf KO and
IL-10 KO). We simulated the responses to sustained LPS stimuli,
over a concentration range, in wildtype (WT) and KO phenotypes
(Fig 6A-C). We computed adaptation based on the relative levels
of the peak TNFa response and the TNF« level at t = 3 days of
LPS stimulation (termed steady state response, Fig 6D):

®

TNF )
Adaptation =1 — (M)

TNF Oy

For the WT phenotype, the degree of TNFo adaptation exhib-
ited a sigmoidal dose-response profile (Fig 6E). For IL-10 KO,
we observed increased adaptation (left-shifted adaptation curve),
whereas TGFf KO produced a reduction in adaptation (right-
shifted adaptation curve) (Fig 6E). These results suggest that IL-
10 reduces adaptation whereas TGFf3 enhances adaptation. Both
KO phenotypes produced relatively shallow dose-response adap-
tation curves in comparison to the WT phenotype. Further analy-
ses showed that although KO of both TGFf and IL-10 resulted in

Molecular BioSystems

increased TNFo peak response levels, albeit to different degrees
(Fig 6F), the removal of TGFf increased TNFo steady state val-
ues to a greater extent than observed for IL-10 KO (Fig 6G). These
findings suggest that TGFf3 controls adaptation by reducing both
the peak and steady state TNFa responses to LPS. In contrast, IL-
10 reduces the TNFa peak but does not affect the steady state,
and thus IL-10 reduces adaptation.

To further characterize the relative effects of TGFS and IL-10
on the TNFq response to LPS, we assessed the time from stimu-
lus initiation to peak response (¢zp) and area under the expres-
sion curve (AUC) for the three phenotypic conditions. We found
that TGFB KO increased tp while IL-10 KO decreased trp (Fig
6H). This suggests that TGF reduces tzp and thereby speeds up
the peak TNFo response to LPS, whereas IL-10 delays the peak
response. We examined the cumulative amounts of TNFa pro-
duced following the initiation of LPS stimulation by computing
the TNFo integrals (AUCs) over time. The results showed that KO
of either TGFf or IL-10 resulted in AUC increases. The TGFf3 KO
phenotype resulted in a greater TNFo expression increase than
that for IL-10 elimination at lower LPS levels, but the KO AUCs
converged as LPS was increased. Similar findings for the effects
of anti-inflammatory occlusion were obtained for the DDE model
(Fig S9). These results suggest that TGFf3 occlusion may result in
particularly harmful inflammatory effects at low levels of inflam-
matory stimulation, whereas the effects of IL-10 elimination may
be exacerbated as a function of stimulus intensity.

Because TGFf appeared to enhance adaptation, we examined
the TGFf amplitude following an LPS stimulus in WT and IL-10
KO phenotypes (Fig S10A). The TNFo peak was smaller for the
WT phenotype in comparison to IL-10 KO. However, peak TNFa
expression was positively related to TGFB in both phenotypes.
This analysis showed that TGFf was activated in proportion to
the degree of LPS-induced TNFa activation, which was attenu-
ated by IL-10. Similarly, IL-10 expression was positively related
to TNFo for WT and TGFf phenotypes (Fig S10B). Collectively,
our data demonstrate that LPS-activated TNF¢ levels determine
the amount of TGFf produced. In turn, TGFf determines the de-
gree of tolerance. In contrast, IL-10 reduces the TNFa response
and consequently the amount of TGFf produced following the
LPS stimulus. Overall, these novel simulation results indicate that
anti-inflammatory cytokines TGFf and IL-10, which both provide
feedback inhibition to TNFo, have surprisingly disparate effects
on TNFa, related to temporal differences in expression and feed-
back regulation.

IL-10 attenuates in murine

macrophages

TNFo adaptation to LPS

To experimentally test the hypothesis that IL-10 suppresses adap-
tation of the TNFa response to LPS, we compared the LPS re-
sponses of macrophages isolated from WT and IL-10 KO mice. We
evaluated TNFa expression using qPCR at six and 18 hours after
the initiation of continuously applied LPS (100 ng/mL). We quan-
tified the TNFo response to LPS by computing —AACt values (Fig
7A, see Methods). To compare the LPS responses in WT versus
IL-10 KO macrophages, we performed a two factor ANOVA to de-
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Fig. 6 TGFj and IL-10 have divergent effects on TNF«x adaptation. Simulations were performed for a range of LPS doses in which LPS was
applied continuously starting at t = 0 for the duration of the simulation. The effects of knocking out TGFJ or IL-10 were simulated by removing these
nodes from the network. The reference simulation is referred to as WT and the knockouts are referred to as TGFS KO and IL-10 KO. (A-C) Sample
TNFo responses to LPS are shown across the range of stimulation levels for the WT (A), TGF KO (B}, and IL-10 KO (C) phenotypes. (D) Adaptation
was computed using the ratio of steady state to peak TNFo responses to sustained LPS applications (see equation). (E) Adaptation was computed for
LPS inputs ranging from 0.1 to 1000 in all three model phenotypes. (F) Plots of maximal TNFa values show that KO of either feedback inhibitor
increased the peak response to LPS. (G) The TNFo steady state response shows that TGFf knockout markedly increases the TNFa steady state,
whereas IL-10 knockout has a relatively minor effect. (H) The time from the initiation of the LPS pulse to the peak TNFa response (tp) is shown for
the three conditions. (F) Plots show the total amount of TNFa produced following LPS application, assessed by the area under the TNFa curve (AUC).

termine the effects of genotype (WT, IL-10 KO), LPS stimulus du-
ration (6, 18 hrs) and the corresponding interaction. Our results
showed significant effects of LPS duration (F = 137.7, P = 3.6 x
10~7), genotype (F = 5.0, P = 0.05), and a duration/genotype
interaction (F = 20.9, P = 0.001). A post-hoc analysis revealed
that the mean TNF o response was not different at six hrs post LPS
application in WT (mean = 5.33, sd = 0.97, n = 3) compared to
IL-10 KO (mean = 6.3, sd = 0.53, n = 4; P = 0.40). At 18 hrs,
the TNFa expression responses were increased in WT (mean =
2.43,sd = 0.91, n = 4) compared to IL-10 KO (mean = -0.26, sd
= 0.23, n = 3; P = 0.003). Additionally, we examined the dif-
ference between WT and IL-10 KO TNFa expression at 18 hrs
using the Mann-Whitney—Wilcoxon test, a non-parametric test
of similarity between distributions. The results provided support
for time-dependent genotype difference (P = 0.057). These re-
sults show that although IL-10 KO does not affect the macrophage
TNF« response to six hrs LPS, IL-10 KO results in a reduced TNFo
to LPS following 18 hrs of stimulation.

Our experimental data suggest that occluding IL-10-mediated
negative feedback regulation of TNFe¢ inhibits TNFo release fol-
lowing prolonged LPS application, though TNFa was not de-
creased by IL-10 KO at six hrs. This trend is consistent with IL-10-
mediated repression of TNFa adaptation to LPS. To test whether
IL-10 KO influences TNFa adaptation to LPS, we computed the
degree of adaptation between six and 18 hrs of LPS stimulation
for WT and IL-10 KO macrophages (Fig 7B). We found that adap-
tation was reduced in WT compared to the IL-10 KO (WT adapta-

10| Journal Name, [year], [vol.], 1-16

tion = 0.54, IL-10 KO adaptation = 1.04, see Methods equation
3). To evaluate the errors of these adaptation calculations, we
applied an error propagation computation to estimate the respec-
tive standard deviations of WT versus KO adaptation (Methods
equation 4). Based on these estimated deviations, we computed
the adaptation values + two times the standard deviations (adap-
tation + 2 x sd): for the WT genotype this interval was (0.35,
0.74) whereas for the IL-10 KO genotype the interval was (1.00,
1.08). The adaptation + 2 x sd intervals were non-overlapping
and these intervals are likely to encompass the respective 95%
confidence intervals (~ mean + 2 x sd / y/n). Thus, our results
provide convincing evidence that IL-10 KO increases adaptation
of TNFa to LPS. Our experimental results support our compu-
tationally derived hypothesis that IL-10-mediated inhibition of
TNFa has the counter-intuitive effect of suppressing adaptation
to LPS.

Discussion

Our microglial cytokine network was established based on
controlled cell culture experiments that demonstrated pairwise
functional interactions between cytokines. Network inference
approaches have shown utility in generating network structures
from large data sets®!, but we chose to restrict our analysis
to only interactions that have been experimentally validated.
Data driven network structures can lack biological precision
due to spurious correlations, inadequate pruning of indirect
connections, and lack of information on edge sign (activation

This journal is © The Royal Society of Chemistry [year]
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Fig. 7 IL-10 restrains TNFa adaptation to LPS in macrophages. LPS
was applied continuously to macrophage cultures from WT and IL-10
KO mice and TNF o gene expression was evaluated at 6 and 18 hr
stimulus durations. (A} IL-10 KO mice responded similarly to LPS
applied for 6 hrs (data are presented as mean + SEM, * P < 0.005, ns —
not significant). For 18 hrs of LPS stimulation, the IL-10 KO response
was significantly attenuated relative to WT. (B) Adaptation was
calculated for the WT and IL-10 KO macrophages based on the relative
responses at 6 and 18 hrs (see equations 8,9). Adaptation levels are
shown along with corresponding estimates of standard deviation. The
analysis suggests that IL-10 KO enhances adaptation of the TNFa
response to LPS in macrophages.

versus inhibition)®%?4.  Our approach of using mechanistic
interaction data sets obviated the need for network discovery
approaches.

In our modeling approach, we implemented a mathematical
framework derived from the S-systems formalism>°.
adaptations of the S-systems model haven been useful in previous
models involving cytokine signaling>7-58:95:96, A key assumption
of our model was that the integrated effects of input cytokines on
their target are governed by AND gating. While we do not have
specific evidence validating this assumption for all connections
in the network, both computational and experimental data
indicate that AND gating is common in intracellular signaling
networks involved in coordinating cytokine responses and
production®7~1%0,  Furthermore, incubation of macrophages
with either TGEfS or IL-10 renders the cells almost completely
refractory to LPS such that TNFo release is negligible?®, con-
sistent with AND gating. Thus we hypothesize that such AND
gating characterizes microglial cytokine interactions based on the
congruence between our model and the available kinetic data.

Our network included an inhibitory effect of IL-6 on TNF«
based on experimental data showing that IL-6 attenuates TNFa
production by cultured microglia in response to LPS3!. However,
it has been shown that IL-6 activates latent TGES 1°! and this
interaction was not included in our network model. We did
not include this interaction because our sensitivity analyses
indicated that the interaction between IL-6 and TNFea did not
significantly contribute to our simulation results. Furthermore,
a number of well documented molecular species that were
not included in our model have been shown to influence the
microglial phenotype!®?.  In particular, interferon-y, nitric
oxide, and superoxide have been shown to regulate microglial
102" and these species have been shown to exert
effects on TGFB regulation in other immune cells 192104 While
we appreciate that these interactions may be important in the

Similar

inflammation

This journal is © The Royal Society of Chemistry [year]
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context of microglial LPS response, we chose not to include
such interactions based on the dearth of microglia-specific
data regarding these regulatory mechanisms, and the lack of
time-series data necessary for parameter estimation.

A common feature of many systems biology models is that the
inverse problem of parameter estimation is ill posed such that
multiple non-unique solutions exist, thus rendering the problem
underdetermined 195:196 This problem can be mitigated by using
regularization techniques to facilitate error reduction in param-
eter estimation'%7. However, the utilization of such techniques
requires a priori criteria for penalizing certain parameter fits.
It has been proposed that a priori information should not be
used in solving inverse problems based on philosophical and
mathematical arguments 108,
enhanced by confidence in parameter estimates and parameter
identifiability 199-110 it has been demonstrated that many models
in systems biology and other areas of science have a spectrum
unidentifiable parameters with exceedingly large confidence
bounds 96111 Even with very large data sets, such “sloppy"
parameters can be prohibitively difficult to precisely estimate
experimentally 196110, While lack of parameter precision is
a limitation inherent to situations in which the number of
parameters exceeds the number of experimental data points,
as in our case, approachs have been devised to mitigate prob-
lems associated with model parameter inidentifiability. Such
alternative approaches include focusing on the robustness of
model predictions'%® and simulating a spectrum of parameter
set phenotypes198:112 (see Supplementary Materials “Parameter
analysis discussion" for an expanded discussion). Our approach
integrated the afformentioned perspectives by using sensitivity
analysis to (1) focus manual parameter tuning of sensitive
parameters, (2) thoroughly assess model output uncertainty, and
(3) verify our model predictions for a population of optimized
parameter sets. As detailed in the Supplementary Materials,
we demonstrated that our model generates well constrained
predictions. Thus, despite the limitation that our parameters are
not ideally constrained, due to the lack of adequately sampled
data, our predictions have very tight confidence bounds. The
validity of our model is also supported by our findings of
endotoxin tolerance and its dependence on TGFf. Furthermore,
we have performed Differential Lyapunov exponent analysis for
TNFa trajectory to examine the maximal exponential rate of
divergence of trajectories surrounding it. Our results indicate
that the negative feedback loops imposed by IL-10 and TGFf
are more sensitive to perturbations in the initial state when
the system is operating closer to the bifurcation point (Fig 5B).
Despite all the complexities in the network, the model preserves
bifurcative characteristics of negative feedback loops as observed
13 These results are consistant with our sensitivity
analyses indicating model robustness. Finally, our model predic-
tions regarding tolerance and adaptation were confirmed in 5/7
(> 70%) of parameter the parameter sets estimated from random
starting points (Fig S5).

Topological analysis of our cytokine interaction network
suggested that TNF is a critical control-point for the microglial
LPS response. Global sensitivity analysis of our mathematical

While confidence in a model is

elsewhere
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model showed that TGFS and IL-10 are prominent feedback
inhibitors of TNFa. Consistent with these analyses, TNFa has
been implicated as a regulator of neuroinflammation in central
infections”7>78 and traumatic injuries® as well as neurological,
neurodegenerative, and psychiatric diseases”>7?. Assessment
of TNFa sensitivity to the initial state of the network showed
that the initial levels of TGFB and IL-10 can exert opposing
influences on TNFa. Increases in the initial levels of TGFf could
only lead to reductions of the TNFo response to LPS regardless
of the initial IL-10 and TNFa levels. However, increases in the
initial levels of IL-10 could elicit TNFa peak reductions and
temporal shifts. These results indicate the instance of a seperatrix
depending on the initial states of TGFf and IL-10. Based on our
topological analysis of the network, and sensitivity analyses of
the mathematical model, we focused our study on the roles of
TGFf and IL-10 in regulating TNFor dynamics. While we did not
explicitly examine the contributions of IL-18, IL-6, and CCL5 to
network behavior in our simulations, their presence in the model
shaped the network interactions we studied.

To further assess the functional implications of cytokine
interaction dynamics, we studied the contributions of TGFf
and IL-10 to TNFo expression in the physiological context of
adaptation to LPS. Surprisingly, TGFf and IL-10 were found to
have opposing effects on adaptation to LPS. These divergent
effects appear to be related to the differences in the kinetics of
the feedback inhibition. Experimental data from macrophages
and microglia show that that IL-10 activation precedes that of
TGFB31-33.90_ 1110 controls the amount of TGFS produced by
providing relatively fast negative feedback to TNFa and thereby
coordinating its level of activation. In turn, TGFf regulates the
sustained level of TNFa. Based on our modeling predictions,
we experimentally tested the hypothesis that IL-10 KO results in
enhanced TNFo adaptation to sustained LPS in macrophages.
Our data supported the mechanisms proposed based on our
modeling work, thereby demonstrating that IL-10 occlusion
enhances adaptation to LPS. However, we note that our model
predicts a relatively augmented TNFa in the IL-10 condition.
This was not observed in our experiment, however, we believe
this is because we may not have sampled at the time of the peak
response. Furthermore, the LPS response kinetics are likely to be
different between WT and IL-10 KO conditions. Experiments are
currently underway to address these possibilities. Nevertheless,
our experimental results are consistent with enhanced adaptation
following prolonged LPS exposure, whereas instance of peak
modulation will be addressed in future experiments.

While recent evidence has shown microglia, under homeostatic
conditions, express a unique gene profile4%-114 microglia and
peripherally derived macrophages share the majority of genes
involved in the inflammatory response. In a functional context,
LPS tolerance of the TNFa to sequentially applied LPS doses has
been observed in both macrophages!!® and microglia8. Our
model validation results were consistent with these findings.
Furthermore, TGF was shown to mediate LPS tolerance in
both macrophages!'®> and microglia®’, and our model reca-
pitulated these results. Importantly, there is a wealth of data
demonstrating that macrophages and microglia engage similar

interactions amongst TNFa, TGF, and IL-1087:89,90,115,116
Therefore, we believe the use of macrophages is highly relevant
in this context and validates our unexpected finding that IL-10
reduces TNFo adaptation. This interpretation is consistent with
the common use of bone marrow-derived cells as models of
neuroinflammation, given the experimental accessibility of these
cells®:117:118  Fyrthermore, given the issues raised above model-
ing issues related to the sloppiness and inidentifiability of model
parameters, our macrophage results support the generalizability
of our findings to other myeloid cell types. Efforts are currently
focused on modeling and experimentally testing the effects of
IL-10 KO on adaptation and tolerance in microglia in vivo.

Our novel findings that TGFB and IL-10 exert opposing
effects on adaptation supports and extends the conclusions
of several modeling studies. It has been shown that negative
feedback loops with differential kinetics exert distinguishable
influences in an oscillating network 11°. In a model of peripheral
immune response to LPS, it was shown that relatively slow
versus fast anti-inflammatory activation led to sepsis 120, Faster
anti-inflammatory activation was associated with restoration to
health20, In contrast, we found that the faster IL-10 response
was associated with pro-inflammatory effects via indirect in-
hibition of TGFS mediated indirectly by TNFo. An important
distinction between our microglial model and peripheral in-
fection models!2? is that the peripheral models simulate cell
to cell interactions, whereas our model is microglia-specific.
As such, seemingly pro-inflammatory effects of adjustments to
anti-inflammatory levels in peripheral models occur due to exces-
sive reduction of the capacity of phagocytes to clear pathogens.
This context is distinct from our study of autocrine/paracrine
regulation of microglia via cytokine network dynamics.

Similarly, simulations with a computational model of NFxB
dynamics showed that kinetically distinct negative feedback
inhibitors (A20 and IxkBa) exert differential influences on the
TNFa response to LPS stimulation3°. A20 KO resulted in an
enhanced TNFa response to LPS. Response adaptation was
increased, as with our finding that IL-10 KO increased adapta-
tion. Further, IxkBa KO resulted in an increased A20 response,
analogous to our finding that IL-10 KO resulted in increased
TGFf expression. However, the increased expression of A20
was insufficient for attenuating the LPS response in the NFxB
model. The A20 anti-inflammatory response adapted rapidly
compared to the sustained activation anti-inflammatory cytokines
in our model, thus highlighting a key difference between the
systems under study. Hence, while a number of previous studies
document phenomena similar to our observations, in the contexts
of multi-cellular interactions or isolated signaling pathways, our
study provides novel insights into the roles of parallel negative
feedback interactions involving cytokine signaling in microglia.

Conclusions

Our simulations and analyses show novel phenomena whereby
TGFB and IL-10 exert opposing influences on TNFo. While
our focus on LPS response directly pertains to the microglial
endotoxin response, microglial phenotypes associated with
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bacterial infection have been shown to resemble those as-
sociated with neurodegenerative diseases!?!. In particular
LPS activates inflammatory signaling through interaction with
toll-like receptor-4, which also activates sterile inflammation in
hypoxic, ischaemic, and traumatic injuries 122-126, It is clear that
macrophages and microglia exhibit a plethora of stimulus-specific
phenotypic states127:128  although the mechanisms underlying
regulation of cytokine production share a common network
regulatory basis in disparate inflammatory phenotypes!%7. Our
study of microglial LPS responses may have broader implications
regarding cytokine network interactions stimulated by other
inflammatory ligands such as beta-amyloid and alpha-synuclein.
Simulations and analysis of our model highlight novel hypothe-
ses that can be addressed through experiments with cultured
microglia using available tools for perturbing and measuring
cytokines. Thus, our model of cytokine signaling in microglia
offers utility in generating mechanistic hypotheses regarding
the therapeutic applications of cytokine perturbations to treat
conditions associated with neuroinflammation.
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