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Abstract 13 

Repurposing of drugs to novel disease indications has a promise of faster clinical translation. 14 

However, identifying best drugs for a given pathological context is not trivial. We developed an 15 

integrated random walk-based network framework that combines functional biomolecular 16 

relationships and known drug-target interactions as a platform for contextual prioritization of drugs, 17 

genes and pathways. We show that the use of gene-centric or drug-centric data, such as gene 18 

expression data or a phenotypic drug screen, respectively, within this network platform can 19 

effectively prioritize drugs and pathways, respectively, to the studied biological context. We 20 

demonstrate that various genomic data can be used as contextual cues to effectively prioritize drugs 21 

to the studied context, while similarly, phenotypic drug screen data can be used to effectively 22 

prioritize genes and pathways to the studied phenotypic context.  As a proof-of-principle, we 23 

showcase the use of our platform to identify known and novel drug indications against different 24 

subsets of breast cancers through contextual prioritization based on genome-wide gene expression, 25 

shRNA and drug screen and clinical survival data. The integrated network and associated methods 26 

are incorporated into the NetWalker suite for functional genomics analysis 27 

(http://netwalkersuite.org).  28 

  29 
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Introduction 30 

Small molecule drugs used in the clinic usually possess an inherent promiscuity, which, while a 31 

potential source of off-target effects and adverse reactions in patients, can also prove beneficial in 32 

some pathological contexts other than their primary indications. In addition to such repurposing of 33 

drugs to novel protein targets (target repositioning), drugs may also be repurposed to a novel 34 

indication based on their known targets (disease repositioning). Biological systems are 35 

characterized by remarkable modularity, where molecular machineries can perform different 36 

functions in different biological contexts. Therefore, a drug developed against a target gene in one 37 

disease may prove beneficial in another due to its unappreciated role in that disease.  38 

Significant amount of work in the drug-repositioning field has been dedicated to the discovery of 39 

novel drug-target pairings (target repositioning) using drug-to-drug chemical and functional 40 

similarity approaches. One of the most notable resources for such analyses is the connectivity map 41 

(cmap) dataset, where gene expression responses of cells to some ~1,400 drugs are reported as 42 

quantitative drug signatures.[1, 2] Comparative analyses of these drug signatures allow for the 43 

identification of novel drug-drug similarities, and hence, novel drug-target pairings; a paradigm that 44 

has been extensively exploited.[3-6] In addition to comparative analyses of drug signatures, 45 

complementary approaches based on chemical similarities of drugs (most notably the Similarity 46 

Ensemble Approach) have also been used for inferring novel drug-target pairings.[7-11] However, 47 

despite the large amount of these excellent studies on the identification of novel drug-target pairings, 48 

relatively less focus has been dedicated to the identification of novel pathological contexts for 49 

known drug-target pairs (disease repositioning). Effective identification of such novel off- and on-50 

target pathological contexts of drugs requires efficient integration of multi-binding properties of 51 

drugs with molecular data from different disease contexts, which would allow prioritizing of 52 

diseases to drugs.  53 

We and others have shown that integration of molecular data with the prior network of molecular 54 

interactions can help prioritize context-specific pathways.[12-16] Although hybrid networks of 55 

functional interactions between biological molecules as well as drug-target interactions have been 56 

studied for their properties,[17] to our knowledge, such an approach has not been used for 57 

integrated drug repositioning. Here, we propose that integration of disease-specific molecular 58 

(genomic) data with the network of functional and drug-target interactions can help prioritize drug-59 

target pairings that are most relevant to the studied disease context. For this purpose, we make use 60 

of our previously developed random walk-based data integration and network scoring algorithm, 61 

NetWalk. NetWalk allows for seamless integration of molecular data with the network of binary 62 

interactions to score each network node (e.g. gene, drug) based on the combined assessment of the 63 

data and the network structure. Thereby, NetWalk is able to assign scores to each drug in the 64 

network based on the combined assessment of the data values of their targets as well as their 65 

connectivity patterns in the network neighborhood.  We have incorporated the drug-target network 66 

along with the NetWalk algorithm in the new version of our previously published software 67 

NetWalker, which is freely available for academic use (http://netwalkersuite.org). 68 

Here, we demonstrate the use of gene expression, shRNA and drug screening data for different 69 

subsets of breast cancers as contextual cues for drug prioritization using NetWalk. In addition to 70 

retrieving expected and best-known drug-target pairings that are currently in use in the clinic for 71 

ER+ (estrogen receptor positive) and HER2+ (epidermal growth factor receptor 2) subtypes of 72 
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breast cancer, our analyses also identify novel drug-target pairings for HER2+ and TNBC (triple-73 

negative) subtypes, some of which we have verified experimentally.  74 

Results 75 

We previously developed NetWalk; an algorithm aimed to integrate experimental (genomic, 76 

phenotypic, etc.) data with networks of interactions between genes to score the relevance of each 77 

interaction based on both the data values of the genes as well as their local network connectivity 78 

[16]. NetWalk relies on the principle of data-biased random walks, where every node in the network 79 

is visited by a random walk process depending on the inter-node transition probability values 80 

reflecting local connectivity and the data values of nodes. NetWalk is implemented in a user-81 

friendly software package NetWalker, which also features a comprehensive molecular interaction 82 

knowledgebase (NetWalker Interactome Knowledgebase, NIK) and a suite of user-friendly utilities 83 

for data integration and network analyses.[15] We have extended the NIK to include drug-target 84 

interaction data, consisting of 8,553 unique interactions among 1,610 genes and 4,325 drugs (see 85 

Methods). Prioritization of nodes by NetWalk is dependent on their visitation frequencies by the 86 

random walker during an infinite random walk process, which are driven by the data values 87 

attached to nodes (e.g. gene expression), data values attached to their neighbors in the network 88 

neighborhood and their connectivity patterns in the network neighborhood. Thus, the main concept 89 

behind NetWalk-based prioritization of drugs is that drugs connected to highly visited network 90 

nodes (genes) will also be highly visited by the random walker, while drugs connected to network 91 

nodes with low visitation will also be rarely visited by the random walker  (Figure 1a). In order to 92 

demonstrate the use of NetWalk for network-based analyses of drug-target interaction data, we 93 

conducted an analysis in the context of different chemical, biological and genomics datasets. 94 

Prioritization of drugs and targets: proof of concept  95 

An important utility of NetWalk-based scoring of a hybrid drug-gene network (Figure 1b and 1c) is 96 

the ability to score drugs based on gene-centric data (e.g. gene expression), or do a reverse analysis 97 

to score genes and pathways based on drug data (e.g. from a phenotypic drug screen). Although the 98 

former is the utility that is more intuitive and that we will stress most in this study, the latter may be 99 

a novel approach to determine the most important molecular processes in the cell that are being 100 

targeted by the active drugs in a phenotypic drug screen (see later). Indeed, in addition to helping 101 

identify the best potential drugs/compounds to modulate a cell phenotype, we suggest that 102 

phenotypic drug screens also have the potential to reveal the most important molecular processes 103 

involved in the studied phenotype through a pathway-based analysis of drug-target networks. 104 

Therefore, as a proof of concept, we will first demonstrate the performance of NetWalk in scoring 105 

drugs from gene-based data (gene-to-drug scoring), and then, scoring of genes from drug-based data 106 

(drug-to-gene scoring). 107 

Initially, we generated a simulated dataset, where a value of 10 (a random high number indicating a 108 

high score) was assigned to the EGFR (epidermal growth factor receptor) node, and all the other 109 

nodes were assigned 1. EGFR is an oncogene that is targeted by several kinase inhibitors currently 110 

in use in the clinic, such as gefitinib and erlotinib. As expected, running NetWalk over the network 111 

using these values assigned high scores to known EGFR and related family inhibitors (Figure 2a). 112 

However, cellular (or disease) phenotypes are not necessarily defined by the direct drug targets, and 113 

can involve genes that function in the same pathway/complex as the direct drug target. In such a 114 
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case, the prioritization of a drug-target pairing to the studied cellular context has to be scored based 115 

on the data from the neighboring genes of the direct drug target in the molecular network (Figure 116 

2b). To test if NetWalk can accurately score drug-target pairings based on the data values of the 117 

network neighbors of a direct drug target, we used the proteasome as an example. Bortezomib is a 118 

proteasomal inhibitor that targets the PSMD2, PSMD1, PSMB1, PSMB2 and PSMB5 proteasomal 119 

subunits.[18, 19] We assigned a value of 10 to PSMD5, another gene in the proteasomal complex 120 

that is not directly targeted by bortezomib, and performed the NetWalk analysis over the integrated 121 

hybrid network. As expected, all proteasomal subunits and the known proteasomal inhibitors were 122 

ranked at the top (Figure 2b), suggesting that NetWalk analysis is able to correctly prioritize the 123 

most relevant drugs and targets based on direct or indirect scoring. These results reflect the 124 

coherence with the high value (red nodes on the right of Fig. 1a) used as input in comparison to the 125 

other nodes (green ones on the right of Fig. 1a) in the whole NIK. Using any value higher than 1 (i.e. 126 

the default value for all other nodes) for PSMD5 here will result in the same ranking by NetWalk. 127 

To illustrate the utility of NetWalk analysis of our hybrid network to perform gene-to-drug as well 128 

as drug-to-gene scoring, we chose phenotypic (cell lethality) drug screens over 6 cell lines from the 129 

NCI60 drug screen [20] with matching shRNA-based genetic screens of cell lethality from a 130 

different study [21]. We reasoned that if our NetWalk-based approach is useful in gene-to-drug 131 

scoring, NetWalk-based drug scoring using the shRNA screen data should prioritize the drugs that 132 

also scored significantly in the phenotypic drug screen. Therefore, scores assigned to drugs by 133 

NetWalk based on the shRNA data is expected to correlate with the experimental values from the 134 

drug screen experiments. Similarly, NetWalk-based drug-to-gene scoring should correlate with the 135 

experimental values from shRNA screens. Indeed, NetWalk-based gene-to-drug and drug-to-gene 136 

scores significantly correlated with the data from drug and shRNA screens from matching 137 

conditions, respectively (Figure 3a and 3b). Therefore, NetWalk-based scoring of drugs using gene 138 

data and vice versa is a useful method to prioritize the drugs or genes, respectively, that are most 139 

relevant to the studied context. The heatmap with some of the highest and lowest drug and gene 140 

scores from NetWalk analyses of these shRNA and drug screen data from three cancer cell lines 141 

along with the associated representative sub-networks is shown in Figure 3c. For example, 142 

pemetrexed was identified as a potential most relevant drug by NetWalk based on the analyses of 143 

shRNA lethality data; and it was also associated with significant lethality in MCF7 and 144 

MDAMB231 cells in the drug screen (Figure 3c). Similarly, its target, DHFR, was identified by 145 

NetWalk as a likely relevant target in these cell lines based on the analysis of drug screen data; and 146 

DHFR knock-down by shRNA was also associated with significant lethality in these cells in the 147 

shRNA screen. These findings are consistent with several reports and phase II clinical trials that 148 

have been conducted to evaluate the use of pemetrexed in BC.[22-26] On the other hand, 149 

bortezomib and its interacting partners, the proteasome subunits, tend to be specific for the 150 

MDAMB231 cell line. Similar results were found for entinostat, a HDAC inhibitor, and its 151 

interacting partners. 152 

Drug repositioning based on the functional context 153 

Next, we wanted to test the use of our platform for disease repurposing of drugs: assigning drug-154 

target pairings to different subtypes of breast cancers. Breast cancers are usually classified into 155 

three subtypes based on the expression of the estrogen receptor or the HER2 oncogene; ER+ for 156 
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those expressing the estrogen receptor, HER2+ for those expressing the HER2 oncogene, and triple 157 

negative (TNBC) for those expressing neither.  158 

Since drug prioritization by NetWalk will be driven by the gene values to be used as input, it is 159 

crucial that we identify the appropriate genomic parameters to drive our analysis. In other words, 160 

the gene values used as input into NetWalk analysis should reflect the potential of those genes to be 161 

therapeutically targeted in the respective breast cancer subtype. For this purpose, we considered 162 

shRNA-based lethality scores from the shRNA screens of breast cancer cell lines (lethality profile), 163 

which provide important information about the most essential pathways sustaining breast cancer 164 

cell survival in a subtype-specific manner. In addition, to measure subtype-specific expression of 165 

genes in breast cancers, we also incorporated extensive gene expression profiles from breast cancer 166 

clinical samples (transcriptional profile). Finally, to integrate into our analysis the potential of a 167 

gene to play a role in breast cancer malignancy, we measured the correlation of expression of each 168 

gene with poor outcome in each of the three breast cancer subtypes using COX regression (survival 169 

profile). While the data from shRNA screens indicate essentiality of a gene for survival, the 170 

subtype-specific expression indicates whether the targeted pathway is specifically expressed in a 171 

subtype-selective manner; and the COX regression scores of genes indicate whether the gene has a 172 

role in conferring a more malignant phenotype to breast cancers. Therefore, if a drug-target pairing 173 

scores high within the context of shRNA lethality, gene expression and COX regression, it would 174 

indicate that the given drug-target pairing is likely to be therapeutically relevant for the given BC 175 

subtype as its target(s) are likely to be specifically expressed in, and confer survival and higher 176 

tumorigenic potential to, the corresponding breast cancer cells. 177 

NetWalk analysis of each of the three functional profiles for the three breast cancer subtypes 178 

revealed three distinct subtype-specific clusters of drugs (Figure 4a). Interestingly, we found that 179 

each cluster is significantly enriched with certain families of drugs, as defined by their ATC codes 180 

(3-level), in comparison with the proportion of ATC codes found on randomly created clusters of 181 

the same size (P-value < 2.2 x 10
-16

), suggesting potential new applications for the BC treatment. 182 

For example, the ER+ cluster is enriched for blood glucose lowering drugs, while TN cluster is 183 

enriched for anti-inflammatory drugs, and the HER2+ cluster is enriched for calcium channel 184 

blockers. The prioritized drugs and some relevant subnetworks for each BC molecular subtype are 185 

shown in Figure 4a and 4b.  186 

Importantly, NetWalk was able to correctly prioritize several drugs to their current indications in 187 

breast cancer. For example, lapatinib and neratinib, two small molecule inhibitors of the HER2 188 

kinase, have been assigned to the HER2+ subtype, while tamoxifene and raloxifene, the estrogen 189 

receptor antagonists, have been assigned to the ER+ subtype. These results serve as proof-of-190 

principle validations that NetWalk can correctly prioritize the most relevant drug-target pairs. 191 

In addition to the known BC drugs, some of the drugs were prioritized to the subtypes where they 192 

are currently undergoing clinical trials (Figure 4b). For example, vorinostat, a histone deacetylase 193 

(HDAC) inhibitor that is approved for cutaneous T cell lymphoma, is currently in clinical trials for 194 

TNBC (ClinicalTrials.gov IDs: NCT00368875, NCT00616967). Supporting the assignment of 195 

vorinostat to TNBC subtype by NetWalk based on the genomic parameters, HDAC1 expression 196 

significantly correlates with poor survival in TNBC patients (Figure 4c). Vimosdegib, erismodegib 197 

and itraconazole, inhibitors of smoothened (SMO), a critical component of the hedgehog pathway, 198 

are another set of high ranked compounds for TNBC. Erismodegib is also undergoing clinical trials 199 
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for this subtype (ClinicalTrials.gov IDs: NCT01576666, NCT02027376). Interestingly, although 200 

SMO expression does not correlate with poor survival in TNBC, its upstream and downstream 201 

components in the hedgehog pathway do correlate with poor survival in TNBC (Figure 4a), 202 

showcasing the ability of NetWalk to prioritize drugs based on their indirect targets in a pathway.  203 

For the HER2+ subtype, two drugs that were particularly of interest are bortezomib and ganetespib, 204 

both of which are in clinical trials for this BC subtype (ClinicalTrials.gov IDs: NCT00199212, 205 

NCT01497626, NCT02060253). Bortezomib is a proteasome inhibitor and is approved for multiple 206 

myeloma, while ganetespib is an experimental drug against the heat shock protein 90 (Hsp90) 207 

ATPase. Importantly, we experimentally verified the selective toxicity of bortezomib to HER2+ 208 

breast cancer cells (Figure 5), indicating that the assignment of bortezomib-proteasome pairing to 209 

HER2+ breast cancer subtype may be clinically relevant.  210 

In addition to the known and experimental indications, there were surprising results for each BC 211 

molecular subtype. For example, a set of inhibitors of the Arachidonate 5-Lipoxygenase (ALOX5) 212 

was prioritized to the TNBC cluster. These drugs, zileuton, darbufelone and montelukast, are 213 

classified as anti-inflammatory drugs in ATC (Figure 4d). Even though there are no reports for the 214 

role of ALOX5 or their inhibitors in TNBC, there is evidence for each of these in other cancers. For 215 

example, zileuton, darbufelone and montelukast have been implicated in the growth inhibition of 216 

prostate, lung and colon cancer cells, respectively.[27-29]  217 

Other interesting drug-target pairs were those including the 5226, 11349402, 6420130, 6220129 218 

compounds and the Phenylethanolamine N-methyltransferase (PNMT) gene, which were prioritized 219 

to the HER2+ subtype (Figure 4b). Interestingly, this gene is co-amplified with the ERBB2 (HER2) 220 

gene within the same amplicon in HER2+ breast cancers, suggesting that this gene may be a valid 221 

target in HER2+ breast cancers.[30, 31]  222 

Discussion  223 

Identifying and prioritizing drug targets are some of the most challenging tasks in the post-genomic 224 

era. The elucidation and analysis of interactions between drugs and their targets in the context of 225 

functional genomics data is critical for understanding the mechanisms of drug action, drug 226 

repositioning, off-target effects and speed up the development of effective and safer therapies for 227 

human diseases. Although several approaches for predicting novel drug-target interactions have 228 

been developed, methods to prioritize drugs to diseases based on functional genomics data are 229 

limited. The growing number of annotated drug-target interactions and the extensive collection of 230 

cancer genomic datasets from patient and cell line samples provides an unprecedented opportunity 231 

for the query of systemic underpinnings and context-specific relationships between drugs and their 232 

targets [32-37].  233 

In this study, we proposed an effective approach to reposition diseases and drugs for novel, and 234 

sometimes unexpected, pathological contexts. The novelty of our approach stems from the use of 235 

biased random walks on graphs to score drugs based on gene-based data and vice versa. By using 236 

this approach and our hybrid drug-gene network, we have integrated and analyzed disease-specific 237 

genomic data to infer new uses for existing drugs in breast cancers. In addition to identifying known 238 

and experimental drugs currently in clinical use for the treatment of Her2+ and ER+ breast cancer 239 

subsets, we also identified several novel groups of subtype-specific drugs for BC with a potential 240 

clinical utility. In HER2+ BC, our analyses prioritized a group of drugs associated with targets from 241 
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the unfolded protein response (UPR). Moreover, we were able to verify that bortezomib was 242 

specifically toxic to HER2+ BC cells in vitro, possibly highlighting the robustness of our approach, 243 

and the clinical potential of targeting the ubiquitin proteasome system in HER2+ breast cancers.  244 

It is worth noting that in contrast to current drug repositioning approaches [1, 3-7, 9, 38-41], we did 245 

not use any similarity metrics or gene signatures to establish drug-target relationships, but rather 246 

elected to exploit the extensive gene- and drug-centric datasets as context cues to efficiently 247 

prioritize drugs and pathways . Central to our approach is the appropriate use of proper gene-based 248 

values to base the drug prioritization on. In our case, we used shRNA-based lethality scores of 249 

genes, as well as transcriptional and clinical survival parameters to use as cues for drug scoring, 250 

which helped prioritize genes/pathways of pharmacological interest and drugs with high potential 251 

for therapeutic interventions in BC. We believe that our approach that is incorporated into a freely 252 

available user-friendly software will   enable hypothesis generation and drug repositioning from the 253 

data integration of the chemical, pharmacological and genomic spaces. 254 

Methods 255 

The hybrid network 256 

We identified and gathered information from DrugBank,[42] KEGG drug,[43] Pubchem 257 

bioassay,[44] and BindingDB[45] databases to create a comprehensive repository of annotated 258 

drug-target interactions. Only human drug-target pairings data were selected from al the databases. 259 

Entries containing inorganic compounds, non-covalent complexes, biotechnology drugs and 260 

mixtures were excluded from DrugBank dataset. Only drug-target pairings with Ki values less than 261 

10 µM were extracted from Pubchem and BindingDB databases as suggested by Cheng et al.[10]   262 

Functional interactions between human gene products were collected and assembled from online 263 

databases. Protein-protein interactions, including signaling relationships were obtained from 264 

HPRD,[46] MINT,[47] Reactome,[48] BIND,[49] BioGRID,[50] Nature Pathway Database 265 

(http://pid.nci.nih.gov/), Biocarta (http://www.biocarta.com/) and PathwayCommons;[51] 266 

transcription factor – gene target relationships were obtained from TRANSFAC,[52] 267 

ORegAnno,[53] ENCODE,[54] and MSigDB.[55] Metabolic relationships between gene 268 

products were defined such that genes whose products catalyze consecutive reactions (that is, 269 

product of the reaction catalyzed by one is used as a reactant in the reaction catalyzed by the other 270 

gene product) were assigned an interaction; metabolic reactions catalyzed by human gene products 271 

were obtained from HMDB,[56] BiGG [57] and KEGG.[58] To increase the coverage of our 272 

knowledgebase, we also assigned interactions between pairs of genes if they shared GeneRIFs 273 

assigned to them in Entrez Gene.[59] 274 

The NetWalker software and availability 275 

Overall, our knowledgebase consisted of 452,005 unique interactions (444,828 gene-gene and 7,177 276 

drug-gene interactions) including 18,722 genes and 4,755 drugs, and is available together with the 277 

the updated NetWalker software (version 2) for download at https://netwalkersuite.org/download.  278 

At the present moment, only the Windows installer is available for the version 2. Sample data 279 

(Supplementary Table 1) and detailed steps to reproduce some of the drug scoring results are 280 

provided in the Supplementary Text. 281 

Page 8 of 20Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Breast Cancer Genomics Datasets 282 

Gene expression (RNAseq v2 and Agilent) datasets from patient samples were obtained from the 283 

TCGA (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). METABRIC datasets [60] were obtained 284 

from European Genome-Phenome Archive (https://www.ebi.ac.uk/ega/studies/EGAS00000000083). 285 

The METABRIC dataset contains clinical traits, gene expression and CNV profiles derived from 286 

breast tumors collected from participants of the METABRIC (Molecular Taxonomy of Breast 287 

Cancer International Consortium) trial. Details about the METABRIC cohort have been published 288 

by Curtis et al [60]. Cancer Cell Line Encyclopedia (CCLE) datasets were obtained from its web 289 

site (http://www.broadinstitute.org/ccle/home). The CCLE provides public access to DNA copy 290 

number, mRNA expression and mutation data for more than a thousand cancer cell lines.  shRNA 291 

screens of breast cancer cell lines were obtained from the COLT-Cancer database [21] 292 

(http://dpsc.ccbr.utoronto.ca/cancer/help.html). The COLT-Cancer database is a collection of 293 

shRNA dropout signature profiles of ~16,000 human genes in 72 cancer cell lines. 294 

Analysis of BC genomic datasets 295 

Previously, we developed a knowledge-based linear modeling approach coupled to 296 

network/pathway analysis to identify genotype-specific pathway profiles from cancer genomic 297 

datasets.[61] Here, by employing this approach we analyzed each breast cancer dataset to generate 298 

BC transcriptional, lethality and survival profiles associated with each molecular subtype of BC. To 299 

calculate the transcriptional profile of a BC subtype, we measure the correlation t-statistic of every 300 

gene’s expression with the given BC subtype using multiple linear regression as described 301 

previously.[61] The lethality profile is defined the same way, only using the GARP (Gene Activity 302 

Ranking Profile) scores of genes, instead of gene expression data, from the genome-wide shRNA 303 

screens. GARP score quantifies the shRNA dropout rate of a gene, based on the GARP scores; 304 

lower GARP scores (i.e. more negative) depict higher essentiality. In order to get all the values in 305 

the same scale, the GARP scores were multiplied by -1.  306 

For a survival profile, we calculated the correlation of each gene’s expression with patient death 307 

rates (poor prognosis) using COX proportional hazards model for each molecular subtype in patient 308 

populations from the METABRIC dataset. 309 

Network analyses 310 

To prioritize drug-target interactions from gene-based data values, we used NetWalk, a random-311 

walk method for the scoring of functional pathways and network interactions. The NetWalk method 312 

has been described previously.[16] Briefly, the gene values (t-statistic values from above) are used 313 

as weights (w = e
t
: weights must be positive) in the transition probability matrix P in NetWalk: 314 

 ��� =	
��

∑ �			
	��
, 315 

where wj is the weight (transformed data value) assigned to node j, Ni is the set of network 316 

neighbors of node i, and ���s the transition probability from node i to node j. We define visitation 317 

probabilities of nodes, π, in the random walk as the dominant eigenvector of the extended transition 318 

probability matrix: 319 

 
 = 	
��1 − �� +
�

∑�
1��

�, 320 

Page 9 of 20 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



where P is the transition probability matrix, q is the restart probability for the random walk and 1n is 321 

a unit vector of length n (total number of network nodes). The second term on the right-hand side is 322 

a matrix with rank one that (1) adds a restart probability to the random walker depending on the 323 

weights of nodes and (2) ensures that the equation converges to a unique π. Visitation probability of 324 

the network interaction between nodes i and j, µij, is defined as 325 

��� =	
����. 326 

The vector µ reflects the probabilities of the interactions at the end of the random walk process, and 327 

each µij reflects the weights (t-values) of immediate nodes i and j, and the weights and connectivity 328 

of nodes in the local network neighborhood. To control for topological bias in the network, we also 329 

calculate ���
� , which is calculated by setting all w = 1 (that is, all t = 0). Finally, every edge in the 330 

network, including drug-gene interactions, is assigned a final Edge Flux (EF) score defined as the 331 

log-likelihood 332 

���� = log
 ��

 ��
! . 333 

Different edge types (drug-gene, gene-gene, etc…) can be analyzed separately or together in the 334 

NetWalker software (see accompanying manual in the web site). All of the NetWalk analyses were 335 

performed in NetWalker, a stand-alone software suite for network-based genomic data analyses. 336 

Cell viability analyses  337 

Cell viability was assessed using crystal violet assay (20% methanol, 0.5% crystal violet (Sigma) in 338 

1xPBS) as previously described [62]. Briefly, equal numbers of cells in 96-well culture plates were 339 

treated with Bortezomib as indicated. After 72 h, dead cells were removed by washing in PBS and 340 

the attached cells were stained and fixed with crystal violet (Sigma) for 30 minutes at room 341 

temperature.  After 30 minutes, excess stains were removed with tap water and the plates dried at 342 

room temperature. Once dried, crystal violet crystals were re-dissolved in Triton (Amresco) and the 343 

cell density was determined by measuring the absorbance at 570 nm in a microplate reader (Biotek 344 

Instruments). 345 
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Figure Legends 522 

Figure 1. a) An imaginary drug-target network with simulated experimental data values is shown 523 

(e.g. relative gene expression values) on the left. Node A was assigned a value of 5, and all the 524 

other nodes were assigned 1. A transition probability matrix P was constructed using the input data 525 

values and the network, with transition probabilities between adjacent nodes reflecting their data 526 

values (colors in the matrix reflect transition probabilities P(i > j) according to the color key). Final 527 

visitation and flux values reflect the level of coherence between the experimental data of genes and 528 

drugs, and their relative positioning within the network. Note that node colorings in the network on 529 

the right reflect relative visitation probabilities of nodes, and line colors of edges reflect the flux 530 

values according to the same color scale. b) Scoring drugs based on gene-centric data (e.g. 531 

transcriptomics, epigenomics and proteomics). c) Scoring genes and pathways based on drug-532 

centric data (e.g. phenotypic drug screens).  533 

Figure 2. Scoring drugs based on a gene-centric simulated dataset. a) Drug scoring based on the 534 

direct neighbors. Here, the EGFR gene was assigned a value of 10, and all the other nodes were 535 

assigned 1. Then, NetWalk analysis was conducted to score the drug-target sub-network associated 536 

with the EGFR gene. b) Drug scoring based on the data from the neighboring genes of the direct 537 

drug target in the network. Here, the highest value was assigned to the PSMD5 gene, a member of 538 

the proteasomal complex that is not directly targeted by drugs. Shown is a NetWalk analysis to 539 

score the drug-target sub-network associated with the proteasome complex. 540 

Figure 3. Correlation analysis of gene-to-drug and drug-to-gene scores from drug and shRNA 541 

screens from matching conditions, respectively. a) Correlation analysis by using raw scores. b) 542 

Correlation analysis by using NetWalk-based scores. c) Heatmap of drug and gene scores from 543 

NetWalk analyses of shRNA and drug screen data from three cancer cell lines and their 544 

representative sub-networks.  545 

Figure 4. a) Heatmap of normalized NetWalk-based scores of the survival, lethality and 546 

transcriptional profiles for the three breast cancer subtypes. b) Relevant sub-networks for each BC 547 

molecular subtype. The clinical status of the drug-target pairs is coded by the edge color. c) Kaplan 548 

Meier plots for relevant targets for each BC molecular subtype. d) ATC codes distribution for the 549 

prioritized drugs for each BC molecular subtype.  550 

Figure 5. Dose survival curves of a panel of HER2+ and HER2- breast cancer cell lines in response 551 

to increasing concentrations of bortezomib, a proteasomal inhibitor.  552 
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Correlation analysis of gene-to-drug and drug-to-gene scores from drug and shRNA screens from matching 
conditions, respectively. a) Correlation analysis by using raw scores. b) Correlation analysis by using 
NetWalk-based scores. c) Heatmap of drug and gene scores from NetWalk analyses of shRNA and drug 

screen data from three cancer cell lines and their representative sub-networks.  
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