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The results evidence a strong presence of intrinsically disordered proteins in key 

roles as HUBs in the HCC sub-networks. 
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We have analyzed by means of a networking analysis the transcriptomic 

data from patients with hepatocellular carcinoma (HCC) after viral HCV 

infection at the various stages of the disease by the publicly available E-

MTAB-950 dataset and compared with those obtained in our group from 

HepG2 cells, a cancer cell line that lacks the viral infection. By a sequential 

pruning of data, taking also into account the data from cells of healthy 

patients as blank, we were able to have a distribution of HUB genes for the 

various stages that characterize the disease and finally we isolated a 

metabolic sub-net specific of HCC alone. The general picture is that the 

basic organization to sustain energetically and metabolically the cells both 

normal and diseased is the same but a complex cluster of sub-networks 

controlled by HUB genes drives with high metabolic flexibility and 

plasticity the HCC progression. In particular, we have extracted from 

HepG2 cells a sub-net of genes strictly correlated to other HUB genes of 

the network but specific for the HCC and mainly devoted to: i) control at 

chromatin levels of cell division; ii) control of ergastoplasmatic stress 

through protein degradation and misfolding; iii) control of the immune 

response also through an increase of mature T-cells in thymus. This sub-set 

is characterized by 26 HUB genes coding for intrinsically disordered 

proteins with high ability to interact with numerous molecular partners. 

Moreover, we have also noted that periphery molecules, that is, with one 

or very few interactions (e.g., cytokines or post-translational enzymes), 

which does not have a central role in the clusters that make up the global 

metabolic network; essentially have roles of information transporters. The 

results evidence a strong presence of intrinsically disordered proteins in 

key roles as HUBs in the sub-networks that characterize the various stages 

of the disease, conferring a structural plasticity to the net nodes but an 

inherent functional versatility to the whole metabolic net. Thus, our 

present article provide a novelty in targeting the intrinsic disorder in HCC 

networks to dampen the cancer effects and providing new insight into the 

potential mechanisms of HCC. Taken together, the present findings suggest 

novel targets to design strategies for drug design and may support a 

rationale intervention in the pharmacotherapy of HCC and other 

associated diseases.   

 

Introduction 

Hepatocellular carcinoma (HCC) is a primary malignancy of 

the liver and the second most malignancy related deaths 

worldwide 
1
. In particular, HCC is the fifth and ninth common 

cancer in male and female respectively 
1
. The chronic viral 

infection of hepatitis B and C virus (HBV and HCV), the 

consumption of alcohol and smoking are the main factors 

that trigger liver diseases and HCC 
2
. The obesity and type 2 

diabetes are also known to be causative agents for HCC 
34

 

through non-alcoholic fatty liver or fatty liver disease 
5
 as 

well as the exposure to vinyl chloride or polyvinyl chloride 

makes people more susceptible for this type of cancer 
2
. 

However, in literature it is also reported that the iron load 

and estrogen-progesterone combined oral contraceptives 

(OC) induce an increase of the HCC risk 
2
. Its diffusion 

changes on geographical regions, ethnic groups, sex group 

and environmental conditions 
2
. Despite recent advances in 

diagnosis and management, the median survival of HCC 

patients is less than 8 months 
6
, and the surgical resection, 

the liver transplantation, and the local ablation remain the 

only curative modalities of HCC 
7,8

 even if its recurrence 

occurs in up to 70% of patients within 5 years after resection 

9,10
.  

The microarray approach has been already adopted by many 

researchers using different samples to find driver genes and 

potential molecular markers able to improve its early 
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detection and prognosis 
11–14

 In details, Lau et al. 
15

 were the 

firsts to use microarray technology to compare gene 

expression profiles of HCC and non-HCC liver tissues 
16

. Since 

then, multiple comparative studies have been published and 

allowed the identification of a number of potential genetic 

pathways, deregulated in the context of liver carcinogenesis 

17
. Among these, Wnt-signaling pathway, p53-signaling 

pathway, TGF-β, MAPK, IGF-2 and the Jak/Stat pathway were 

demonstrated to be differentially regulated by means of 

microarray experiments 
18–22

. However, some of the most 

differentially expressed categories of genes between HCC 

and non-tumor liver tissues are related to cell cycle 

progression, RNA splicing, protein degradation, cell adhesion, 

metabolic enzymes, detoxification, immune response, 

extracellular matrix and cytoskeleton, DNA damage repair 

system, and apoptosis, and also cytokines, growth factors, 

oncogenes, tumor suppressors, and GTP-binding 

proteins
13,18,19,23,24

.  

Also massively parallel sequencing approaches have been 

recently used 
25

 to characterize individual cancer patients to 

identify somatic and germ line alterations but they agree in 

suggesting that several mutations, the knowledge of which 

has already given rise to specific therapies, were also present 

in healthy tissue and therefore not due to cancer. This is an 

inherent problem that is due to the multifactorial origin of 

HCC and complicates the understanding of the molecular 

mechanisms and makes uncertain the identification of genes 

that should guide the progression of cancer.  

In addition, networks studies can provide useful insights on 

highly connected genes and informational flow in networks. 

In fact, the centrality indices of networks such as degree 

distribution, betweenness, centrality measures, and 

HUBness, permit to identify HUB genes that are those most 

correlated and thus driving genes. In this way it is possible to 

extract from the set of total genes fewer genes, which are 

more specifically related to particular physiopathological 

situations.  

In this paper we have focused our attention on detecting 

HUB-genes key players in HCC+HCV, in an attempt to learn 

more about this terrible disease because the Southern Italy 

shows a high mortality trend for liver cancer just in HCV 

patients 
26

. We have collected microarray experiments from 

225 liver tissues comprising samples from normal healthy 

individuals, and from patients with only HCV, with HCV-

related cirrhosis and with HCC from HCV-related cirrhosis, 

evaluating the differentially expressed genes in the different 

disease stages through a network analysis. Then, we have 

pruned these data by means of those obtained from our 

microarray analysis on HepG2 cell line, a model for HCC 

cancer without viral infection, compared to normal 

hepatocytes, in order to identify HUB genes, which were 

specific for HCC in absence of the metabolic effects due to 

viral progression. The results evidence a strong presence of 

intrinsically disordered proteins in key roles as HUBs of the 

sub-networks that characterize the various stages of the 

disease conferring a structural plasticity to the net nodes and 

functional versatility to the whole metabolic net. Moreover, 

we have for the first time isolated a sub-net specifically 

related to HCC control which has been entirely found made 

of IDPs. 

 

Methods 

Data samples and differentially expressed gene analysis 

We extracted the gene expression data obtained from 40 

normal liver tissues and from liver tissues of 61 HCV, 17 HCV-

related cirrhosis and 107 HCC with HCV-related cirrhosis 

patients by the publicly available E-MTAB-950 dataset 

(www.ebi.ac.uk/arrayexpress) obtained using the Affymetrix 

GeneChip Human Genome U133 Plus 2.0 
27

. We used Robust 

Multi-array Average or Robust Multi-chip Average (RMA) for 

the normalization and selected the up and down expressed 

genes concerning a fold change value above 2 and below -2, 

respectively, comparing the gene expression data in HCV or 

HCV-related cirrhosis or HCC with HCV-related cirrhosis 
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patients in respect to healthy controls. In details, the RMA 

normalization begins with a computing background 

corrected perfect match intensities for each perfect match 

cell on every gene chip.  

Then, we re-analyzed the microarray data obtained recently 

in our laboratory on normal hepatocytes and hepatoma cell 

line (HepG2) using DESeq tool 
28

 in R package and a similar 

fold change value above 2 and below -2, to select the up- 

and down-expressed genes respectively in HepG2 cells 

compared to normal hepatocytes. In this case, we used 

DESeq because RMA is the common approach adopted for 

analyzing the affymetrix microarray whereas DESeq with 

Illumina data with low samples.   

 

Network analysis 

We analyzed all the differentially expressed genes by the 

network analysis using Cytoscape 
29

 against known network 

of human interactome compiled from Pathway Commons 
30

, 

Biological General Repository for interaction Datasets 

(BioGRID) 
31

, Human Protein Reference Database (HPRD) 
32

, 

ConsensusPathDB 
33

, Database of Interacting Proteins (DIP) 

34
, Breast Cancer Information Core (BIC), Michigan Molecular 

Interactions (MiMI) 
35

. Hence, we extracted from the human 

interactome the differently expressed genes obtained for 

HCV, HCV-related cirrhosis and HCC with HCV-related 

cirrhosis in comparison to normal tissues and for HepG2 cells 

compared to normal hepatocytes. In particular, we 

considered only the connected component of these seed 

networks for statistical and functional analysis by using 

different tools, Netanalyzer 
29

, DAVID 
36

 and BiNGO 
37

, in 

Cytoscape package, and performed some statistical analysis 

and three measures of centrality: degree, betweeness, 

closeness centrality 
38

. The degree of a node explains the 

number of interactions of a particular node with other nodes 

in the network and the distribution probability of these 

degrees over the whole network known as degree 

distribution. However, concerning that the power law is a 

functional relationship between two quantities, where one 

quantity varies as a power of another, the power law degree 

distribution implies the scale-free property (”Rich gets richer 

effect”) of the network 
39

. This property helps to predict the 

HUB nodes that play important role in the network 
40

. Also 

the betweenness of a node indicates the importance of this 

node in the network and its involvement in different 

pathways and how other interactions in the network are 

controlled by this node 
41

. The closeness centrality of a node, 

ranging from 0 to 1 
42

, is defined as the reciprocal of the 

average shortest path length, and measures the speed of 

information flow through this node to reachable nodes in the 

network 
42

. Concerning the other statistical analysis, the 

average clustering coefficient of a network, ranging from 0 to 

1 
43

, helps to predict the modularity in networks 
43

, the 

network density is defined as proportion of all potential 

connections in a network with actual connections 
44

, the 

centralization of a graph explains the overall integration of a 

network 
45

 whereas the heterogeneity shows how the 

network is heterogeneous, and its values is very low in PPI 

networks and ranges from 0.218±0.129 
46

. 

Other Analyses 

Functional and pathway analysis was performed by BINGO 

and DAVID tool
47

.The prediction of miRNAs having the 

differentially expressed genes as putative target genes was 

done by the miRWalk algorithm with eight established 

miRNA-target prediction programs, i.e., DIANA-microT, 

miRanda, miRDB, PicTar, PITA, RNA22, RNAhybrid and 

TargetScan 
48

. 

Intrinsic Disorder - The related protein sequences 

corresponding to the differentially expressed genes were 

extracted from UniProt database. To assess the percentage 

of residues involved into intrinsic disorder we have used the 

DisProt tool subdividing the sequences in three major groups 

extracted on the basis of similar contents of disorder (10-
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15%, 15-50% and over 50%). However, we used a window 

value equal to 11
49

.  

Gene Paralog search - GeneDecks Partner Hunter is an 

analysis tool which provides a similarity metric by extracting 

shared descriptors among genes, based on the rich 

annotation within the GeneCards compendium of human 

genes in the GeneCards Platform 
50

. This analysis is also able 

to extract putative functional paralogs, namely genes that 

are similar to the query gene based on combinatorial 

similarity of attribute annotations. For the sequence 

paralogy attribute, if a partner candidate is also identified as 

a sequence paralog (SP), then it is assigned a value of 1 for 

this attribute and 0 otherwise. 

Results  

Differentially expressed gene analysis in the data sets 

We selected the number of differentially expressed genes in 

HCV, HCV-related cirrhosis and HCC with HCV-related 

cirrhosis tissues compared to normal tissues and in HepG2 

cells compared to normal hepatocytes (Table 1) using the 

procedure reported in Methods. Then, we performed the 

seed network analysis on the differentially expressed genes 

using as background the entire human interactome 

composed by 15,352 nodes and 281,797 interactions 
51

. In 

details, the seed network approach has been used to extract 

our network from the human proteome by means of some 

basic nodes that in our case are the differentially expressed 

genes taken from experiments. However, the seed network 

obtained on differentially expressed genes in HCV tissues 

compared to healthy liver tissues, is composed of 1,708 

nodes and 11,452 interactions (S1-A Fig.), that in HCV-

related cirrhosis tissues of 1,419 nodes with 8,259 

interactions (S2-A Fig.), that in HCC with HCV-related 

cirrhosis tissues of 1756 nodes and 15420 interactions (S3-A 

Fig.), and that in HepG2 of 250 nodes with 754 interactions 

(S4-A Fig.). 

Table 1 the number of differentially expressed genes in HCV, HCV-related 

cirrhosis and HCC with HCV-related cirrhosis tissues compared to normal 

tissues and in HepG2 cells compared to normal hepatocytes. 

Conditions 
Up-regulated 

genes 

Down 

regulated 

genes 

HCV 2460 288 

HCV-related 

cirrhosis 
2155 32 

HCC with HCV-

related cirrhosis 
2311 160 

HepG2 cells 371 280 

 

We compared the number of the exclusive and common 

genes present in the three different cases (HCV, HCV-related 

cirrhosis and HCC with HCV-related cirrhosis) as shown in Fig. 

1. In details, we can underline that: i) the 1201 genes present 

only in the case of HCV network are mainly involved in 

oxidation reduction, oxidative phosphorylation and cellular 

respiration, ii) the 589 genes present only in HCV-related 

cirrhosis network are involved in cell adhesion, cell motion 

and response to organic substances, and iii) the 955 genes 

present only in HCC with HCV-related cirrhosis play an 

important role in cell cycle, chromatin modification and 

mitosis. In addition, the 555 genes present in HCV, HCV-

related cirrhosis and HCC with HCV-related cirrhosis are 

involved in the establishment of the protein localization, 

macromolecule catabolic processes and intracellular 

transport. The 1104 common genes in HCV and HCV-related 

cirrhosis network play a role in immune response, defense 

response and regulation of cell proliferation; whereas the 

1012 common genes in HCV-related cirrhosis and HCC with 

HCV-related cirrhosis network mainly participate in 

regulation of cellular component size, vascular development 
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and blood vessel development. The groups of 974 genes that 

are common in HCV and HCC with HCV-cirrhosis networks 

play an important role in RNA processing, protein localization 

and proteolysis involved in cellular protein catabolic process.  

As shown in Fig. 1, we have 25 genes involved in all the cases 

of HCV, HCV-related cirrhosis, HCC with HCV-related cirrhosis 

and HepG2 cell-line. This group of gene is mainly involved in 

positive regulation of B cell apoptosis and DNA metabolic 

process. Moreover, the 431 genes present only in HepG2 

network are mainly involved in acute inflammatory response, 

M phase of mitotic cell cycle and response to wounding 

while the 139 common genes in HCC with HCV-cirrhosis and 

HepG2 network (85 + 20 + 25 + 9) play an important role in 

M phase of mitotic cell cycle and microtubule cytoskeleton 

organization. The 78 common genes in HCV and HepG2 

networks (25 + 24 + 20 + 9) are involved in the regulation of 

the hydrolase activity, response to metal ions and response 

to wounding. The 102 genes present in HCV cirrhosis and 

HepG2 networks (25 + 20 + 37 + 20) are mainly involved in 

actin cytoskeleton organization. The genes commonly 

expressed in case of HCV-related cirrhosis, HCC with HCV-

related cirrhosis and HepG2 networks play also a role in 

ectoderm development and reproductive developmental 

process. The greater number of the genes, among those 

shared between HCC with HCV-related cirrhosis and HepG2 

cell-line, are mainly found to be playing important role in M 

phase (24 genes), cell cycle phase (25 genes) and organelle 

fission (17 genes) with significant p-values. These genes are 

also found to be involved in other specific functions like 

humoral immune response mediated by circulating 

immunoglobulin, complement activation, chromosome 

segregation, and activation of plasma proteins involved in 

acute inflammatory response.  

The common nodes between HCC with HCV-related cirrhosis 

and HepG2 cell-line comprise also high degree nodes like 

PCNA, AURKA, HNRNPA1, H2AFX, MCM6, HLA-B, KPNA2 and 

ILF3. The ILF3 gene correspond to the NF90 protein which is 

involved in mitotic controls and post transcriptional 

phenomenon, but also in the expression of the gene itself 

and this property is exploited  during the viral multiplication 

in cells 
52

. This gene has also been found to participate in 

HCC 
53

 thus, because of its high degree of distribution, it is an 

important node in the whole network.  

Comparing the expression values for the following genes, 

AXIN2, TOP2A, ILF3, CDC20, PEG10 and DKK1, in HCC with 

HCV-related cirrhosis and in HepG2 cell line we found that 

these genes had expression values of fold change much 

higher in HepG2 cell line suggesting the probable 

involvement of these genes in HCC than in the viral infection. 

Moreover, SPINK1 gene resulted up-expressed in HCC with 

HCV-related cirrhosis, but in HepG2 cell-line this is highly 

down expressed. In the literature it is reported that the loss 

of SPINK1 function is found in urothelial carcinoma 
54

 and its 

up expression in pancreatitis 
55

 and  in prostate cancer 
56

.   

Network analysis on differentially expressed genes in HCV 

tissues  

The network obtained on differentially expressed genes in 

HCV tissues compared to healthy liver tissues (S1-A Fig.) 

presents a density equal to 0.008 with a characteristic path 

length of 3.296 implying the shortest travel between any two 

nodes, a clustering coefficient of 0.256 index of the network 

modularity, a network centralization of 0.132, a network 

heterogeneity of 1.441 and an average number of neighbors 

of 13.41 (Table 2). The plot of the node degree distribution 

showed a decreasing trend demonstrating that this network 

had scale free property and presented robustness against 

random failures (S1-B Fig.). The analysis of the putatively 

important nodes in this network, detected on the basis of 

betweenness centrality, degree, average shorted path length 

and closeness centrality is presented in S1 Table. The nodes 

having the highest distribution degrees were CUL3, FN1, 
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KIAA0101 and EEF1A1 with 238, 195, 175 and 169 degrees, 

respectively. 

Table 2 Statistical analysis for the all diseased case networks. 

Moreover, we evaluated the betweenness centrality that 

provides inferences on the importance of genes on the basis 

of load placed on the given node in the network, and, hence, 

information about the core skeleton of the network. 

Betweenness centrality demonstrated an increasing trend 

(S1-C Fig.) with maximum load placed on: FN1, CUL3, FBXO6, 

EGFR and KIAA0101 (S1 Table). In details, between the top 

30 nodes (Table 3), three down-expressed genes resulted 

mainly involved in molecular function of cell proliferation, 

cell adhesion and migration processes whereas twenty-seven 

up-expressed in functions like nucleotide excision repair, 

localization of cell and cell death and most importantly in cell 

cycle by DAVID and BiNGO tool. Moreover, from the pathway 

analysis by DAVID tool, for example, EGFR, CUL2, JUN, RAC1, 

SMAD4, SMAD2, STAT1, STAT3, and FN1 genes were found 

to be involved in cancer pathway (with p-value = 4.59E-04), 

whereas RPA1, RPA2, PCNA, and RPA3 (with p value = 

3.03E-04) in mismatch repair (S2 Table).  

Then, we focused our attention on nodes showing HUB–

HUB interactions (Fig. 2) and we verified that CUL3, FN1, 

EEF1A1, COPS5 and KIAA0101 were highly interacting in a 

sub network. These nodes are involved in functions like RNA 

polymerase activity, MAP/ERK kinase kinase activity, and 

ribonucleoside binding (S2 Table). 

Statistical 

analysis of 

seed network 

HCV 

network 

HCV 

related 

Cirrhosis 

network 

HCC 

with 

HCV 

etiology 

network 

HepG2 

network 

HepG2 

network 

(1
st

 

order) 

Nodes 1708 1419 1756 250 6509 

Interactions 11452 8259 15420 754 220381 

Network 

centralizatio

n 

0.132 0.129 0.230 0.157 0.745 

Average 

neighbours 

13.41 11.641 17.563 6.03 67.715 

Network 

heterogeneity 

1.441 1.467 1.482 1.119 1.581 

Characteristic 

path length 

3.296 3.265 3.011 3.642 2.336 

Clustering 

coefficient 

0.256 0.234 0.269 0.278 0.331 

Network 

Density 

0.008 0.008 0.010 0.02 0.01 
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Network analysis on differentially expressed genes in HCV-

related cirrhosis tissues 

The seed network on differentially expressed genes in HCV-

related cirrhosis tissues compared to healthy liver tissues 

(S2-A Fig.) had a  density equal to  0.008, a clustering 

coefficient of 0.234, a network heterogeneity of 1.467, the 

characteristic path length of 3.265 and the average number 

of neighbors of 11.6 (Table 2). As in the case of HCV network, 

the plot of the node degree distribution showed a decreasing 

trend demonstrating that also this network has scale free 

property (S2-B Fig. 2). This network had some very high 

degree nodes like FN1, YWHAZ, MDM2, COPS5 and ACTB 

with 195, 141, 135, 127 and 126 degrees, respectively (Table 

3 and S3 Table). Moreover, we evaluated the betweenness 

centrality that showed an increasing trend (S2-C Fig.) with 

maximum load placed on: FN1, MDM2, FBXO6, COPS5 and 

MYC. On the basis of betweenness centrality, degree, 

average shorted path length and closeness centrality values 

we found the top degree genes. They were all up-expressed 

in HCV-related cirrhosis tissues compared to normal liver 

samples (Table 3 and S3 Table), and involved in some 

pathways like cell cycle, pathogenic infection, adherens 

junction and pathways in cancer to indicate the most 

significance (S4 Table). In Fig. 3 one can see the organization 

of the most significant sub networks with their HUB nodes 

and relative interactions playing important functional roles in 

the whole network of HCV-related cirrhosis network. The 

presence of genes involved into viral infection progression is 

clearly shown as Pathogenic infection (p = 1.10E-06) as well 

as genes involved in cancer and leukocyte migration (S4 

Table).  

Network analysis on differentially expressed genes in HCC 

with HCV-related cirrhosis tissues 

The seed network on differentially expressed genes in HCC 

with HCV-related cirrhosis tissues compared to healthy liver 

tissues (S3-A Fig.). The statistical analysis evidences that in 

this network the clustering coefficient is of 0.269, the 

Table 3 Top 30 degree nodes in the four seed networks 
obtained for HCV, HCV-related cirrhosis, HCC with HCV-
related cirrhosis, and HepG2 and for the first order network 
of HepG2. We report the list of the genes from highest and 
lowest degree value. 

 

 

 

HCV HCV-

related 

cirrhosis 

HCC with 

HCV-related 

cirrhosis 

HepG2 HepG2 first 

order 

CUL3 FN1 SUMO2 AURKA UBC 

FN1 YWHAZ SUMO1 PCNA SUMO2 

KIAA010 MDM2 FN1 ACTB NRF1 

EEF1A1 COPS5 KIAA0101 AURKB APP 

COPS5 ACTB COPS5 CDC20 CUL3 

CAND1 FBXO6 MDM2 CSNK2A1 ELAVL1 

YWHAZ MYC YWHAZ UBD SUMO1 

FBXO6 ITGA4 CAND1 ZWINT TP53 

EGFR HSP90AB1 FBXO6 CCNB1 HSP90AA1 

RPA2 YWHAB RPA1 MCM6 FN1 

PCNA CAND1 HSP90AB1 H2AFX CDK2 

ITGA4 YWHAQ PCNA SRC EEF1A1 

RPA1 TUBA1A CDK1 MCM3 ESR1 

CUL2 VCAM1 HNRNPA1 CHEK1 YWHAZ 

YWHAE YWHAE HSPD1 UBE2C KIAA0101 

HNRNPC FYN CUL2 MAD2L1 CUL1 

ICT1 CUL2 PRKDC CENPA MDM2 

POLR2E GAPDH RAN SFN GRB2 

GAPDH RPA1 AURKA RFC4 COPS5 

VCAM1 RAC1 YWHAB CCNA2 CSNK2A1 

YWHAB PCNA CTNNB1 HNRNPA1 UBD 

RAN XPO1 UBR5 CKAP5 HSPA5 

RPA3 RAN XPO1 BIRC5 HSPA8 

EED DDX3X PABPC1 SERPING1 NEDD8 

YWHAQ JUN NPM1 CDC25C SRC 

DNAJA1 LCK HNRNPC HLA-B ACTB 

CUL5 HSPB1 CSNK1A1 KIF2C CAND1 

POLR2I SMAD2 YWHAQ MCM4 MYC 

FYN CSNK1A1 CCT3 SPC24 TUBB 

ATP5B VIM RANBP2 INCENP SIRT7 
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network centralization of 0.23, the network heterogeneity of 

1.482, the characteristic path length of 3.01, and the average 

number of neighbors of 17.56 (Table 2). Moreover, the 

density is equal to 0.01 which is a value greater than those 

obtained for HCV and HCV related cirrhosis networks 

because this network have more edges per nodes. It is 

important to underline that HCC with HCV-related cirrhosis 

network is more centralized and more clustered, compared 

to HCV and HCV-related cirrhosis networks as well as the 

characteristic path length is lower, suggesting an easy travel 

from one node to another. As in the case of HCV and HCV-

related cirrhosis networks, the plot of the node degree 

distribution showed a decreasing trend demonstrating that 

also this network had scale free property (S3-B Fig.). This 

network is composed of very high degree nodes like SUMO1, 

SUMO2, FN1 and KIAA0101 with 421, 269, 209 and 205 

degrees, respectively. Moreover, we evaluated the 

betweenness centrality that showed an increasing trend (S3-

C Fig.) with maximum load placed on: SUMO2, SUMO1, FN1, 

COPS5 and MDM2.    

On the basis of betweenness centrality, degree, average 

shorted path length and closeness centrality values we found 

top 30 degree genes that were all up-expressed in HCC with 

HCV-related cirrhosis tissues compared to normal cases 

(Tables 3 and S5 Table). As one can see in S6 Table the 

distribution of their functions and pathways is very large 

with high p-values (5.75E-16 for pathways and 3.34E-07 for 

functions). This suggests that the concomitant effect of 

cancer and viral infection has a strong impact on the 

metabolism with a strong increase of functional activities. 

The overall picture that we can observe is functionally very 

complex with strong activity at nuclear level and of post-

translational modifications, due to the progression of the 

chronic inflammation started from the viral infection. 

However, S6 Table shows also an evident methylation 

activity, suggesting epigenetic modifications, as well as those 

of various kinases. In few words we have a greater number 

of metabolic clusters strictly connected with short path 

length between them and much more edges for node. 

Functionally speaking the cancer activates new metabolic 

pathways and this certainly leads to more global metabolic 

energy expenditure for the organism.  

Also in this case, we focused on HUB–HUB interactions and 

verified that two HUB nodes such as SUMO2 and SUMO1 Fig. 

4, are highly connected with each other and these genes play 

an important role in SUMoylation.
57

 Moreover, the other 

interconnected HUB nodes like HSP90AB1, SMAD2, YWHAZ 

etc. are related to  DNA replication origin binding, single–

stranded RNA binding, ligase activity, p53 binding and RNA 

binding functions (S6 Table).  

HepG2 Network 

We performed the network analysis on down- and up-

expressed genes resulted common by our previous study and 

DESeq analysis 
28

 (S4-A Fig.).  This network presents a density 

of 0.024, the clustering coefficient of 0.278, the 

heterogeneity network of 1.12, the centralization of network 

of 0.158,  the characteristic path length of 3.642, the average 

number of neighbors of 6.03 (Table 2). The degree 

distribution and betweenness distribution of nodes follow 

power low explaining the scale free property of the network 

(S4-B and C Figs.). The highest betweenness exhibiting nodes 

in the network are ACTB, PCNA, UBD, AURKA and CSNK2A1. 

These nodes play a bridge role with the rest of the network.  

The highest 30 degree nodes ranged from 45 to 13 (Tables 3 

and S7 Table) and many of these genes are also involved in 

HCV, HCV-related cirrhosis and HCC with HCV–related 

cirrhosis. The functional and pathway analysis evidenced that 

some HUB genes are involved in ATP, nucleotide and kinase 

activities and in the following pathways like cell cycle, DNA 

replication, and p53 signaling pathways (S8 Table). In the sub 
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network of HepG2 HUB nodes like AURKA, AURKB, PCNA, 

ACTB (Fig. 5) and other nodes are highly connected and 

hence the sub network is playing an important role in outlay 

of whole network.  

Moreover, to check the independence of HepG2 

differentially expressed genes in human proteome, we 

analyzed the first order network composed from 6,509 

nodes and 220,381 interactions (S5-A Fig.). In details, its 

density is equal to 0.01 with the heterogeneity of 1.58, and 

the average number of neighbors was equal to 67.7 (Table 

2). Moreover, the characteristic path length of HepG2 first 

order network was equal to 2.336; this value is lesser than 

that in other networks and is index of the fast flow of 

information in this network (Table 2). However it is highly 

centralized (with 0.745) with a clustering coefficient of 0.331 

that is higher compared to all the other networks showing 

the importance of seed nodes in the network (Table 2). The 

degree and betweenness distribution plots of first order of 

HepG2 network follow the power law showing the scale free 

behavior of the network (S5-B, C Figs.). The high betweeness 

nodes in the first order network are UBC, APP, NRF1, SUMO2 

and ELAVL1.  

In the first order of HepG2 (Tables 3 and S9 Table) we found 

the highest degree nodes of the seed network PCNA, ACTB, 

UBD and CSNK2A1 implying their importance in diseased 

condition. While UBC, SUMO2, NRF1, SUMO1, TP53, 

HSP90AA1, FN1, CUL1, MDM2, GRB2, COPS5, HSPA5, SRC, 

CAND1, MYC, TUBB and SIRT7 are among most interacting 

nodes with a high degree of network. The HUB nodes like 

CDK2, TP53 and MDM2 with other high degree node are 

involved in cell cycle, prostate cancer and pathways in 

cancer, NEDD8, CDK2 and CUL1 in regulation of p27 

phosphorylation during cell cycle progression and CSNK2A1, 

TP53, MYC and CUL1 in Wnt signaling pathway. The high 

degree nodes of first order of HepG2 network are also found 

to be involved in molecular functions of protein modification 

by small conjugation, regulation of apoptosis and mitotic cell 

cycle. They show specific considerable metabolic complexity 

related essentially to boost cell proliferation through the 

control of the cell cycle. An interesting observation is related 

to the functions expressed by these genes primarily aimed at 

controlling the formation of complexes, also ATP dependent, 

and phosphorylation. 

Comparison between HUB nodes  

We compared the presence and the role of HUB nodes in 

four networks of HCV, HCV-related cirrhosis, HCC with HCV-

related cirrhosis and HepG2 cell line (Fig. 6 and S10 and S11 

Tables). Since our aim was to discriminate between HCC in 

presence or in absence of viral infection we focused mainly 

on the comparison between the HUB nodes common 

between HCC with HCV-related cirrhosis and HepG2 cell line 

or resulted specific for two situations. 

In particular, PCNA was a common HUB node in all four 

networks. It is involved in cell cycle and in cancer pathways, 

was found implicated in the liver related infection and in HCC 

58
 and its dysregulation determines both tumor progression 

as well as the outcome of anticancer treatment 
59,60

. AURKA 

and HNRNPA1 were two HUB nodes present in the two HCC 

with HCV-related cirrhosis and HepG2 networks. Both 

AURKA, a centrosome-associated serine/threonine kinase, 

and HNRNPA1, belonging to the A/B subfamily of 

ubiquitously expressed heterogeneous nuclear 

ribonucleoproteins, resulted up-expressed frequently in HCC, 

and to correlate with high grade and high stage, indicating 

that their role in the development and progression of HCC 

61,62
.  

However, twelve genes resulted HUB nodes only in the HCC 

with HCV-related cirrhosis network.  

Among these genes, CTNNB1 is involved in Wnt/beta-catenin 

pathway and in cellular survival 
63

, HSPD1 in stress response 

in the mitochondria, CDK1 in cell division cycle, UBR5 in 

mitotic non-disjunction and chromosome instability 
64

, 
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PABPC1 in cytoplasmic regulatory processes of mRNA 

metabolism, HNRNPC belonging to heterogeneous nuclear 

ribonucleoproteins in pre-mRNA processing, NPM1 in 

regulation of ARF/p53 pathways 
65

 and SUMO1, SUMO2 and 

RANBP2 in the sumoylation and nuclear export pathway. 

Moreover, since CCT3 is a molecular chaperone, and PRKDC 

a serine/threonine-protein kinase, they develop their 

function by binding different other proteins and forming the 

protein complexes.  

Finally twenty six genes resulted HUB nodes only in HepG2 

network. In details, CCNA2, CCNB1, MCM 3, 4 and 6 are 

involved in cell cycle checkpoint signaling pathways 
66,67

, 

SPC24 and ZWINT in kinetochore and participate in anaphase 

of cell cycle 
68

, CENPA and INCENP in centromere function, 

RFC4 in elongation of multiprimed DNA template 
69

, CDC20 

and BIRC5 in apoptosis 
70

, CDC25C in G1/S and G2/M 

checkpoints 
71

, H2AFX in the nucleosome 
72

, KIF2C and 

MAD2L1 in cell division, CKAP5 in centrosomal microtubule 

assembly 
73

, and UBD and UBE2C in mitotic non-disjunction 

and chromosome instability
64

. Moreover, CSNK2A1 is a 

casein kinase, CHEK1 a serine/threonine kinase and SRC a 

proto-oncogene tyrosine-protein kinase that phosphorylate a 

large number of substrates, SFN is implicated in Akt/mTOR 

pathway and in p53 activation 
74

, and HLA-B plays a critical 

role in the immune system and SERPING1 is a serpin 

peptidase inhibitor found involved in hepatocellular 

carcinoma 
75,76

. 

Discussion 

The HCC presentation has significantly changed over the past 

years. Although its etio-pathogenesis is still not clearly 

elucidated, it is now manifest that the disease is clearly 

multifactorial
77

 and often develops in patients with 

underlying cirrhotic liver disease of various etiologies. The 

cirrhotic liver is characterized by fibrosis, inflammation, 

necrosis, and ongoing regeneration, which support the 

carcinoma progression, including the modification of 

numerous biochemical pathways
78

. The biochemical 

transformations might be also induced by external and 

environmental factors thus the origin of the genetic changes 

that, for example, increase cellular proliferation, are not 

easily discernible. Further, whereas we can exclude the 

familial and hereditary cancers clearly demonstrated of 

genetic origin, for the remaining 
79

 we need to consider the 

well-documented influence of external molecules as well as 

dietary components on cancer initiation and progression 

trough epigenetic modifications 
80

. As a logical consequence, 

this leads to think a sequential interaction between: 

stressors, epigenetic, metabolic network, and cancer. 

Aim of our study is to extract information by means of a less 

common approach, i.e., by analyzing the inter-genic 

relationships through networks 
39

. In this article we compare 

differentially the relationships existing between two extreme 

situations, i.e., pure cancer cells without any presence of the 

virus infection (HepG2 cells) and cells of tissues that 

characterize the various stages of the disease progression 

from infection, HCV-related cirrhosis and HCC with HCV-

related cirrhosis. Our attempt is to isolate, as much as 

possible, the contributions of genes and their related 

proteins that operate together to specifically sustain the HCC 

proliferation. Since no gene works by itself but it is part of 

the whole metabolic network together with its product (the 

protein) so that, in principle, any biologically altered function 

of the network that we suspect associated to pathologically 

different situations, can be evidenced through those genes 

that change their expression. In our case, we have identified 

the genes that play a key role as HUB nodes, because they, 

having extensive interrelationships between genes, 

effectively control or mediate the biological activities in the 

network.  

The overall picture that emerges from our experiments is the 

presence of mutual interactions involved in metabolic 

networks typically linked to biochemical pathways, grouped 

in metabolic modules. The most noticeable consequence of 
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this property is the presence of few highly connected HUBs 

that hold connected the whole metabolic network. These 

HUB genes control modules that link inter-connected 

biochemical processes. The validity of our network clustering 

analysis can only be assessed in terms of biological 

relevance. In S2, S4, S6 and S8 Tables we report the 

biological functions related to these genes, some of which 

have been found also by other researchers, for instance, the 

genes involved in oocyte meiosis and progesterone mediated 

oocyte maturation 
81

, and the general frame work of the 

common genes (Fig. 1). Since we are working with a 

regulatory network of coding HUB genes, topological clusters 

should correspond to groups of proteins involved in 

processes convergent on similar biological functions, and 

probably located in the same subcellular compartment. The 

analyzed networks show an equivalent high degree of 

clustering, which implies the existence of topological 

modules that represent highly interlinked local regions 

involved in the same disease with increased tendency to 

interact with each other, therefore, all the extracted genes 

show important functional activities as proteins supporting 

the cancer cell proliferation and controlling at chromatin 

level the cell division. We note also strong HUB-HUB 

interactions that increase the functional connectivity 

between network and sub-network regions sharing and 

strengthening functional properties in topologically defined 

metabolic sub-areas. From the Venn diagram in Fig. 2, we 

note that 26 genes are specifically related to HepG2, but 

since all code for real proteins, they deserve a more detailed 

analysis.  In S8 Table we report that analysis. In general, their 

functional properties can be roughly summarized in three 

major groups: i) control at chromatin level of cell division; ii) 

control of ergastoplasmatic stress through protein 

degradation and misfolding; iii) control of the immune 

response also through an increase of mature T-cells in 

thymus. We would like also to highlight that the complex 

tridimensional and hierarchical structure of the chromatin 

organization certainly requires a large number of proteins 

that are involved in the same process. These complex sets of 

interactions seems to represent the mechanistic foundation 

for much of the cell function trough complex networks of 

protein-protein interactions 
82

. Among these there are also 

some kinases which act mainly as a regulatory nuclear nodes 

which integrate and coordinate numerous signals leading to 

appropriate cellular response (CSNK2A1) 
83

 or as molecular 

sensors for DNA damage (PRKDC) 
84

. Our observations show 

that the nodes of the first order HepG2 sub-network, as 

proteins, utilize a large number of physical interactions, 

corresponding to a large number of different molecular 

partners.  

Our present knowledge of cell physiology suggests that only 

the intrinsic disorder, exerted by the IDPs, can provide 

molecules so flexible to be able to interact with a wide range 

of partners. In fact, IDPs have been found to be involved in a 

number of human diseases, including cancer as well  many 

studies have also been performed on individual IDPs, where 

they were always found involved in important and different 

metabolic roles often related to cancer 
85

. However, their 

ability to recognize and interact with multiple partners can 

be fully explained only if we demonstrate that all our nodes, 

when translated into proteins, contain, at varying degrees, 

structural regions rich in intrinsically disordered segments 
86

. 

Our bioinformatics analysis shows that this is exactly the 

case (S12 Table).  An important recent observation that 

support our findings is that the transcription, which controls 

the complex and crucial biological functions predominantly 

localized inside the cell nucleus, is a functional process 

intimately related to the IDPs 
87

. Also, an analysis (not 

shown) of the other proteins involved in the progression of 

HCC, even in the presence of the viral infection, does 

conclude that also the majority of them is IDP. In few words, 

our results suggest that the HUB proteins control the key 

nodes but probably also the general metabolic organization 

supporting the HCC proliferation. Recent studies suggest that 
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signaling and regulatory roles carried out by IDPs require 

them to be tightly regulated, and that altered IDP abundance 

may lead to disease 
88

. The wide presences of IDPs in cells 

are generating a mounting interest in understanding the 

structure of these proteins but this aspect is still an open 

challenge. In fact, although IDPs, or their regions (IDRs), hold 

many biological functions, their molecular mechanisms, 

which are often elusive to the experimental characterization, 

revolve around their ability to act as centers for many 

protein-protein interactions, visibly diverging from those of 

the classic globular proteins. 

In principle, their function may be controlled by post-

translational modifications that lead to structural changes 

during the interaction with the target 
89

. However a multisite 

phosphorylation can give rise to a wider range of functional 

responses, allowing the same protein to bind many different 

molecular targets with various functional consequences. 

Undoubtedly, the combinatorial post-translational 

modifications with a great number of isoforms 
90

 add 

complexity to regulatory networks and provide a mechanism 

for tissue-specific signaling. However, we must not forget 

that IDP functionalities are also context dependent 
89

, 

therefore, an open question is to know on a global metabolic 

scale how the connectivity between metabolic nodes 

translates into the interactions between HCV and HCC 
91

. A 

final issue is that the shortest path length observed between 

nodes of the first order reflects an overall network 

connectivity, where hub nodes are central to network 

topology, but the finding that these nodes have an average 

of about 220 interacting partners suggests that they might 

be considered mainly as date hubs and not party hubs 
92

. 

Thus, the hub topology seems favorable to drug design by 

means of well-tuned attacks against target HUB nodes, so 

generating the most massive functional effects 
92

. 

From our analysis it seems that HCC should not be 

understood through a vision connected only with the genetic 

mutations, rather, it should be considered as a novel tissue, 

in which the cancer cells interact with the surrounding 

metabolic environment, communicant traits that promote 

their own survival. Further, the ability of the cancer cell 

population to regenerate and reprogram themselves in 

response to hostile microenvironment, and ultimately 

persisting in their proliferative state, is controlled by 

intrinsically disordered proteins. We have found that the 

nodes of these metabolic networks are occupied by proteins 

that are structurally rather flexible and extended, with 

physico-chemical  properties diametrically opposed to those 

of the classic globular proteins, which allow them to easily 

switch from one partner to another 
93 

simply by means of 

post-translational modifications. Moreover, they easily 

buffer numerous mutations, but can change their function 

(i.e. the partner) mainly by mutations in Ser, Thr or Tyr, the 

targets of post-translational modifications 
90

. Thus, 

independently from the mutation site, it is amazing the 

infinite number of possible functional variations that a sub-

network containing them, may implement as a consequence 

of the kinase action. From this point of view the peripheral 

molecules are important to shift the HUB nodes of metabolic 

sub-nets to different functions. In practice, the presence of 

these functionally multiform nodes suggests that the flow of 

information, for instance such as that transported by 

cytokinome or by kinome, is likely one of the critical points in 

the control of the metabolic routing between stages of the 

disease. In fact, the joint effects between IDPs, informative 

molecules, and post-translational modifications offer to 

networks a high metabolic plasticity, and proliferative 

flexibility with no or very few changes in genome.   

Another noticeable observation come from the recent 

finding that a long non-coding RNA (HULC), highly up 

regulated in liver cancer, plays an important role in HCC, and 

that the PKA (protein kinase A) pathway may be involved in 

its up-regulation. Some Authors demonstrated that HULC 

may act as an endogenous 'sponge', which down-regulates a 

series of miRNAs activities, including miR-372 
94

. Where, the 
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related inhibition of miR-372 can lead to the expression 

increase of its target genes. Therefore, we have evaluated 

the presence of targets for miR-372 in our lists of 

differentially expressed genes as well among the HUB genes 

in the networks related to HCC with HCV-related cirrhosis 

and HepG2 cells. We performed a prediction study of the 

putative genes that can be the target of miR-372 by miRWalk 

algorithm 
48

 and, considering a consensus of five out eight 

tools, we selected the genes among those found 

differentially expressed according to our data. In this way, 

we obtained a total of 2344 targets for miR-372, among 

which two groups of 348 and 44 genes were common to the 

lists of up-expressed genes in HCC with HCV-related cirrhosis 

and HepG2 cells, respectively. In details, 1/348 (UBR5) and 

3/44 (MCM3, MCM4 and MCM6) were HUB genes in the 

related networks S13 Table. Moreover, recently it has been 

published that HULC 
95

 contributes to the perturbations in 

circadian rhythm of the hepatoma cells inducing an hepato-

carcinogenesis promotion. This is also confirmed from our 

analysis which has evidenced that among the possible 

targets for miR-372 in our lists of up-expressed genes in HCC 

with HCV-related cirrhosis and HepG2 cells S13 Table, have 

been found 15 genes involved into the circadian rhythm. 

Moreover, to support this result, we have selected also the 

best 100 out of 679 inferred partners found for HULC that 

share the same disorder (i.e., HCC). As we can see on S14 

Table, we have found three genes like MDM2 
96

, a nuclear-

localized E3 ubiquitin ligase that can promote tumor 

formation by targeting tumor suppressor proteins, such as 

p53, for proteosomal degradation; MYC 
97

, a transcription 

factor that regulates cell cycle progression, apoptosis and 

cellular transformation as transcription of specific target 

genes; and CDK1 
98

, a catalytic subunit of the highly 

conserved protein kinase complex known as M-phase 

promoting factor (MPF), which is essential for G1/S and 

G2/M phase transitions of eukaryotic cell cycle, functionally 

correlated to HULC in HCC among the top first order HUB 

nodes specific for HepG2. However, also another gene BIRC5 

99
, (a multitasking protein that has dual roles in promoting 

cell proliferation and preventing apoptosis) has been found 

among the top 30 degree nodes of HepG2 genes. These 

findings seem to correlate the origin of the HCC to possible 

alterations through HULC. However, this result falls within 

the recent observation indicating that RNA editing 

modification may play an important role in the development 

of HCC 
100

. Interestingly, also this observation seems to 

support the sequence: stress, epigenetic event, metabolic 

network changes, and cancer development.   

Actually, our results offer a reasonable conceptual 

foundation for understanding how metabolic alterations may 

contribute to cancer if treated organically. In fact, it is now 

well known that chemical modifications of histones and DNA 

control the epigenetic gene regulation, and that the 

malignancy is pervasive in tissues also through the disruption 

of the epigenetic control 
101 

inducing changes which allow 

cancer cells to progress 
102

 with molecular mechanisms 

similar to those determined by instability and mutations of 

the genome. At the same time, many of the enzymes 

involved into such chemical modifications are sensitive to 

metabolic changes also due to diet 
103

. However, these 

aspects deserve deeper investigation to shed light on the 

origin of HCC when not connected to the viral infection. 

The general consideration that can be done in the presence 

of a so widespread participation of IDPs at metabolic key 

points of the cells affected by cancer, but also by the viral 

infection, is that we are in the presence of molecular 

mechanisms supported by nodes that have a inherently 

infinite molecular adaptation that allows them to coordinate, 

with continuity, new metabolic changes, also unfavorable. 

However, any network of genes coding for real proteins, in 

normal physiological conditions has a possible pattern of 

interactions dictated by their concentration and by the time 

of their physical presence. Both these parameters are tightly 

regulated by the genome but the genes of which we are 
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speaking about are over expressed. This means that their 

local concentration in cell rises and thus favors the protein-

protein interactions, which are strongly concentration 

dependent. In this case we have a noise affecting both time 

and mass. But, because the HCC sub-network is made of 

IDPs, their over expression opens to many new potential 

interactions. If we consider that the same is also valid for the 

numerous kinases that show disordered regions, we can 

reasonably hypothesize a new balance of the interaction 

pattern, which is able to metabolically switch to a new 

phenotype. All this dramatically changes the present vision 

on various sequential mutations for the cancerous 

progression. Probably we can also consider a genomic 

variation following the initial insult, but nothing excludes 

that it can also be of epigenetic nature rather than a true 

gene mutation, or even due to stressors of still un-known 

nature that, for instance, modify some critical step of the 

circadian system. Therefore, any curative approach acting 

only on a local metabolic pathway or aimed to hit a local 

signaling system may be frustrated because it 

underestimates the enveloping role of the global metabolic 

network in cellular functioning. It is evident from our data 

that HCC involves abnormal metabolic states that change the 

normal tissue physiology and lead to tissue dysregulation, 

which today we know that it can be done through many 

concomitant metabolic options 
104

, and this is not surprising 

because in an non-deterministic complex system, as the 

cellular metabolism is, many different space-time solutions 

are possible for a single stress. A second consideration 

comes from the observation that the main HUB nodes in 

HepG2 have a field of action essentially nuclear and most of 

them are transcription factors. In few words the origin of 

each variation resides mainly on the control of the chromatin 

function exerted by genes coding for IDPs. All this, with due 

caution, seems a sophisticated form of metabolic parasitism, 

exerted through the control of the global network. The main 

question remains: where does the primary insult?  

The last consideration is on the general metabolic role 

exerted by the molecules that are allocated to the periphery 

of the various modules of the network, that is, molecules 

such as cytokines, many kinases, and those enzymes devoted 

to post-translational modifications. They have not key 

positions, because they play an informative work, namely to 

carry the information needed to determine adequate flows 

of mass and energetic needs between functional sub-nets, 

under the changing metabolic pressure exerted by the HUB 

networks. This is a view at present not easy to pursue 

because of the pervasive presence at key nodes of the IDPs. 

In fact, about these proteins, we have some knowledge  only 

from a functional point of view but still little about their 

structural behavior in solution and of the molecular 

mechanisms in which they are involved.  
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Venn diagram of all cases showing exclusive and recurrent genes in the different pathological stages:  HCV 
(2748 genes) HCV Cirrhosis (2187 genes) HCC with HCV etiology (2471 genes) and HepG2 (651 genes).  
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Sub-network specific for the HUB-HUB interactions in the HCV network. Nodes with similar colors are 

members of the same sub-network.  
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Sub-network specific for the HUB-HUB interactions in the HCV-related cirrhosis network. Nodes with similar 

colors are members of the same sub-network.  
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Sub-network specific for the HUB-HUB interactions in the HCC with HCV-related cirrhosis network. Nodes 

with similar colors are members of the same sub-network.  
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Sub-network specific for the HUB-HUB interactions in the HepG2 network. Nodes with similar colors are 

members of the same sub-network.  
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Venn diagram of the interacting 84 HUB nodes in HCV, HCV-related cirrhosis, HCC with HCV-related 
cirrhosis, and HepG2.  
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