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ABSTRACT While cell-to-cell variability is a phenotypic consequence of gene 

expression noise, sources of this noise may be complex: apart from intrinsic sources 

such as the random birth/death of mRNA and stochastic switching between promoter 

states, there are also extrinsic sources of noise such as cell division where division 

times are either constant or random. However, how this time-based division affects 

gene expression as well as how it contributes to cell-to-cell variability remains 

unexplored. Using a computational model combined with experimental data, we show 

that the cell-cycle lengths defined as the differences between two sequential division 

times can significantly impact expression dynamics. Specifically, we find that both 

divisions (constant or random) always raise the mean level of mRNA and lengthen the 

mean first passage time. In contrast to constant division, random division always 

amplifies expression noise but tends to stabilize its temporal level, and unimodalizes 

the mRNA distribution but makes its tail become longer. These qualitative results 

reveal that cell division based on time is an effective mechanism of both raising 

expression levels and enhancing cell-to-cell variability.  

 

1. Introduction 

Gene expression involves transcription, translation, transitions between promoter 

states, cell division, etc.
1-4 

These biochemical processes are essentially all stochastic, 

resulting in stochastic fluctuations in mRNA and protein levels. These fluctuations 

can become important when the mRNA or protein copy number is low
5,6

. While 

quantitative time-lapse fluorescence microscopy allows for tracing the real-time 
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expressions of genes in individual cells,
7-9

 there is considerable interest in 

theoretically understanding how different molecular mechanisms of gene expression 

affect variations in mRNA and protein abundances across a population of genetically 

identical cells.
10-16

 Quantifying the contributions of different sources of noise using 

stochastic gene models is an important step towards understanding fundamental 

intracellular processes and cell-to-cell variability.
17-26 

Cell growth and division are ubiquitous in natural systems. When cellular energy 

and growth factors are enough, cell growth and division are all periodic events
27-30

 

(traditionally, cell division means that a cell begins to divide when its volume reaches 

twice the original volume, so this kind of division is actually volume-based division. 

In this paper, we consider time-based division by which we mean that a cell divides at 

time points that are either deterministic or random). The time difference between two 

adjacent divisions (called cell cycle)
29,31,32

 can be regulated by the extracellular 

environment.
33-35

 In particular, when living cellular physiological states are changed, 

the time points of cell division can also alter,
29,6-41

 resulting in variation in cell cycle. 

In addition, the way of cell division may be diverse and division times may exhibit 

big differences between distinct cells. For example, B cells exposed to Toll-like 

receptor 9 ligands are nonself-adherent, allowing individual cells and families to be 

followed in vitro for up to 5 days.
42-44

 They undergo phases typical of an adaptive 

response, dividing up to 6 times before losing the impetus for further growth and 

division and eventually dying by apoptosis.
42-44

 Another example is fast growing E. 

coli cells dividing as frequently as every 20 minutes, and experimental observations 

show that cellular activity including continuous reproduction of genome is at an 

extreme level
37

 but DNA replication is slowed down at a low nutrient level.
37-39 

Variations in division times between otherwise identical cells are bound to generating 

intercellular differences in the copy numbers of stable mRNAs or proteins.
31-37

  

Effects of cell division, in particular those of random division (by which we 

mean that division times are random throughout this paper), are seldom considered in 

previous models of gene expression.
27,28,35,45

 In those models, fundamental expression 

events such as transcription/translation and stochastic promoter switching are often 
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modeled as time-continuous and space-discrete Markovian processes and hence the 

effect of expression noise can be captured by chemical master equations 

(CMEs).
11,12,16,17

 However, cell division creates a discontinuity in the time evolution 

of the probability density function of the mRNA or protein number. In particular, cell 

division time may be random
31,42-44

 and the partition of molecules into the daughter 

cells may be asymmetrical, each creating noise
9,27,28,46-49

 that additionally contributes 

to expression noise. In addition, cell growth and division may affect several kinetic 

parameters including global transcription and translation rates,
37,49

 thus controlling 

and/or determining cellular activity. While capturing effects of random cell division 

(an extrinsic source of expression noise) is a computational challenge, it is of 

particular interesting yet important to explore how cell division affects expression 

levels as well as how different sources of expression noise altogether contribute to 

cell-to-cell variability. 

Many cellular processes including cell-cycle progression, signal transduction and 

cell apoptosis
29,35,5,51

 all involve mRNA or protein degradation. Traditionally, 

dynamics of the gene-product number was described simply by a balance of synthesis 

and degradation.
2,4,15-19

 However, recent genome-wide experiments quantifying 

intracellular mRNA and protein expression levels and turnovers in parallel in a 

population of unperturbed mammalian cells have revealed that many gene-encoded 

stable proteins are not actively degraded but are diluted through cell division
31,50,52

  

with random division times.
29,42

 Also traditionally, the diluting effect of cell growth 

and division is determined by the growth rate ( )1 0ln V Vλ τ= , where  0V  and 1V  

stand respectively for the volumes at the begin and end of cell division in a cell cycle 

and τ  for the mean cell cycle. In common cases, the growth rate is calculated by 

( )ln 2λ τ= .
9,52

 Differently, we introduce the so-called equivalent degradation rate of 

gene product, which is similar to the diluting role of (deterministic or random) cell 

division, to capture the diluting effect of time-based division. 

In a word, cell growth and division are inevitable events taking place in the 

process of gene expression, and biological experiments have also provided evidences 
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for random division times, but mechanisms of how time-based division affects gene 

expression are unclear. In this paper, we use a toy model to investigate how cell-cycle 

variability contributes to cell-to-cell variability in a population of genetically identical 

cells. Although simple, our model still captures major events taking place in gene 

expression such as the random synthesis and degradation of mRNA and stochastic 

switching between promoter activity states as well as cell growth and division. By 

model analysis, we highlight the roles of time-based division in regulating gene 

expression, which include: (1) this kind of division always raises the mean level of 

gene expression and lengthens the men first passage time (MFPT); (2) in contrast to 

division with a constant cell cycle, division with cell-cycle variability amplifies 

expression noise but tends to stabilize their transient level, and unimodalizes the 

mRNA distributions but makes their tails become longer. These results, which are 

independent of the choice of model parameter values and even gene models and are 

therefore qualitative, not only reveal that time-based division is an effective 

mechanism of both increasing expression levels and promoting cell-to-cell variability 

but also indicate that random division acts as an amplifier for gene expression.
53 

2. Results 

2.1 Time-based division always raises the mean expression level 

Figure 1 shows the dependence relationship between the stable mean mRNA 

number and the mean cell-cycle length in three cases of gene switching: slow; 

asymmetric and fast (see Methods wherein some analytical results are also given). 

From this figure, we observe that the mean mRNA level is a monotonically increasing 

function of the mean cell-cycle length, implying that time-based division always 

raises the mean expression level (this is an interesting yet seemingly-counterintuitive 

result since the longer the cell cycle is, the larger is the cell volume). In particular, for 

slow or fast switching (Fig. 1A or C), the raised amplitude is larger in the case of 

random division than in the case of constant division (comparing the red line with 

circles or the green line with squares with the blue line with stars). This indicates that 
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the noise from the random division (named as division noise) positively contributes to 

the expression level. In the case of asymmetric switching (Fig. 1B), however, this 

effect of division noise is not apparent possibly since the effect of the promoter noise 

from asymmetric switching partially counteracts the effect of division noise in this 

case. 

 

Fig. 1 The dependence of stable mean mRNA number on mean cell-cycle length: (A) 

slow switching; (B) asymmetric switching; (C) fast switching. The blue line with stars 

represents variations in the stable mean mRNA number in the constant division model; 

the red line with circles represents variations in the stable mean mRNA number in the 

exponential division model; and the green line with squares represents variations in 

the stable mean mRNA number in the lognormal division model.  

We also observe from Fig. 1 that the increase of the stable mean mRNA number 

with the increase of the mean cell-cycle length is approximately linear in the case of 

slow or fast switching, implying that the equivalent degradation rate of mRNA due to 

cell growth and division is smaller in the former case than in the latter case. In 

contrast, this dependence relationship seems nonlinear in the case of asymmetric 

switching but the difference between the stable mean mRNA numbers in the random 

and deterministic cases of cell division is very small. This property to keep the mRNA 

number stable would imply that cells can use the internal noise (e.g., the promoter 

noise) to resist the external noise (e.g., the division noise generated from random 

division due to environmental fluctuations or changes in cellular physiological states) 

and to keep the intracellular mRNA level stable.
2,15-17

 In addition, we observe that the 

stable mRNA number is smaller in the constant division case than in the stochastic 
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division case, and the difference becomes particularly apparent in the cases of 

symmetric switching. This would partially explain why stochasticity can make gene 

expression more efficient as well as why cells can use this noise for better survival. In 

addition, it would be used to interpret the molecular mechanism of why cancer cells 

are unstable (in this case, noise is large) but very vital.
41,51,54

 The next two sections 

will give more explanations for the relevant molecular mechanism. Finally, this raised 

expression level due to cell division would be important for activation of downstream 

signals in gene regulatory networks.  

3.2 Cell-cycle variability tends to stabilize the temporal level of mean expression 

 

Fig. 2 Temporal changes of the mean mRNA number, where the solid line (blue) 

represents the mean whereas the dashed line (red) describes derivation from the mean. 

(A)(B)(C) correspond to slow switching, (D)(E)(F) to asymmetric switching, and 

(G)(H)(I) to fast switching. In (A)(D)(G), cell cycle is a constant; In (B)(E)(H), cell 

cycles are random, following an exponential distribution; In (C)(F)(I), cell cycles are 

also random but follow a lognormal distribution. The initial mRNA number is set as 

four. The green and blue solid lines represent the analytic and numerical solutions of 
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the time-dependent mean mRNA respectively, and the red dashed line to the mean 

plus/minus the standard deviation. In all the diagrams, every transient trajectory is 

obtained by averaging 10000 realizations.  

The dependence curves shown in Fig. 1 well demonstrate the effects of cell 

division on the stable mean mRNA number, but more elaborate influence of the 

former on the latter should be reflected in the time evolution of the mean mRNA 

number. To demonstrate this temporal change, we plot Fig. 2 using the 

above-mentioned method. It is clearly seen from this figure that for each of two 

cell-division models, the mean mRNA number is time-dependent. Moreover, it first 

increases and then tends to a stable value after the time is sufficiently large. However, 

the mRNA variance in two cases of division time distribution is all larger than that in 

the case of constant division (comparing the first column with the second or third 

column). 

Specifically, when promoter switching changes from fast to slow, the mean 

mRNA number increases but this increasing tendency is different from that in the case 

of constant division. Moreover, slow promoter switching makes the mean mRNA 

number drift towards the increasing direction, which is counter-intuitive in contrast to 

the case of stochastic gene expression with symmetric switching but without cell 

division.
53,55

 Also, the mean mRNA number is higher in the case of random division 

than in the constant division, implying that gene expression in Model B (see Methods) 

is more efficient than that in Model A (also see Methods), although the amplitude of 

fluctuations becomes larger in the former than in the latter. This is not strange since 

the fact that cells can use stochasticity for better survival has been already reported in 

previous studies.
1,4,15,18,56

 Compared subplots (B)(E)(H) with subplots (C)(F)(I), it is 

obvious that the difference in the mean mRNA number between two cases of random 

division is not large, but the fluctuation range in the case of lognormal division is 

larger than that in the case of exponential division, implying that even if the upstream 

noise level is fixed, the downstream noise may exhibit different levels possibly due to 

different molecular mechanisms.
3,15,17,24,46,54 
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3.3 Cell-cycle variability amplifies expression noise 

Cells that progress equally within each mean cell cycle can differ in the 

molecular content, because the number of species molecules produced and degraded 

varies between cells in time due to both intrinsic noise arising from biochemical 

reactions and cell-cycle variability from random division. The net variance in a 

molecule copy number is the result of the accumulation of various stochastic 

effects.
1,15,16,46

 In principle, intrinsic noise and extrinsic noise altogether contribute to 

expression noise (or the total noise).
15,16,47,64

 Some authors studied influences of the 

mean gene-product number on expression noise under different sources of noise,
1,15-17

 

and showed that the expression noise often becomes smaller when the mean number 

increases.
16,17,47,54

 Here, we are interested mainly in effects of cell-cycle variability on 

expression noise. Note that if the mean cell cycle is lengthened, then the external 

noise will increase even though the stationary expression noise is approximately kept 

at a constant value even for different distributions of division times.  

 

Fig. 3 The influence of the mean cell-cycle length on the stationary expression noise: 

(A) slow switching; (B) asymmetric switching; (C) fast switching. The blue line with 

stars represents the stable noise intensity in the case of constant division; the red line 

with circles sign represents the stable noise intensity in the case of exponential 

division; the green line with squares represents the stable noise intensity in the case of 

lognormal division.  

First, we consider the stationary effect of cell-cycle variability on expression 

noise. For this, we plot Fig. 3, showing the dependence of the stable (or stationary) 

noise intensity on the mean cell-cycle length. From this figure, we first observe that 

the intensity of the total noise in the case of random division is always greater than 
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that in the case of constant division for the same mean cell-cycle length (comparing 

the red line with circles or the green line with squares with the blue line with stars), 

independent of promoter switching rates. This implies that random division always 

contributes positively to expression noise. Then, we observe that in the case of 

symmetric switching including fast or slow switching, the noise intensity in the case 

of lognormal distribution is larger than that in the case of exponential distribution, but 

the difference between them becomes smaller with the increase of the mean cell-cycle 

length. Third, we observe that the noise intensity is apparently a monotonic function 

of the mean cell-cycle length in the case of both constant division and asymmetric 

switching, but there is no apparent monotonic relationship between the noise intensity 

and the mean cell-cycle length in the other cases, in particular in cases of random 

division. Fourth, we observe that the noise intensity changes in a very narrow range in 

the cases of fast switching and slow switching when the mean cell-cycle length 

gradually increases, but the change range becomes relatively larger in the case of 

asymmetric switching, implying that the positive contribution of random division to 

expression noise depends on the symmetry of promoter switching. 

Comparing Fig. 3 with Fig. 1, we see that the stationary intensity of expression 

noise is nearly independent of the stable mean mRNA number in the cases of random 

division. However, this intensity decreases to a stable value in a small amplitude 

manner under constant division plus symmetric switching. This change trend is 

opposite to that taking place in the case of asymmetric switching, possibly implying 

that a cell regulates the cell-cycle length to resist the interference of external 

stimulation or fluctuations in the cellular environment. Also, the change tendency 

would imply that there is a tradeoff between the cell-cycle length and the mean 

mRNA number in this case. The molecular mechanism behind it would be utilized by 

the cell to maintain the cytoactive or regulate its physiological states.
33-35 

3.4 Cell-cycle variability tends to stabilize the temporal level of expression noise 

Here, we examine the temporal effect of cell-cycle variability on expression 

noise. This examination is more elaborate in contrast to the stationary case, and can 
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more precisely describe how cell-cycle variability affects temporal expression noise. 

The numerical results are shown in Fig. 4. 

 

Fig. 4 The time evolution of expression noise for different mean cell-cycle lengths 

that changes from � = 1  to � = 10 . (A)(B)(C) constant division; (D)(E)(F) 

exponential division; (G)(H)(I) lognormal division. (A)(D)(G) slow switching; 

(B)(E)(H) asymmetric switching; (C)(F)(I) fast switching. The color bar describes that 

different colors correspond to different cell cycles. In all the diagrams, every transient 

curve is obtained by averaging 10000 realizations.  

From Fig. 4, we first observe that the intensity of expression noise tends to a 

constant value after the time is sufficiently large. This change trend is independent of 

the mode of cell division (constant or random), the speed of gene switching (slow, fast, 

asymmetric), and the mean length of cell cycle. Second, in the case of slow or fast 

switching, the noise intensity is fundamentally decreasing with the increase of the 

mean cell-cycle length at the initial stage but is almost independent of the size of the 

mean cell-cycle length after the time is beyond a certain critical value (see the first 

and third columns in Fig. 4). In contrast, the noise intensity in the case of asymmetric 
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switching may increase or decrease with the increase of the mean cell-cycle length at 

the initial stage, depending on the mode of division (constant or random). Third, in 

the case of constant division, the noise intensity is a monotonically decreasing 

function of the mean cell-cycle length in the case of slow or fast switching but this 

dependence relationship becomes opposite in the case of asymmetric switching. 

Fourth, the difference between noise intensities corresponding to the smallest and 

largest mean cell-cycle lengths in the case of constant division is apparently larger 

than that in the case of random division, implying that random division plays a role of 

stabilizing the level of temporal expression noise. Moreover, in the former case, 

different mean cell-cycle lengths lead to different levels of temporal expression noise 

that however are stable after the time is beyond a threshold (about 40 time units). 

Fifth, the noise intensity looks like having extreme values with regard to time in the 

case of random division but not in the case of constant division (see the diagrams in 

the second and third columns). Sixth, the stable noise levels in the case of constant 

division are much smaller than those in the case of stochastic division since the size of 

the former is higher one order than that of the latter, implying that random division 

positively contributes to expression noise. In addition, for constant division, the noise 

level in the case of slow switching is always lower than that in the case of fast 

switching for the same mean cell cycle. This is counter-intuitive since promoter noise 

in the former case is higher than that in the latter case,
17,23,54

 but implies that the 

contribution of division noise to expression noise is inversely proportional to the 

speed of promoter switching.  

The change trend of expression noise under constant division is distinct from that 

under random division, and in particular, the noise intensity in the latter case becomes 

more stable after a long time. With the increase of the mean cell-cycle length, the 

noise intensity becomes smaller and smaller in the case of both constant division and 

fast switching, but approaches to a stable value after the mean cell-cycle length is 

beyond a threshold ( 4τ ≈  time units). In addition, the noise intensity increases in the 

case of constant division plus asymmetric switching, but a different case takes place 

in the case of random division, where the noise intensity first increases and then 
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approaches to be an approximately stable value after a long time. Moreover, this 

stable value is approximately 0.46 in the case of lognormal division but 0.34 in the 

case of exponential division, indicating that the former is larger than the latter. In both 

cases, the stable noise intensity remains almost the same size, independent of 

promoter switching, referring to the diagrams in the first and third columns of Fig. 4 

in the case of random division. This is also counterintuitive because the mean mRNA 

number increases with the increase of the mean cell-cycle length (see Fig. 1), and 

implies that the cell-cycle variability at a stable level can regulate the mean mRNA 

number while keeping the expression noise level invariant. Such a mechanism would 

be used by the cells to adapt to the change of physiology states such as cell growth, 

division and micro environments through regulating the cell-cycle length.  

3.5 Cell-cycle variability induces long-tailed distributions 

In contrast to single stochastic trajectories, the distribution can provide more 

complete information on stochastic properties of the underlying system. It is known 

that in changing environments, cells need to make decisions,
57

 and phenotypic 

switching provides a way that cells survive in fluctuating environments. Several 

single-cell experiments have reported bimodal expression,
58,59

 providing evidence that 

gene regulatory interactions can encode distinct phenotypes in isogenic cells. It is also 

known that gene regulatory networks with slow promoter switching may lead to 

distinct expression levels characterized by, e.g., bimodal distributions,
58,60

 or by more 

general distributions such as long-tailed distributions
45

 and mixed exponential 

distributions.
4,45

 In spite of these, it is unclear how cell-cycle variability affects 

gene-product distributions. 

Here, we first show that cell-cycle variability can change features of the mRNA 

distribution. The numerical results are shown in Fig. 5. From this figure we observe 

that in the case of constant division with a small cell cycle, the distribution of the 

mRNA number is unimodal for arbitrarily fixed promoter switching rates. With the 

increase of cell cycle, bimodality can appear in the case of symmetrical switching but 

needs a large cell cycle, implying that constant division tends to enhance bistability. In 
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the case of random division, however, the mRNA number does not follow a bimodal 

distribution but a long-tailed distribution. Moreover, this tail becomes longer when the 

mean cell-cycle length increases. The similar phenomena were also observed.
37,45

 This 

implies that random division plays a role of suppressing bistability, different from the 

role of constant division. We also observe that when promoter switching rates change 

from fast to slow or vice versa, the mRNA distribution does  
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Fig. 5 The dependence of mRNA distribution on mean cell-cycle length: (A) slow 

switching; (B) asymmetric switching; (C) fast switching. The blue line represents the 

distribution in the case of constant division; the red line represents the distribution in 

the case of exponential division; the green line represents the distribution in the case 

of lognormal division. The first column corresponds to � = 1; the second column to 

� = 3; the third column to � = 10; and the forth column to � = 30. In every 

sub-diagram, the distribution is obtained by averaging 10000 realizations generated 

by GSSA.  

not exhibit bimodality even in the case of constant division (comparing Fig. 5B with 

Fig. 5A or with Fig. 5C). 

By combining Fig. 1 and Fig. 4, we know from Fig. 5 that expression noise is 

approximately stable in time although the mean mRNA number increases with the 

increase of the mean cell-cycle length. On the other hand, it is known that at the 

microscopic level, long-tailed distributions can occur in two cases: if the microscopic 

processes are inherently non-Gaussian (e.g., if there is multiplicative noise or if the 

mean numbers are small and there is a lower cutoff); if distributions are expressed as 

a superposition of Gaussian distributions, where means and variances are slightly 
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different in each case.
45

 In addition, a long-tailed distribution means that the dynamic 

equilibrium of cellular stability reaches possibly through a multi-step process and the 

net level of gene expression at every step would be small under random division. 

Thus, our results imply that the random division strategy can increase the cellular 

survival probability when the nutrient resources are limited.
27,28,51

  

We also investigate the effect of time-based division on promoter activity, and 

show that time-based division tends to enhance promoter activity. See Fig. S3 in the 

Supporting Material for details. 

3.6 Cell-cycle variability lengthens MFPT 

Here, we examine the influence of cell-cycle variability on FPT, where by FPT 

we mean the time at which a stochastic variable hits some critical threshold. It is 

known that the FPT can provide the information on stochastic properties of a 

dynamical system. Given this threshold at a fixed value of the mean cell-cycle length, 

we calculate MFPTs in three cases of cell division as well as in three cases of 

promoter switching. The numerical results are shown in Fig. 6.   

From Fig. 6, we first observe that the MFPT increases approximately linearly 

with the increase of the mean cell-cycle length, regardless of promoter switching rates. 

Then, the MFPT curve in the case of random division is always below that in the case 

of constant division, indicating that random division shortens the MFPT. However, the 

distribution of division times has little influence on the MFPT (comparing red lines 

with green lines). Third, the MFPT is longer in the case of slow switching than in the 

case of fast switching for a same mean cell-cycle length, possibly since the mean 

mRNA number is lager in the former case than in the latter case (referring to Fig. 1 or 

Fig. 2).                                                                                            
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Fig. 6 The influence of mean cell-cycle length on MFPT: (A) slow switching; (B) 

asymmetric switching; (C) fast switching. The blue line with stars represents the 

MFPT in the case of constant division; the red line with circles represents MFPT in 

the case of exponential division; the green line with squares represents MFPT in the 

case of lognormal division.  

By combining Fig. 1, Fig. 4 and Fig. 6, we know that random division can 

increase the mean mRNA number and lengthens the MFPT at the same time; the 

difference between the influences of exponential and lognormal divisions on the 

MFPT is not apparent; In contrast, the difference between the influences of these two 

kinds of divisions on the mean mRNA number or on the noise strength is apparent, 

reflecting that random division contributes positively to the expression level or 

expression noise.  

3. Methods 

3.1 Model description 

To clearly show the effect of cell growth and division on gene expression as well 

as on cell-to-cell variability, here we consider a simplified model of gene expression 

at the transcription level (since our main interest is in effects of cell division, we 

ignore the translation process to simplify our analysis but it should be pointed out that 

this simplification does not influence the qualitative conclusions obtained in this 

paper). This model assumes that the gene promoter has two activity states: active (or 

ON) state at which transcription is very efficient and inactive (or OFF) state at which 

no transcription takes place (i.e., we do not consider promoter leakage,
53,61

 although it 

is possible that a gene has more than two promoter states.
22,62-64

 Furthermore, we 

suppose that there are stochastic transitions between ON and OFF states. This 

switching results in the bursty synthesis of mRNA,
20,65

 which is a major source of 

cell-to-cell variability.
15-17,66

 In addition, we hypothesize that the mRNA degradation 

is of one order (i.e., linear degradation) and is a single-step process although a 

multi-step process is possible in real cases.
67

 Figure 7(A) schematically shows our 
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gene model. 

 

Fig. 7 Schematic diagrams for a two-state gene model considering the times of cell 

division: (A) the process of gene expression, where the gene promoter is assumed to 

have two active states (ON and OFF states) and there are transitions between ON and 

OFF states; (B) the process of cell division, where a mother cell is assumed to divide 

into two daughters at each time point of division in a probabilistic manner with 

probability q .  

Our gene model also considers cell division. In general, there are two methods to 

describe cell division: the one is to consider that if the volume of a cell is increasing 

and finally reaches twice the original volume due to cell growth with a constant rate, 

then the cell begins to divide
9,48,49

 (this description is termed as the volume-based 

division); the other is to consider that a mother cell divides to two daughters at every 

division point, and that a finite series of division times are either deterministic or 

random, depending on cellular environments or cellular physiological states
42-44.48

  

(this description is called as the time-based division). Here, we will adopt the latter to 

establish our model. Note that in the description of time-based division, a cell might 

not divide although its volume reaches the double of the original volume. Thus, 

stochastic gene models of time-based division are different from those of volume- 

based cell division. Knowing this difference is important for understanding the results 

obtained in this paper. 

In order to better trace the time evolution of the joint probability of mRNA 

time since last division

(cell cycle)
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(denoted by X ), we introduce two factorial probabilities ( )0 ;P m t
 

and ( )1 ;P m t , 

which represent that X  has m  mRNAs at time t
 

when the gene is at OFF and 

ON states, respectively. Thus, 0 1P P P= +  represents the total probability. Let mk  be 

the transcription rate from DNA to mRNA. Let δ  be the degradation rate of mRNA. 

Denote by onk  and 
offk  transition rates from OFF to ON and from ON to OFF, 

respectively. Let kt , 0 k K≤ ≤ , represent division time points. To that end, if we 

note that no transcription takes place at OFF state, then the CME corresponding to the 

reaction network schematized in Fig.7 can be described as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0 1

1 1

11

1

;
; ; ;

;
; ; ; ;

on off

on of mf

P m t
m t m t m t

t

m t
m t m t m t m

k P k P E I

t

mP

P
k P k P k E I P E I mP

t

δ

δ−

− + + −   

∂
= −

∂

+ − + −    

=
∂

 ∂

    (1) 

where I  is the unity operator, and E  with the inverse 
1E−
 is the common step 

operator defined as ( ) ( )1Ef m f m= +  for any function f . Note that Eq. (1) holds 

only for 0\{ }k k Kt R t+ ≤ ≤∈ , where every kt  represents a time at which the cell divides 

and R+  the positive half axis. Therefore, Eq. (1) is a piecewise stochastic 

system.
31,37,45 

Denote by kτ  the difference between two sequential division times, that is, 

1k k kt tτ −= −  with 0 0t = , which represents a length of cell cycle, 1 k K≤ ≤ . To better 

show effects of cell-cycle variability on expression dynamics, we consider two kinds 

of time-based divisions: constant and random (referring to Fig. 8). For the former, all 

the kτ  are the same constant (denoted by τ ), and the corresponding model is called 

as constant division model (or denoted by Model A), whereas for the latter, every kτ  

is a random variable and the corresponding model is called as random division model 

(or denoted by Model B). 
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Fig. 8 Schematic diagrams for two kinds of time-based divisions: in Model A, cell 

cycle is a constant, i.e., kτ τ=  for any k , and in Model B, cell cycle is a random 

variable.  

As usual, we assume that a series of cell cycles { }
1k k K

τ
≤ ≤

 follow an independent 

and identical distribution with finite moments and denote by τ  the first-order 

moment that represents the mean cell-cycle length. To that end, we finish the 

description of our model. 

3.2 Experimental data-based hypotheses of division events  

First, we assume that the cell divides symmetrically, i.e., the division probability 

is 1 2q = .
27,28,31,37

 This means that the mRNA number is halved at every division 

time point kt , i.e., ( ) ( ) 2k km t m t −=  with 1 k K≤ ≤ , where the symbol ( )km t−  

represents the left limit as the time t  approaches kt  from the left of kt .  

Second, note that division times (in particular the mean division time) are 

experimentally measurable and the corresponding distribution can be fitted using 

experimental data.
29,42,68,69

 In fact, the division tracking dye, carboxyfluorescin 

diacetate succinimidy ester (CFSE) is currently the most informative labeling 

technique for characterizing the division history of cells in immune systems. Gett and 

Hodgkin
68

 pioneered the quantitative analysis of CFSE data, and used direct fitting, 

indirect fitting or rescaling methods to estimate the average division time or the mean 

cell cycle. In addition, mathematical models based on the Smith–Martin concept of 

two phases of the cell cycle have been successfully applied to division tracking 

Model B:

Model A:
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data.
29,42,68,69

 In order to quantify the division-time distribution, Hawkins, et al., 

investigated B lymphocytes using an experimental model and found that division 

times follow a skewed or lognormal distribution,
42,44

 referring to Fig. 9. In addition, 

most common distributions to model cell cycle include Erlang, uniform, lognormal 

and exponential distributions.
29,31,42-44

 Here, we will use the latter two distributions for 

investigation. 

 

Fig. 9 Experimental data for variation in subsequent B-cell division times represented 

as a histogram collated in 1-h time intervals: (A) the distribution of division times, 

where the solid line represents a fitted lognormal distribution with the mean 9.3τ =  

and the variance 2.54σ = ; (B) the proportion of division events, where “First” 

represents the first division (similarly for the others). 

To demonstrate effects of cell division on gene expression clearly, we distinguish 

three cases of promoter switching rates: fast switching (i.e., two equal switching rates 

are equal but large) and slow switching (i.e., two equal switching rates are equal but 

small), each belonging to symmetric switching; and asymmetric switching where two 

switching rates are unequal. This classification considers the characteristic of gene 

promoter in eukaryotic cells.
22

 In simulation throughout this paper, we set 

1oon ffk k= = , 10mk =  (fast switching); 0.01, 0.1on offk k == , 10mk =  (asymmetric 

switching); and 0.01ofo fnk k == , 10mk =  (slow switching). All the parameter values 

that are dimensionless are estimated according to recent experimental data on 

mammalian gene expression, seeing Refs. (31,42) and references therein. 

3.3 Analysis method 
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As pointed out above, there are two models to describe cell division: volume- 

based division models, and time-based division models. Note that numerical analysis 

of the latter like Eq. (1) is not easy since the models are piecewise stochastic 

systems.
31,37,45,48

 Therefore, it is necessary to state our numerical method clearly.  

For a given distribution (exponential or lognormal), we first generate a series of 

division times randomly, { }
1k k K

τ
≤ ≤

, whose mean is denoted by τ  (representing the 

mean cell-cycle length), and variance by σ . Then, we solve the CME (1) using the 

Gillespie stochastic simulation algorithm (GSSA).
37,53,70

 To model the effect of 

time-based division, we generate 10000 runs at every time point (for convenience, we 

choose some time step such that the mean cell-cycle length is an integer multiple of 

the time step). When we calculate every stochastic trajectory, the mRNA number must 

be halved as long as the advancing time reaches a time division point (see Fig. S1 and 

Fig. S2 in the Supporting Material). Moreover, half the resulting values at the time 

end of the last cell cycle are taken as the initial values of solving the CME in the next 

cell cycle. Third, if the advancing time length reaches some value (e.g., 200 time 

units), then we view that the resulting mean mRNA number is steady-state or stable. 

By averaging these sets of trajectory data, we obtain the time-evolutional mean 

mRNA number. 

To show the diluting effect of time-based division clearly, we may set 0δ =  

without loss of generality. Thus, we obtain a stable mean mRNA (denoted by 
ss

m ) 

using the above numerical method. Furthermore (see the Supporting Material), we 

obtain the analytical expression for the equivalent degradation rate (δ% ) below 

( )
m on

on offss

k k

m k k
δ =

+
%                                                   (2) 

Note that 
ss

m  that has been obtained using the above numerical method should 

depend on the given distribution of division times (denoted by div disp − ), in particular 

on its mean (τ ) and variance (σ ). Thus, δ%  has to depend on div disp − , in particular 
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on τ  and σ . This implies that the effect of extrinsic noise due to randomness of 

division times can be reflected in the equivalent degradation rate.  

In turn, we can give the analytical expression of the time-evolutional mean 

mRNA number using the known equivalent degradation rate (see the Supporting 

Material). That is, 

( ) ( )

( ) ( )( ) ( )

on offk k t tm on m on m on

on off on off on off on off

k k k k k k
m t e e

k k k k k k k k

δ

δ δ δ δ
− + −= + −

+ + + − + −
%

% % % %
   (3) 

This indicates that the effect of random division is transferred to the time-dependent 

mean mRNA number through the equivalent degradation rate.  

As examples, here we give the values of equivalent degradation rate for some 

models of cell division with different distributions of division times. See Table 1 for 

details, where we set the mean cell-cycle length is set as � = 9.3, which is estimated 

based on the experimental data of B cells,
42

 and the mean cell growth rates are 

calculated by the formula ( )1 0ln V Vλ τ=  whereas the equivalent degradation rates 

(δ% ) by the formula (2). These examples indicate that different distributions of 

division times lead to different equivalent degradation rates although the cell growth 

rates may be the same (comparing slow switching with fast switching), implying that 

time-based division is different from volume-based division. 

Table 1 Cell growth rates (λ ) and equivalent degradation rates (δ% ) for different gene 

models of cell division.  

Mode of 

Switching 

growth 

rate (λ ) 

degradation rate (δ% ) 

(constant divide) 

degradation rate (δ% ) 

(exponential divide) 

degradation rate (δ% ) 

(lognormal divide) 

Slow 0.0745 0.0375 0.0292 0.0298 

Fast 0.0745 0.067 0.0529 0.0512 

Asymmetric  0.0134 0.0098 0.0094 0.0094 

Next, we give a formula to calculate the intensity of expression noise defined as 

the ratio of variance ( ), div disVar t p −  over the square of mean ( ), div dism t p − , denoted 
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by 2

mη . This formula is given by 

( ) ( )
( )

2

2

,

,

div dis

m

div dis

Var t p
t

m t p
η −

−

=                                                (4) 

which is in particular a function of both the mean (τ ) and the variance (σ ) of the 

distribution of division times. Note that this noise (actually the total noise) contains 

the promoter noise due to stochastic switching between gene states, the transcriptional 

noise due to the synthesis and degradation of mRNA and the division noise due to 

random division times. It has been shown that expression noise can be decomposed 

into the sum of promoter noise and transcriptional noise if cell division is not 

considered.
2,15,16

 However, it seems difficult to separate division noise from the total 

noise. 

It should be pointed out that we actually consider only the mean cell growth rate 

described by ( )1 0ln V Vλ τ=  where τ  is the mean cell cycle, rather than the “point” 

growth rate described by ( )1 0ln kV Vλ τ=  where kτ  representing a cell-cycle 

length is random and follows a distribution. In addition, we emphasize that our 

time-based division might be different from volume-based division. More precisely, in 

our case, a cell may begin to divide when its volume does not reach or is beyond the 

double of the original volume, whereas in the case of volume-based division, a cell 

begins to divide as long as its volume reaches twice the original volume. 

4. Conclusion and discussion 

Sources of expression noise may be diverse mainly due to complexity of gene 

expression processes, but can be simply classified as intrinsic and extrinsic 

sources.
1,15-17,47

 Intrinsic noise results from stochasticity of intracellular chemical 

kinetics when the numbers of interacting molecules are very small whereas extrinsic 

noise originates either from extracellular signals regulating intracellular processes or 

from cellular environmental perturbations resulting in fluctuations in intracellular 

reaction rates, or from both. The former can be described by a CME, and in essence 

Page 23 of 29 Molecular BioSystems



24 

 

represents deviation of known reactions with known rates from their results predicted 

by classical chemical kinetics.
12,15-17,47

 In contrast, the latter may result from any 

process not represented in the network model itself and therefore may be more 

complex.
15-17,21,24

 Gene expression, in particular expression noise, has been 

extensively studied, but the effect of random cell division (a ubiquitous process taking 

place in natural gene systems) on gene expression is rarely considered. Here, we have 

analyzed a representative model of gene expression, which, although simple, contains 

noise of three kinds: promoter noise due to stochastic transitions between promoter 

activity states, transcriptional noise due to the birth and death of mRNA, and division 

noise due to random division times that result in cell-cycle variability. By analysis, we 

have shown that time-based division, in particular random division, acts as an 

amplifier for gene expression, which can not only significantly raise the mean level of 

gene expression but also always amplify expression noise and hence enhances 

cell-to-cell variability important for cellular survival in changing environments. 

As mentioned in the introduction, time-based division leads to a piecewise (i.e., 

discontinuity in time) stochastic system. Numerical simulation of such a kind of 

system is a challenge. Here, we have developed an effective method for capturing the 

effect of random division times. Although its initial aim is in dealing with the 

numerical calculation of a simplified model of gene expression with time-based 

division, this method can be easily extended to more complex cases of gene 

expression, including RNA nuclear retention,
71-72

 stochastic transitions among many 

promoter states,
62-64

 multi-step synthesis or multi-step degradation,
67

 alternative 

splicing,
73

 and chromatin remodeling.
22,74,75

 This is because these processes, which 

take place at the inside of cells and are hence intrinsic sources of expression noise, are 

in general linear, thus being easily incorporated into CMEs.
12,16,54

 By calculating the 

corresponding equivalent degradation rates, we can use them to describe the effects of 

time-based division on expression dynamics, as done in this paper. This method of 

capturing the diluting effect of time-based division even can be extended to those 

cases where a series of cell-cycle lengths may not be independent of one another nor 

may follow the same distribution, the cell volume is changeable, and the partitioning 
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of molecules between daughter cells at the time of cell division is stochastic and 

modeled not necessarily by the 1 2  probability used here but possibly by a binomial 

distribution.
27,28,48

 In a word, when more complex situations underlying sources of 

expression noise are considered, the qualitative conclusions obtained here should not 

be completely ruined but are even model-free although quantitative results would be 

different.  

An exceptional case for our qualitative results would be feedback regulation (a 

universal mechanism of controlling the information flow in gene regulatory networks), 

which leads that the underlying piecewise stochastic system is nonlinear. As is well 

known, positive feedback can amplify expression noise whereas negative feedback 

can reduce expression noise under conditions of some hypotheses.
53

 However, it is not 

clear whether these conclusions are still maintained in the presence of time-based 

division, in particular random division. This requires further investigation since in the 

case that cell division is ignored, feedback has the potential to generate stochastic 

focusing
76

 that like the role of time-based division shown here, can also raise the 

mRNA number or concentration, thus influencing the diluting effect of cell division. 

From a viewpoint of biology, gene expression may follow some design principles 

for optimal evolutionary fitness, implying that gene expression is locally and globally 

constrained.
30,50

 One constraint may be in efficiency.
30,50

 We have shown that the 

mRNA number is distinctly larger in the case of random division than in the case of 

constant division, implying that the efficiency is higher in the former case than in the 

latter case. Similarly, our results indicate that the efficiency is higher in case of slow 

switching than in the case of fast switching, implying that slow promoter switching 

would be a predominant mode in the case of random division, consistent with the 

characteristic of eukaryote cells.
4
 Another constraint is in the ability that a gene 

responds quickly to external stimuli.
30,50

 We have shown that the MFPT is shorter in 

the case of random division than in the case of constant division, and that the MFPT 

in the case of slow switching is nearly as large as that in the case of fast switching 

(Fig. 6). These would imply that random division enhances the ability that genes deal 
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with external signals. When the “efficiency” and the “ability” in the above sense are 

considered simultaneously, there would be a tradeoff relationship between them, 

which is worth further investigation. 
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