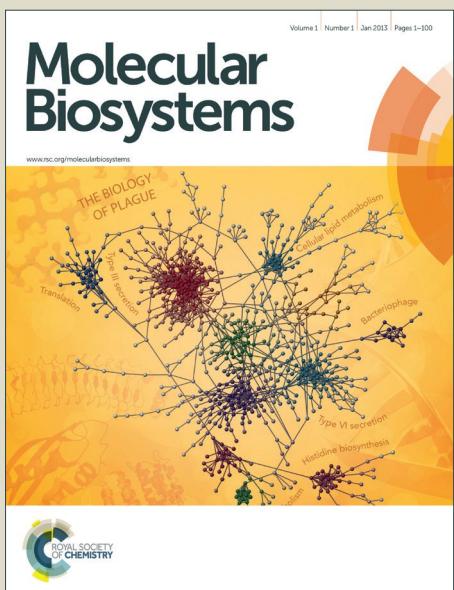


# Molecular BioSystems

Accepted Manuscript



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors](#).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](#) and the [Ethical guidelines](#) still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

1 **Reconstructing and analysing cellular states, space and time from  
2 gene expression profiles of many cells and single cells**

3 Mirko Francesconi<sup>a,b</sup> & Ben Lehner<sup>a,b,c\*</sup>

4 **Affiliations**

5

6 <sup>a</sup> EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader  
7 88, 08003 Barcelona, Spain

8 <sup>b</sup> Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain

9 <sup>c</sup> Institut<sup>ó</sup> Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain

10 \*Corresponding author

11 E-mail: [ben.lehner@crg.eu](mailto:ben.lehner@crg.eu)

12

13

14 **Abstract**

15 Genome-wide gene expression profiling is a fast, cheap and standardised analysis that  
16 provides a high dimensional measurement of the state of a biological sample. In this  
17 review we describe some of the computational methods that can be applied to identify  
18 and interpret sources of variance in gene expression in whole organisms, organs,  
19 tissues or single cells. This allows the identification of constituent cell types and states  
20 in complex mixtures, the reconstruction of temporal trajectories of development,  
21 differentiation and progression, and the reconstruction of spatial patterning. When  
22 applied to genetically variable samples, these methods allow the efficient investigation  
23 of how genetic variation influences gene expression in space and time.

24

1        **1. Sources of variability in biological samples**

2        Differences in gene expression measured by RNA sequencing or using DNA microarrays  
3        can be purely technical (this can be estimated<sup>1</sup>) or due to biological differences between  
4        samples. These biological differences may be part of the experimental design or they  
5        may be due to uncontrolled experimental variation in the state of each sample<sup>2-7</sup>.  
6        Uncontrolled experimental variation is usually regarded as a confounder but it might  
7        also be interesting when the sources of variation are correctly identified and  
8        understood (Fig1). In this review we provide an overview of the computational  
9        methods that can be used to identify and understand controlled and uncontrolled  
10      variance in gene expression datasets and highlight examples of how these have been  
11      used to make interesting discoveries.

12

13      In gene expression data from mixtures of cell types such as tissues, organs or tumours,  
14      an important source of variance derives from cell heterogeneity. This may come from  
15      the process of interest, for example a condition might change the proportion of different  
16      cell types within tissues<sup>8</sup>. Or different amounts of contaminating tissues could confound  
17      the analysis, for example with patient biopsies. In this case it is important to factor out  
18      this confounder to increase the power to detect differences in the tissue of interest.

19

20      Even when analysing populations of sorted pure cell types (or unicellular organisms)  
21      heterogeneity is still present. Cells are not static entities but they dynamically adjust  
22      their state in response to environmental stimuli. It might be hard to control all (micro-)  
23      environmental factors that can trigger some cell response. A typical example is growth  
24      rate: cells adjust their global gene expression according to growth rate - increasing for  
25      example ribosomes and translation-related genes and decreasing stress related genes -  
26      no matter what the growth-rate-limiting factor is<sup>9, 10</sup>. Any perturbation that changes  
27      growth rate will consequently impact gene expression.

28

29      Moreover cells go through oscillations, for example cell cycles, metabolic cycles and  
30      circadian rhythms. This heterogeneity will be present in unsynchronized single cells but  
31      also potentially in bulk measures of asynchronous populations where oscillatory  
32      dynamics are convoluted in the average expression data; population measures reflect  
33      the average of gene expression of different cell cycle or other oscillatory stages

1 weighted by the fractions of cells that are at each stage. Conditions, treatments (or  
2 confounders) that change the oscillatory dynamics will change these fractions and will  
3 leave a trace on gene expression.

4

5 Even more complex dynamics are present when studying systems undergoing  
6 development or differentiation. When studying fast developing model systems such as  
7 *Drosophila melanogaster* or *Caenorhabditis elegans* that complete development, even a  
8 few hours' difference in precise staging can introduce substantial variation in gene  
9 expression<sup>5, 11, 12</sup>. This might be related to the experimental conditions of interest (that  
10 could cause a delay in development) or it could be a confounder if not properly  
11 controlled (experimental batches might be at slightly different developmental stages).

12

13 In summary, even in a simple perturbation and expression profiling experiment it is  
14 important to understand and correctly decompose gene expression variance into the  
15 corresponding sources. This will help to: (1) better understand and interpret the global  
16 effects of a treatment/condition/mutation, for example as developmental delays or  
17 changes in growth rate or cell composition; (2) tease apart specific effects and direct  
18 targets of treatment/condition/mutation beyond the developmental delays or changes  
19 in growth rate; and (3) control for experimental confounders and increase the power to  
20 detect the effects of interest. However, the real power of understanding and  
21 decomposing expression profiles is the application to large datasets in which new cell  
22 states, spatial patterning or temporal 'trajectories' of expression can be identified. In  
23 addition, if this is performed in combination with genetically varying samples, the  
24 impact of genetic variation on these states or spatial and temporal patterns can be  
25 determined.

26

27 **2. Computational approaches for inferring cell states, sample compositions, time and**  
28 **space from gene expression**

29

30 Global gene expression data is typically highly redundant because many genes (for  
31 example those involved in the same biological processes) share correlated expression  
32 profiles. Thus it is useful to represent (map) the high dimensional data listing the

1 expression of tens of thousands of genes onto a lower and more interpretable  
2 dimensional space, a task known as dimensionality reduction. Ideally after this step the  
3 data would be represented by a few dimensions that account for most of the variance in  
4 the data and where each dimension represents a distinct, interpretable biological  
5 process. At the same time it is desirable to filter out non-biological, uninteresting  
6 variance (technical noise).

7

### 8 ***Ab initio* (unsupervised) methods for dimensionality reduction: principal 9 components analysis**

10 Depending on the goal of the study and on the nature of the biological process of  
11 interest, different computational approaches for reducing dimensionality can be used.  
12 If the goal is to discover new cell types, states or trajectories *ab initio* from the data, one  
13 of most widely used technique is principal component analysis<sup>13</sup> (PCA). PCA rotates the  
14 data into new orthogonal coordinate systems where the axes (components) are linear  
15 combinations of the original variables and represent the directions of maximal variance  
16 in the data. This means that the first component explains most of the variance, the  
17 second component explains most of the residual variance after subtracting the first one,  
18 and so on. Thus retaining only the first few principal components accounts for most of  
19 the variance present in the original variables and filters out noise. PCA can be  
20 performed by eigen decomposition<sup>14, 15</sup> of the covariance  
21 matrix of the data or, more efficiently, by singular value decomposition (SVD) of the  
22 data matrix<sup>14, 15</sup>.

23 For each component PCA outputs singular values (or eigenvalues) that indicate the  
24 variance explained, sample scores (sample coordinates on the component) and gene  
25 loadings (the coefficients of the genes in the linear combination, i.e. how much each  
26 genes contribute to the component).

27

28 Visualizing the sample scores on the first few principal components helps to provide an  
29 overview of the global structure of the data, for example by highlighting clusters or  
30 trajectories (Fig2). The biological meaning of each component can be deduced by  
31 analysing the gene loadings, for example by traditional gene set enrichment analysis<sup>16,</sup>  
32 <sup>17</sup>. To this purpose Chung et al. developed a method to systematically identify genes  
33 significantly associated to principal components avoiding over-fitting<sup>18</sup>. However

1 interpreting principal components is not always easy because the components might be  
2 enriched in many distinct biological processes and, vice versa, the same biological  
3 process can be enriched in different components. The reasons for this include that in  
4 PCA the components are defined maximizing the variance explained as a criterion, and  
5 they are also constrained to be orthogonal. These conditions and constraints mean that  
6 the principal components will not necessarily correspond to separate biological sources  
7 of variance. This is an important limitation of PCA when the aim is to clearly separate  
8 and remove unobserved confounders from interesting sources of variance (signal).  
9 Using PCA there is a risk is that interesting signal is also removed together with  
10 confounders.

11

## 12 **Other unsupervised methods to decompose variance**

13 Additional methods that relax some or all PCA constraints have been developed for  
14 better separating sources of variance and to increase interpretability, known as factor  
15 analysis methods. Similarly to PCA, these methods search for linear combinations of the  
16 data (factors) that best explain the correlations among the variables but improve  
17 interpretability by allowing for further rotations that better capture the underlining  
18 structure of the data. For example the varimax<sup>19</sup> method further rotates the data after  
19 PCA (preserving orthogonality) in a way such that the genes have high or low loadings  
20 only in one factor. Promax<sup>20</sup> also allows oblique rotations thus relaxing the  
21 orthogonality constraint. Other methods based on factor analysis have been recently  
22 proposed to better estimate sources of variance with the aim of correcting gene  
23 expression from hidden confounders, such as surrogate variable analysis (SVA)<sup>21</sup>,  
24 probabilistic estimation of expression residuals (PEER)<sup>22</sup> and remove unwanted  
25 variation (RUV)<sup>23</sup>. The last two methods also allow estimating hidden factors in a semi-  
26 supervised manner only on selected gene sets (i.e. control genes) to minimize the risk of  
27 explaining away the signal together with confounders.

28

29 Among unsupervised method to deconvolve sources of signals, Independent Component  
30 Analysis<sup>24</sup> (ICA) is one of the most flexible. Its rationale stems from central limit  
31 theorem, which states that mixtures (convolution) of independent signals tend to be  
32 normally distributed. Thus an effective strategy to separate the hidden independent  
33 source signals from the measured mixed signal is to find linear combinations

1 (components) that maximize non-gaussianity (rather than variance as in PCA). Several  
2 measure of non-gaussianity have been proposed such as kurtosis, negentropy or mutual  
3 information<sup>24</sup>. Components obtained by ICA are linearly independent (a stronger  
4 condition than uncorrelated as in PCA) but they do not need to be orthogonal as in PCA.  
5 ICA has been applied to gene expression data<sup>25, 26</sup> and it can outperform PCA in teasing  
6 apart independent biological processes underlying expression differences<sup>26</sup>(Fig3).

7

### 8 **Using a reference expression dataset**

9 If one wants to match data to predetermined states or types then a good approach is to  
10 compare the data to existing reference expression profiles. A simple approach is to use  
11 a subset of relevant genes from a reference dataset to build a model that predicts the  
12 corresponding state in the dataset of interest. For example, the expression of many  
13 genes in yeast correlates linearly with growth rate under many different conditions<sup>9</sup>  
14 and a simple linear model including these genes can infer the relative growth rates of  
15 new conditions from gene expression<sup>27</sup>. Similarly, the proportion of cells in a sample in  
16 each stage of the cell cycle can be inferred by comparison to reference datasets defining  
17 sets of genes activated at different phases during the cell cycle. The expression level in  
18 each of these genes in an asynchronous population (vector A) can then be expressed as  
19 the weighted average of their expression at each cell cycle stage (matrix R) where the  
20 weights (matrix W) are the unknown fractions of cells at each cell cycle stage in the  
21 population (A=WR). These fractions can be determined by solving the system for W<sup>28</sup>.  
22 The same modelling framework can be used to deconvolve cell type fractions from gene  
23 expression data of whole tissues when cell type-specific expression signature are  
24 known<sup>8</sup>. Similarly, cell type-specific expression profiles can be inferred in complex  
25 tissues if the fraction of each different cell type in the tissue is known<sup>29</sup>.

26

27 More powerful methods to match expression data to a reference dataset include partial  
28 least squares (PLS) and canonical correlation analysis (CCA) <sup>5</sup>. These two related  
29 statistical techniques analyse the relationship between two datasets (covariance for  
30 PLS, correlation for CCA) of multiple dependent and multiple independent variables  
31 such as two gene expression datasets measuring the same genes in two different sets of  
32 conditions. They decompose the covariance (or correlation in CCA) between the two  
33 datasets by finding linear combinations of the reference dataset that best explain linear

1 combinations of the independent dataset, in a manner similarly to PCA except that in  
2 this case only the variance shared between the two datasets is taken into account. Using  
3 these methods as multiple advantages: first one can find multiple processes shared with  
4 a reference and quantify how much variance is explained by each. Further, the approach  
5 leaves the variance not explained by the reference untouched. This avoids that specific  
6 signals of interest are explained away together with global confounders when the aim is  
7 to correct gene expression before downstream analysis. This is in contrast to using  
8 reference genes whose expression in the data of interest might reflect a combination of  
9 underlining processes some of which might not be present in the reference.

10

### 11 **Tackling non-linearity**

12 Many biological processes such as the cell cycle, development and differentiation show  
13 complex non-linear dynamics such as oscillations or bifurcations. In these cases, linear  
14 methods (such as those described above) are a useful first step to reduce  
15 dimensionality, visualize the data and filter out noise, but they cannot directly be used  
16 to order the data along a non-linear dynamic process. Reconstructing non-linear  
17 dynamics from the data might be challenging because classical distance measures are  
18 not appropriate to define, for example, how close two data points are in a trajectory and  
19 hence their ordering (Fig4a).

20

21 In some cases, simple transformations can be used to infer the correct dynamics and to  
22 order the data. For example if PCA (or ICA) transformed data lie on (a portion of) a cycle  
23 in a low dimensional space, a simple transformation in polar coordinates can recover  
24 the correct order of the data points along the dynamics<sup>5, 14, 15</sup>.

25

26 In the case of more complex dynamics, finding the geometry of the data and ordering or  
27 clustering data points might be harder. When studying development and the data points  
28 lie in a single trajectory, ordering them can be seen as an instance of the well known  
29 travelling salesman problem to find the shortest path connecting all the points, for  
30 which many algorithms have been developed<sup>30</sup>.

31

32 However, often data points are arranged in a more complex way than one simple  
33 trajectory as in the case of lineage bifurcations during differentiation<sup>31</sup>. General

1 approaches to this problem start by building a graph that connects data points only to  
2 their nearest neighbours (with the aim to preserve only the local distances) and then  
3 finding the minimum spanning tree (MST) that connects all the data points (Fig4B). In  
4 the simplest case, the diameter of this graph represents the dynamic trajectory along  
5 which data points can then be sorted<sup>32</sup>(Fig4C). This strategy has been successfully  
6 applied to uncover trajectories and bifurcations both for low and medium dimensional  
7 data such as flow cytometry coupled with mass spectrometry (cyto-mass) or single cell  
8 quantitative real time PCR (qRT-PCR) expression measurements<sup>33, 34</sup> and for high  
9 dimensional gene expression data after applying a linear dimensionality reduction step  
10 such as PCA<sup>30, 32</sup>, ICA<sup>35</sup> or a clustering step<sup>36</sup>.

11  
12 Alternatively, several methods have been developed that start by building a nearest  
13 neighbour graph and use the shortest path (geodesic) distance between points instead  
14 of the euclidean distance to perform non-linear dimensionality reduction and  
15 clustering. Examples include Isomap<sup>37</sup>, locally linear embedding (LLE)<sup>38</sup> and laplacian  
16 eigenmaps<sup>39</sup>. Other non-linear dimensionality reduction methods such as diffusion  
17 maps<sup>40</sup> or the t-distributed stochastic linear embedding (t-SNE)<sup>41</sup> are based on  
18 alternatives to classical distance metrics but again with the same objective of preserving  
19 local similarities rather than global ones. Isomaps<sup>31</sup>, diffusion maps<sup>42</sup> and t-SNE<sup>43</sup> have  
20 been used in a biological context to discover trajectories, bifurcations and cell  
21 heterogeneity in medium or high dimensional data on differentiation, development and  
22 disease.

23

24

25

### 26 3. Applications

27

#### 28 Interpreting functional genomics data

29 One of the first applications of expression deconvolution was in the interpretation of  
30 systematic functional genomic data such as analysing the consequences of gene  
31 deletion. In an early study in yeast, Lu et al showed that it is possible to deconvolve the  
32 fraction of cells in each cell cycle phase from bulk microarray expression data in

1 asynchronous populations by using reference genes that oscillate during the cell cycle<sup>28</sup>.  
2 This deconvolution made it possible to evaluate the effects of various environmental  
3 and genetic perturbations on the cell cycle dynamics from bulk gene expression,  
4 characterizing both the specific phase of the cell cycle and the severity of defects (Fig5).  
5 For example, based on the changes in gene expression the authors inferred that about  
6 half out of the 300 tested gene deletions affect cell cycle progression.  
7

8 More recently O'Duibhir et al performed a similar analysis on 1485 gene expression  
9 profiles of yeast gene deletion strains<sup>10</sup>. They first found that 25% of the 700 mutants  
10 that differ from wild type share a common expression signature that is very similar to a  
11 'slow growth' signature induced by nutrient limitation<sup>9</sup> or environmental stress. In  
12 yeast, the growth rate, the stress response and metabolic activity are tightly  
13 coordinated with the cell cycle<sup>9</sup>, and the authors argued that a change in the fraction of  
14 cells at different cell cycle stages in a population can account for expression changes in  
15 many different experiments<sup>10</sup>.  
16

### 17 **Analysis of complex tissues**

18 Gene expression deconvolution is also useful for interpreting physiological changes in  
19 complex samples such as tissues. Tissues are a mixture of cell types so differential  
20 expression can be driven by: (1) changes in the relative abundance of different types,  
21 (2) changes that occur only in a subset of cell types, (3) changes common to every cell  
22 type, or (4) a combination of these three. Expression deconvolution can help  
23 discriminate among these scenarios <sup>8, 29, 44-46</sup>. Deconvolution of cell type fractions based  
24 on reference expression datasets showed that systemic lupus SLE patients have a  
25 specific increase in activated natural killer and T helper lymphocytes<sup>8</sup>. In contrast,  
26 deconvolution of cell-specific gene expression from whole blood samples in  
27 combination with cell-type frequency revealed that kidney transplant recipients  
28 experiencing rejection had hundreds of differentially expressed genes specifically in  
29 monocytes<sup>29</sup>.  
30

### 31 **Discovery of new cell types and states.**

32 Single cell RNA sequencing (RNA-seq) technologies<sup>47-50</sup> are opening up new possibilities  
33 for the analysis of complex heterogeneous samples. Whole tissues can be dissociated

1 into single cells that can be separately profiled<sup>48, 51</sup>. Whole genome single cell profiles  
2 are inherently stochastic which makes the analysis of biological variance more  
3 challenging<sup>52</sup>, nonetheless they dramatically improve the ability to discover and  
4 characterize cell types and states. Cell types and states are classically defined by  
5 measuring a combination of a few selected markers using flow cytometry. Even in the  
6 most advanced configuration (flow cytometry coupled with mass spectrometry)<sup>53</sup>, this  
7 approach allows about 40 markers to be measured in parallel for each cell, thus  
8 introducing selection bias. In contrast, RNA-seq allows the expression of all genes to be  
9 profiled across hundreds or thousands of cells, so providing an unbiased *ab initio*  
10 characterization of cell states and types including rare ones<sup>48, 51</sup>. Jaitin et al., for  
11 example, could decompose by hierarchical clustering the heterogeneous dendritic cell  
12 group into four functionally distinct subclasses and showed how the relative abundance  
13 of these cell types is remodelled after infection<sup>48</sup>. In another recent study, Zeisel et al.  
14 used single cell RNA-seq to identify 47 subclasses of cells in the mouse cortex and  
15 hippocampus<sup>51</sup>.

16

## 17 **Development and differentiation**

18 Gene expression deconvolution is also useful for interpreting dynamical biological  
19 processes from simple responses to stimuli<sup>54</sup> to more complex dynamics such as  
20 development and differentiation in multicellular organisms. Cell state trajectories can  
21 be reconstructed and data points can be ordered along these with little or no *a priori*  
22 chronological information both from average<sup>5, 30, 31, 36</sup> and single cell expression data<sup>35,</sup>  
23 42, 54, 55. Inferring the precise physiological time point of each sample from gene  
24 expression can also be important in experiments where the exact chronological time  
25 point at which each sample was collected was controlled and recorded, for example  
26 because of heterogeneity in the rates of development between genotypes, individual  
27 cells or experimental batches<sup>5</sup>.

28

29 For example, Shalek et al showed by using PCA that the response of single dendritic  
30 cells to a pathogenic stimulus is variable in time and includes some precocious cells at  
31 early time points that are more advanced in the dynamic response<sup>54</sup> and more similar to  
32 cells at later time points. Studying early blood development in mouse embryos using  
33 PCA and diffusion maps Moignard et al. revealed heterogeneity along the differentiation

1 dynamics not only within embryos collected at the same chronological time but also  
2 between single cells within individual embryos<sup>42</sup>. These two examples highlight two  
3 important advantages of using single cell data and data from single individuals to  
4 analyse dynamical progressions: first, one can quantify how synchronous a process is;  
5 and second, while in average data the differences in physiological time within each time  
6 point are averaged out and decrease the signal, analysis of single cells or individuals  
7 ordered along a time-series allows analysis of the full dynamic response<sup>42</sup> even when  
8 the system is asynchronous. Another example is provided by the analysis of blood  
9 development<sup>55</sup>, which provided more power to discover cascades of causal regulators of  
10 differentiation<sup>35, 55</sup>.

11

## 12 **Reconstructing 3D spatial gene expression**

13 In multicellular organisms gene expression not only varies in time but also in space.  
14 Methods that retain full spatial information of genome-wide gene expression exist but  
15 they are still limited in throughput and are laborious<sup>56</sup>. Junker et al proposed a method  
16 similar to tomography where a sample is cryo-sectioned in different directions, each  
17 section is analysed by RNA-seq and spatial expression is mathematically reconstructed.  
18 Applying this method, they constructed an atlas of 3D expression patterns for zebrafish  
19 embryos. Although impressive, ambiguities remain in the atlas when genes are  
20 expressed in more than one contiguous region because the system is  
21 underdetermined<sup>57</sup>. To overcome this fundamental limitation, RNA-seq would have to  
22 be performed on slices at different angles across the sample, which would likely require  
23 averaging across different embryos. An alternative approach for reconstructing 3D  
24 expression patterns is to use the known spatial distributions of landmark genes, for  
25 example mapped by *in situ* hybridisation. This idea has been applied to reconstruct  
26 spatial gene expression in zebrafish embryos<sup>58</sup> and in the brains of annelid worms<sup>59</sup>. In  
27 these studies, samples were first dissociated into single cells that were RNA-seq profiled  
28 and spatial gene expression was computationally reconstructed by measuring the  
29 similarity of the expression of each gene to the marker genes with known spatial  
30 expression patterns. A similar approach was also used for the spatial reconstruction of  
31 a much smaller number of gene expression profiles in the mouse otocyst, the precursor  
32 of the inner ear<sup>60</sup>.

33

1

2 **Interpreting the effects of genetic variation**

3 A central goal of many fields of biology such as human genetics and plant or animal  
4 breeding is to understand how natural genetic variation amongst individuals alters  
5 their characteristics. Here too the decomposition of expression profiles can be useful,  
6 either to remove non-genetic variation and improve the power when asking how  
7 genetic variation influences gene expression or to infer additional phenotypic traits or  
8 hidden environmental perturbations from gene expression components.

9

10 Expression quantitative trait loci (eQTLs) are genetic variants that alter gene  
11 expression. eQTLs are identified by performing genome-wide expression profiling on  
12 genetically heterogeneous populations. Gene expression is influenced by many non-  
13 genetic factors that can obscure subtle genetic effects. These non-genetic factors can be  
14 known covariates such as sex or age but they are often hidden uncontrolled  
15 experimental variables. eQTL studies are particularly sensitive to these because they  
16 usually include many experimental batches. Controlling for both known and hidden  
17 confounders greatly increase the power to detect significant eQTLs<sup>7</sup>. The simplest and  
18 most widely used approach to improve *cis*-eQTL detection is to remove the first few  
19 principal components, because this only removes broad variance components  
20 preserving local genetic effects. This approach however is not well suited for improving  
21 the detection of genetic loci that cause large-scale gene expression changes in *trans*  
22 because their signal might be removed together with confounders.

23

24 Beyond increasing statistical power, the analysis of hidden confounders can be useful  
25 for discovering genotype-environment interactions, i.e. genetic variants that change  
26 gene expression differently under different conditions, for example cell type<sup>61</sup>, tissue<sup>62</sup>  
27 or environmental-specific eQTLs<sup>63</sup>. If a hidden confounder reflects a biological source  
28 of variance, it should be treated as a covariate instead of being corrected for when  
29 testing the genetic effects on gene expression. Parts et al., for example, used a sparse  
30 factor analysis model to infer different cellular states (defined by the activity of  
31 different molecular pathways) and showed that the effect of some genetic variants is  
32 highly dependent on the cellular state<sup>6</sup>.

33

1 As another example, Curtis et al. used an integrative clustering approach to discover  
2 new molecular cancer subtypes from gene expression heterogeneity and to characterize  
3 the impact of genetic variation on these cancer subtypes. They further showed that  
4 integrative clustering combining gene expression and genomic information is predictive  
5 of survival<sup>64</sup>.

6

7 If a dynamic biological process underlies the hidden source of variance in an eQTL  
8 dataset, then the data can be used to investigate how time-dependent processes such as  
9 development are influenced by genetic variation. For example, we recently investigated  
10 how natural genetic variation affects gene expression in both space and time during 12  
11 hours of the development of *C. elegans* by identifying and exploiting small differences in  
12 the exact physiological stages at which each sample was expression profiled<sup>65</sup>. The  
13 physiological stage of each sample was inferred by comparing the expression to a  
14 reference gene expression time series using CCA (Fig6A), and the tissue-specificity of  
15 expression trends were inferred by comparison to expression profiles of sorted tissue  
16 samples. This allowed us to examine how sequence variation in the genome alters how  
17 genes are expressed in time (Fig6B), and also to ask whether these effects are tissue-  
18 specific or not. In this way we were able to identify hundreds of examples where  
19 genetic variation close to a gene increased the amplitude of oscillations, altered the rate  
20 of induction, or completely altered the dynamics<sup>5</sup>.

21

## 22 **Summary**

23 We have highlighted in this review how both bulk and single cell gene expression data  
24 can be decomposed into the constituent cell types and states and used to reconstruct  
25 spatial and temporal patterns of expression. This allows biological processes to be  
26 studied at multiple levels using a single expression dataset (that may actually have been  
27 generated for a different purpose).

28

29 One important lesson to be learned is that 'hidden' confounders in expression data can  
30 be more than artefacts to correct for. Rather, they can identify important biological  
31 sources of variance that can be interpreted and used to make interesting discoveries.

32

1 Another important lesson is that, although it is tempting to apply a simplifying discrete  
2 view of a process, this often results in a loss of information and power because of the  
3 intrinsically continuous nature of many biological processes in both time and space.

4

5 As the cost of single cell RNA sequencing falls and the methods for sample preparation  
6 become more routine, these kinds of analyses will become increasingly important and  
7 widely used. In particular, we envisage that the application of single cell RNA  
8 sequencing to complex samples such as human tissue samples will facilitate the analysis  
9 of how genetic variation influences many different dynamic biological processes such as  
10 disease progression, development and tissue composition.

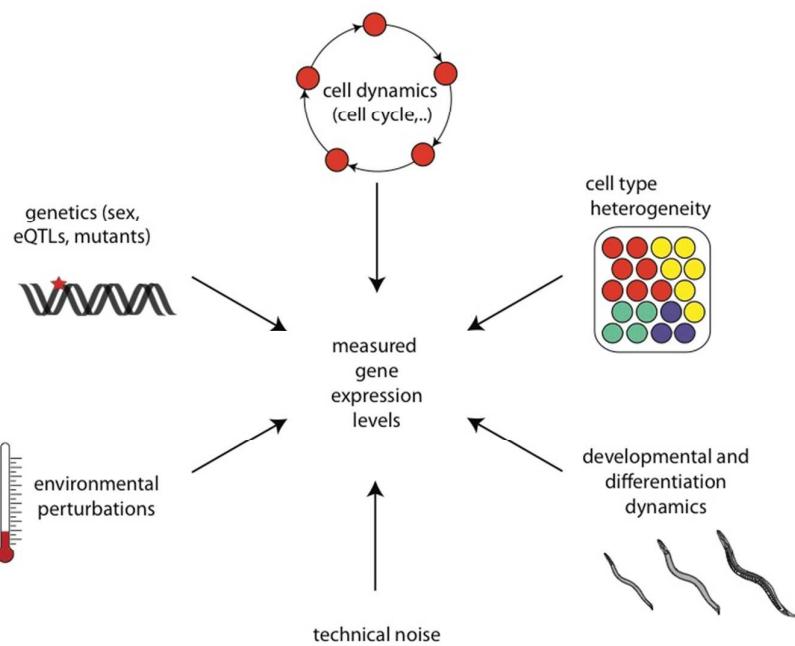
11

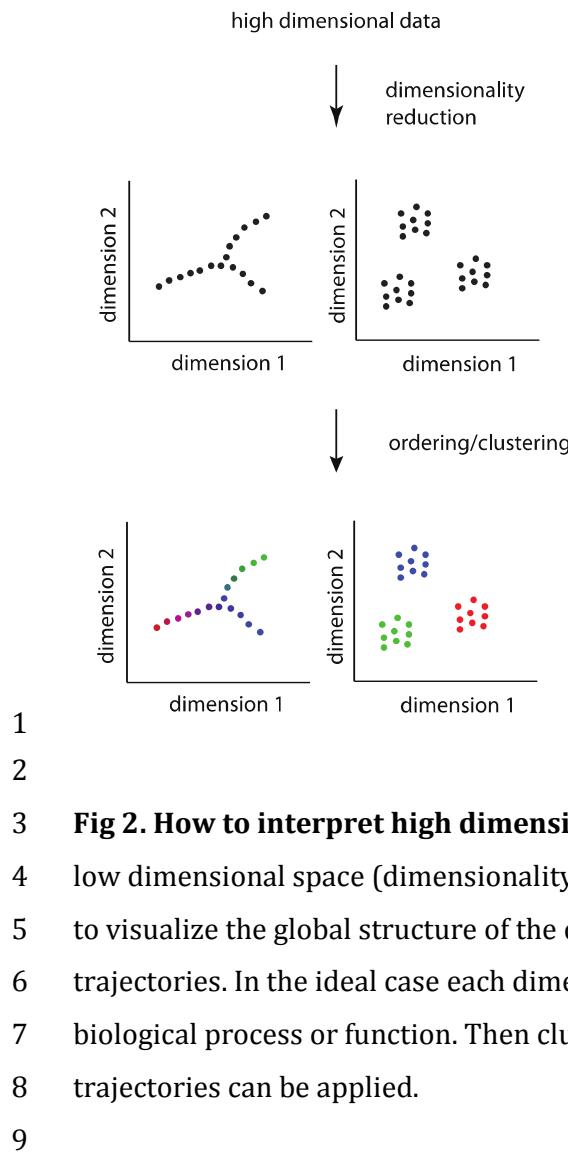
## 12 **Acknowledgments**

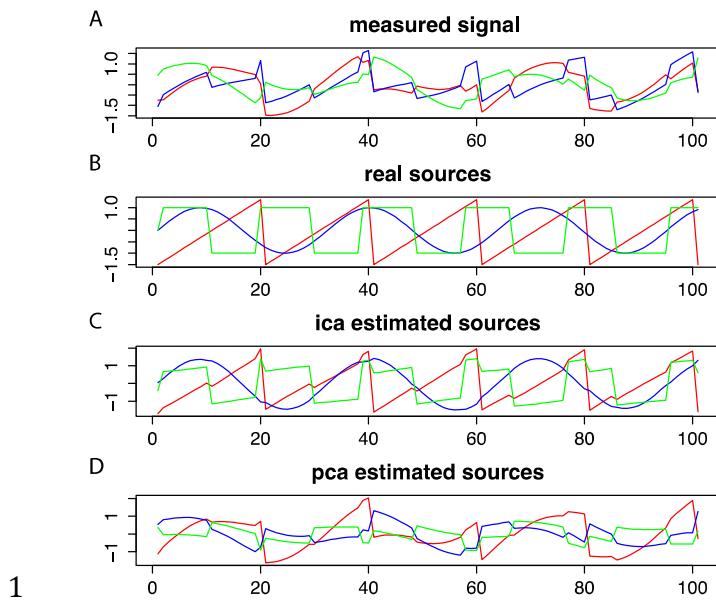
13 Research in our laboratory is supported by a European Research Council Consolidator  
14 grant IR-DC (616434), by the Spanish Ministry of Economy and Competitiveness  
15 (BFU2011-26206 and 'Centro de Excelencia Severo Ochoa 2013-2017' SEV-2012-0208),  
16 the AXA Research Fund, FP7 project 4DCellFate (277899), Agència de Gestió d'Ajuts  
17 Universitaris i de Recerca (AGAUR), and the EMBL-CRG Systems Biology Program.

18

19

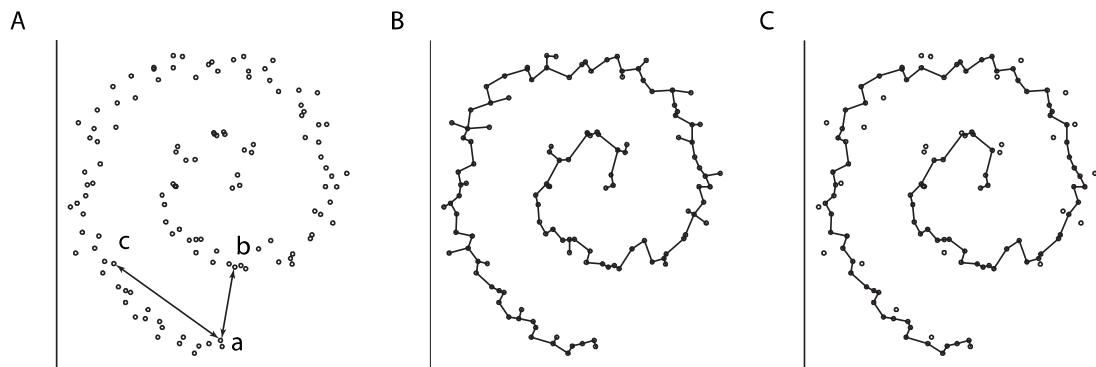
1  
23  
4  
5  
6 **Fig 1 Sources of variance in gene expression data.** Genome wide gene expression  
7 profiles can capture diverse intentional and unintentional influences.  
8





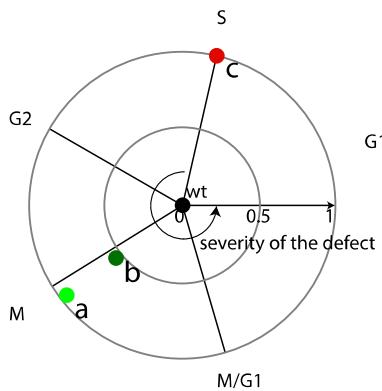
3 **Fig 3. Finding the sources of variance in gene expression.** Gene expression  
 4 measures often include many mixed sources of signal. (A) Three measured signals  
 5 constituted by a linear combination of (B) three original sources of signal along a time  
 6 (or space) dimension. (C) ICA better estimates the original sources of signal than (D)  
 7 PCA.

8

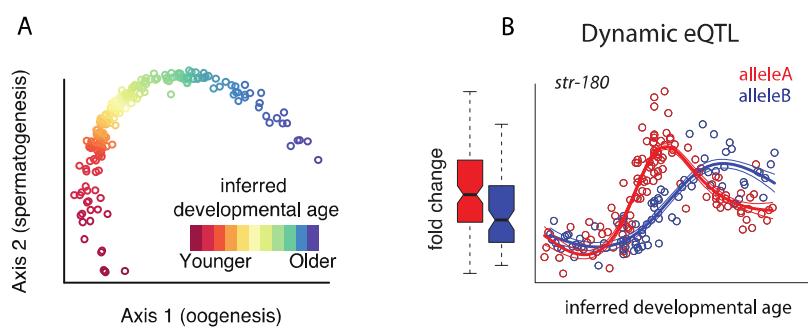


9  
 10  
 11  
 12 **Fig 4. Identification of a non linear trajectory and the inference of the correct**  
 13 **order of data points along this trajectory.** A Synthetic dataset (jelly-roll) of points  
 14 arranged in a spiral. Points a and b are closer than a and c in euclidean space despite  
 15 being at opposite end of the spiral. B. The minimum spanning tree of the data – here

1 data points are connected according to their shortest path distance. C Data points are  
 2 correctly sorted along a trajectory determined by the diameter of the minimum  
 3 spanning tree (adapted from Magwene et al.<sup>32</sup>).  
 4



5  
 6  
 7 **Fig 5. Interpreting the effect of genetic and environmental perturbations on cell**  
 8 **cycle dynamics.** The angular position indicates the phase of the cell cycle affected,  
 9 while the distance from the centre (occupied by wild type) indicates the severity of the  
 10 defect. Both mutants a and b affect mitosis but mutant a has a more severe effect.  
 11 Mutant c affects S phase (adapted from Lu et al.<sup>28</sup>).  
 12



13  
 14  
 15 **Fig 6. The impact of genetic variation on developmental dynamics.** Worms switch  
 16 from spermatogenesis to oogenesis when maturing. (A) the developmental age of each  
 17 sample is inferred from the trajectory on the components related to spermatogenesis  
 18 and oogenesis. (B) A dynamic eQTL analysis shows the complex effect of local genetic  
 19 variation on the expression dynamics of the *str-180* gene (right) that could not be  
 20 appreciated when developmental time is not included as a covariate in the analysis

1 (left). Analysis from Francesconi and Lehner<sup>5</sup> of data from Rockman et al.<sup>65</sup>.

2

3

4 **References**

5

6

- 7 1. P. Brennecke, S. Anders, J. K. Kim, A. A. Kolodziejczyk, X. Zhang, V. Proserpio, B.  
8 Baying, V. Benes, S. A. Teichmann, J. C. Marioni and M. G. Heisler, *Nat Methods*,  
9 2013, **10**, 1093-1095.
- 10 2. N. Fusi, O. Stegle and N. D. Lawrence, *PLoS Comput Biol*, 2012, **8**, e1002330.
- 11 3. F. Buettner, K. N. Natarajan, F. P. Casale, V. Proserpio, A. Scialdone, F. J. Theis, S. A.  
12 Teichmann, J. C. Marioni and O. Stegle, *Nat Biotechnol*, 2015, **33**, 155-160.
- 13 4. N. Fusi, C. Lippert, K. Borgwardt, N. D. Lawrence and O. Stegle, *Bioinformatics*,  
14 2013, **29**, 1382-1389.
- 15 5. M. Francesconi and B. Lehner, *Nature*, 2014, **505**, 208-211.
- 16 6. L. Parts, O. Stegle, J. Winn and R. Durbin, *PLoS Genet*, 2011, **7**, e1001276.
- 17 7. O. Stegle, L. Parts, R. Durbin and J. Winn, *PLoS Comput Biol*, 2010, **6**, e1000770.
- 18 8. A. R. Abbas, K. Wolslegel, D. Seshasayee, Z. Modrusan and H. F. Clark, *PLoS One*,  
19 2009, **4**, e6098.
- 20 9. M. J. Brauer, C. Huttenhower, E. M. Airoldi, R. Rosenstein, J. C. Matese, D. Gresham,  
21 V. M. Boer, O. G. Troyanskaya and D. Botstein, *Mol Biol Cell*, 2008, **19**, 352-367.
- 22 10. E. O'Duibhir, P. Lijnzaad, J. J. Benschop, T. L. Lenstra, D. van Leenen, M. J. Groot  
23 Koerkamp, T. Margaritis, M. O. Brok, P. Kemmeren and F. C. Holstege, *Mol Syst  
Biol*, 2014, **10**, 732.
- 25 11. L. B. Snoek, M. G. Sterken, R. J. Volkers, M. Klatter, K. J. Bosman, R. P. Bevers, J. A.  
26 Riksen, G. Smart, A. R. Cossins and J. E. Kammenga, *Scientific reports*, 2014, **4**,  
27 3912.
- 28 12. T. Hashimshony, M. Feder, M. Levin, B. K. Hall and I. Yanai, *Nature*, 2015, **519**, 219-  
29 222.
- 30 13. I. T. Jolliffe, *Principal Component Analysis*, Springer, Second edition  
31 edn., 2002.
- 32 14. O. Alter, P. O. Brown and D. Botstein, *Proc Natl Acad Sci U S A*, 2000, **97**, 10101-  
33 10106.
- 34 15. N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar and N. V. Fedoroff, *Proc  
35 Natl Acad Sci U S A*, 2000, **97**, 8409-8414.
- 36 16. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A.  
37 Paulovich, S. L. Pomeroy, T. R. Golub and E. S. Lander, *Proceedings of the National  
38 Academy of Sciences of the United States of America*, 2005, **102**, 15545-15550.
- 39 17. J. J. Goeman, S. A. Van De Geer, F. De Kort and H. C. Van Houwelingen,  
40 *Bioinformatics*, 2004, **20**, 93-99.
- 41 18. N. C. Chung and J. D. Storey, *Bioinformatics*, 2015, **31**, 545-554.
- 42 19. H. F. Kaiser, *Psychometrika*, 1958, **23**, 187-200.
- 43 20. A. E. Hendrickson and P. O. White, *British Journal of Statistical Psychology*, 1964,  
44 **17**, 65-70.
- 45 21. J. T. Leek and J. D. Storey, *PLoS Genet*, 2007, **3**, 1724-1735.
- 46 22. O. Stegle, L. Parts, M. Piipari, J. Winn and R. Durbin, *Nat Protoc*, 2012, **7**, 500-507.

1 23. J. A. Gagnon-Bartsch and T. P. Speed, *Biostatistics*, 2012, **13**, 539-552.

2 24. A. Hyvarinen and E. Oja, *Neural networks : the official journal of the International*  
3 *Neural Network Society*, 2000, **13**, 411-430.

4 25. W. Liebermeister, *Bioinformatics*, 2002, **18**, 51-60.

5 26. S. I. Lee and S. Batzoglou, *Genome Biol*, 2003, **4**, R76.

6 27. E. M. Airoldi, C. Huttenhower, D. Gresham, C. Lu, A. A. Caudy, M. J. Dunham, J. R.  
7 Broach, D. Botstein and O. G. Troyanskaya, *PLoS Comput Biol*, 2009, **5**, e1000257.

8 28. P. Lu, A. Nakorchevskiy and E. M. Marcotte, *Proc Natl Acad Sci U S A*, 2003, **100**,  
9 10370-10375.

10 29. S. S. Shen-Orr, R. Tibshirani, P. Khatri, D. L. Bodian, F. Staedtler, N. M. Perry, T.  
11 Hastie, M. M. Sarwal, M. M. Davis and A. J. Butte, *Nat Methods*, 2010, **7**, 287-289.

12 30. L. Anavy, M. Levin, S. Khair, N. Nakanishi, S. L. Fernandez-Valverde, B. M. Degnan  
13 and I. Yanai, *Development*, 2014, **141**, 1161-1166.

14 31. S. Huang, Y. P. Guo, G. May and T. Enver, *Dev Biol*, 2007, **305**, 695-713.

15 32. P. M. Magwene, P. Lizardi and J. Kim, *Bioinformatics*, 2003, **19**, 842-850.

16 33. P. Qiu, E. F. Simonds, S. C. Bendall, K. D. Gibbs, Jr., R. V. Bruggner, M. D. Linderman,  
17 K. Sachs, G. P. Nolan and S. K. Plevritis, *Nat Biotechnol*, 2011, **29**, 886-891.

18 34. S. C. Bendall, K. L. Davis, A. D. Amir el, M. D. Tadmor, E. F. Simonds, T. J. Chen, D. K.  
19 Shenfeld, G. P. Nolan and D. Pe'er, *Cell*, 2014, **157**, 714-725.

20 35. C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J.  
21 Livak, T. S. Mikkelsen and J. L. Rinn, *Nat Biotechnol*, 2014, **32**, 381-386.

22 36. P. Qiu, A. J. Gentles and S. K. Plevritis, *PLoS Comput Biol*, 2011, **7**, e1001123.

23 37. J. B. Tenenbaum, V. de Silva and J. C. Langford, *Science*, 2000, **290**, 2319-2323.

24 38. S. T. Roweis and L. K. Saul, *Science*, 2000, **290**, 2323-2326.

25 39. M. Belkin and P. Niyogi, *Neural computation*, 2003, **15**, 1373-1396.

26 40. R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W.  
27 Zucker, *Proc Natl Acad Sci U S A*, 2005, **102**, 7426-7431.

28 41. L. Van der Maaten and G. Hinton, *Journal of Machine Learning Research*, 2008, **9**,  
29 85.

30 42. V. Moignard, S. Woodhouse, L. Haghverdi, A. J. Lilly, Y. Tanaka, A. C. Wilkinson, F.  
31 Buettner, I. C. Macaulay, W. Jawaid, E. Diamanti, S. Nishikawa, N. Piterman, V.  
32 Kouskoff, F. J. Theis, J. Fisher and B. Gottgens, *Nat Biotechnol*, 2015, **33**, 269-276.

33 43. A. D. Amir el, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H. Levine, S. C. Bendall, D.  
34 K. Shenfeld, S. Krishnaswamy, G. P. Nolan and D. Pe'er, *Nat Biotechnol*, 2013, **31**,  
35 545-552.

36 44. H. Lahdesmaki, L. Shmulevich, V. Dunmire, O. Yli-Harja and W. Zhang, *BMC*  
37 *Bioinformatics*, 2005, **6**, 54.

38 45. J. Clarke, P. Seo and B. Clarke, *Bioinformatics*, 2010, **26**, 1043-1049.

39 46. J. Ahn, Y. Yuan, G. Parmigiani, M. B. Suraokar, L. Diao, Wistuba, II and W. Wang,  
40 *Bioinformatics*, 2013, **29**, 1865-1871.

41 47. S. Islam, A. Zeisel, S. Joost, G. La Manno, P. Zajac, M. Kasper, P. Lonnerberg and S.  
42 Linnarsson, *Nat Methods*, 2014, **11**, 163-166.

43 48. D. A. Jaitin, E. Kenigsberg, H. Keren-Shaul, N. Elefant, F. Paul, I. Zaretsky, A. Mildner,  
44 N. Cohen, S. Jung, A. Tanay and I. Amit, *Science*, 2014, **343**, 776-779.

45 49. S. Picelli, A. K. Bjorklund, O. R. Faridani, S. Sagasser, G. Winberg and R. Sandberg,  
46 *Nat Methods*, 2013, **10**, 1096-1098.

47 50. T. Hashimshony, F. Wagner, N. Sher and I. Yanai, *Cell Rep*, 2012, **2**, 666-673.

48 51. A. Zeisel, A. B. M. Manchado, S. Codeluppi, P. Lönnerberg, G. L. Manno, A. Juréus, S.  
49 Marques, H. Munguba, L. He, C. Betsholtz, C. Rolny, G. Castelo-Branco, J. Hjerling-

1 Leffler and S. Linnarsson, *Science*, 2015.

2 52. O. Stegle, S. A. Teichmann and J. C. Marioni, *Nat Rev Genet*, 2015, **16**, 133-145.

3 53. S. C. Bendall, E. F. Simonds, P. Qiu, E. ad D Amir, P. O. Krutzik, R. Finck, R. V.

4 Bruggner, R. Melamed, A. Trejo, O. I. Ornatsky, R. S. Balderas, S. K. Plevritis, K.

5 Sachs, D. Pe'er, S. D. Tanner and G. P. Nolan, *Science*, 2011, **332**, 687-696.

6 54. A. K. Shalek, R. Satija, J. Shuga, J. J. Trombetta, D. Gennert, D. Lu, P. Chen, R. S.

7 Gertner, J. T. Gaublomme, N. Yosef, S. Schwartz, B. Fowler, S. Weaver, J. Wang, X.

8 Wang, R. Ding, R. Raychowdhury, N. Friedman, N. Hacohen, H. Park, A. P. May and

9 A. Regev, *Nature*, 2014, **510**, 363-369.

10 55. S. C. Bendall, K. L. Davis, E.-A. D. Amir, M. D. Tadmor, E. F. Simonds, T. J. Chen, D. K.

11 Shenfeld, G. P. Nolan and D. Pe'er, *Cell*, 2014, **157**, 714-725.

12 56. J. H. Lee, E. R. Daugherty, J. Scheiman, R. Kalhor, J. L. Yang, T. C. Ferrante, R. Terry,

13 S. S. Jeanty, C. Li, R. Amamoto, D. T. Peters, B. M. Turczyk, A. H. Marblestone, S. A.

14 Inverso, A. Bernard, P. Mali, X. Rios, J. Aach and G. M. Church, *Science*, 2014, **343**,

15 1360-1363.

16 57. J. P. Junker, E. S. Noel, V. Guryev, K. A. Peterson, G. Shah, J. Huisken, A. P. McMahon,

17 E. Berezikov, J. Bakkers and A. van Oudenaarden, *Cell*, 2014, **159**, 662-675.

18 58. R. Satija, J. A. Farrell, D. Gennert, A. F. Schier and A. Regev, *Nat Biotechnol*, 2015,

19 DOI: 10.1038/nbt.3192.

20 59. K. Achim, J. B. Pettit, L. R. Saraiva, D. Gavriouchkina, T. Larsson, D. Arendt and J. C.

21 Marioni, *Nat Biotechnol*, 2015, DOI: 10.1038/nbt.3209.

22 60. R. Durruthy-Durruthy, A. Gottlieb, B. H. Hartman, J. Waldhaus, R. D. Laske, R.

23 Altman and S. Heller, *Cell*, 2014, **157**, 964-978.

24 61. M. Ackermann, W. Sikora-Wohlfeld and A. Beyer, *PLoS Genet*, 2013, **9**, e1003514.

25 62. T. Flutre, X. Wen, J. Pritchard and M. Stephens, *PLoS Genet*, 2013, **9**, e1003486.

26 63. J. Gagneur, O. Stegle, C. Zhu, P. Jakob, M. M. Tekkedil, R. S. Aiyar, A.-K. Schuon, D.

27 Pe'er and L. M. Steinmetz, *PLoS Genet*, 2013, **9**, e1003803.

28 64. C. Curtis, S. P. Shah, S. F. Chin, G. Turashvili, O. M. Rueda, M. J. Dunning, D. Speed, A.

29 G. Lynch, S. Samarajiwa, Y. Yuan, S. Graf, G. Ha, G. Haffari, A. Bashashati, R.

30 Russell, S. McKinney, A. Langerod, A. Green, E. Provenzano, G. Wishart, S. Pinder,

31 P. Watson, F. Markowetz, L. Murphy, I. Ellis, A. Purushotham, A. L. Borresen-Dale,

32 J. D. Brenton, S. Tavare, C. Caldas and S. Aparicio, *Nature*, 2012, **486**, 346-352.

33 65. M. V. Rockman, S. S. Skrovanek and L. Kruglyak, *Science*, 2010, **330**, 372-376.

34

35

36