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Abstract

Genome-wide gene expression profiling is a fast, cheap and standardised analysis that
provides a high dimensional measurement of the state of a biological sample. In this
review we describe some of the computational methods that can be applied to identify
and interpret sources of variance in gene expression in whole organisms, organs,
tissues or single cells. This allows the identification of constituent cell types and states
in complex mixtures, the reconstruction of temporal trajectories of development,
differentiation and progression, and the reconstruction of spatial patterning. When
applied to genetically variable samples, these methods allow the efficient investigation

of how genetic variation influences gene expression in space and time.
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1.Sources of variability in biological samples
Differences in gene expression measured by RNA sequencing or using DNA microarrays
can be purely technical (this can be estimated?!) or due to biological differences between
samples. These biological differences may be part of the experimental design or they
may be due to uncontrolled experimental variation in the state of each sample2-’.
Uncontrolled experimental variation is usually regarded as a confounder but it might
also be interesting when the sources of variation are correctly identified and
understood (Figl). In this review we provide an overview of the computational
methods that can be used to identify and understand controlled and uncontrolled
variance in gene expression datasets and highlight examples of how these have been

used to make interesting discoveries.

In gene expression data from mixtures of cell types such as tissues, organs or tumours,
an important source of variance derives from cell heterogeneity. This may come from
the process of interest, for example a condition might change the proportion of different
cell types within tissues8. Or different amounts of contaminating tissues could confound
the analysis, for example with patient biopsies. In this case it is important to factor out

this confounder to increase the power to detect differences in the tissue of interest.

Even when analysing populations of sorted pure cell types (or unicellular organisms)
heterogeneity is still present. Cells are not static entities but they dynamically adjust
their state in response to environmental stimuli. [t might be hard to control all (micro-)
environmental factors that can trigger some cell response. A typical example is growth
rate: cells adjust their global gene expression according to growth rate - increasing for
example ribosomes and translation-related genes and decreasing stress related genes -
no matter what the growth-rate-limiting factor is® 10. Any perturbation that changes

growth rate will consequently impact gene expression.

Moreover cells go through oscillations, for example cell cycles, metabolic cycles and
circadian rhythms. This heterogeneity will be present in unsynchronized single cells but
also potentially in bulk measures of asynchronous populations where oscillatory
dynamics are convoluted in the average expression data; population measures reflect

the average of gene expression of different cell cycle or other oscillatory stages
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weighted by the fractions of cells that are at each stage. Conditions, treatments (or
confounders) that change the oscillatory dynamics will change these fractions and will

leave a trace on gene expression.

Even more complex dynamics are present when studying systems undergoing
development or differentiation. When studying fast developing model systems such as
Drosophila melanogaster or Caenorhabiditis elegans that complete development, even a
few hours’ difference in precise staging can introduce substantial variation in gene
expression® 11,12, This might be related to the experimental conditions of interest (that
could cause a delay in development) or it could be a confounder if not properly

controlled (experimental batches might be at slightly different developmental stages).

In summary, even in a simple perturbation and expression profiling experiment it is
important to understand and correctly decompose gene expression variance into the
corresponding sources. This will help to: (1) better understand and interpret the global
effects of a treatment/condition/mutation, for example as developmental delays or
changes in growth rate or cell composition; (2) tease apart specific effects and direct
targets of treatment/condition/mutation beyond the developmental delays or changes
in growth rate; and (3) control for experimental confounders and increase the power to
detect the effects of interest. However, the real power of understanding and
decomposing expression profiles is the application to large datasets in which new cell
states, spatial patterning or temporal ‘trajectories’ of expression can be identified. In
addition, if this is performed in combination with genetically varying samples, the
impact of genetic variation on these states or spatial and temporal patterns can be

determined.

2.Computational approaches for inferring cell states, sample compositions, time and

space from gene expression

Global gene expression data is typically highly redundant because many genes (for
example those involved in the same biological processes) share correlated expression

profiles. Thus it is useful to represent (map) the high dimensional data listing the
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expression of tens of thousands of genes onto a lower and more interpretable
dimensional space, a task known as dimensionality reduction. Ideally after this step the
data would be represented by a few dimensions that account for most of the variance in
the data and where each dimension represents a distinct, interpretable biological
process. At the same time it is desirable to filter out non-biological, uninteresting

variance (technical noise).

Ab initio (unsupervised) methods for dimensionality reduction: principal
components analysis

Depending on the goal of the study and on the nature of the biological process of
interest, different computational approaches for reducing dimensionality can be used.
If the goal is to discover new cell types, states or trajectories ab initio from the data, one
of most widely used technique is principal component analysis13 (PCA). PCA rotates the
data into new orthogonal coordinate systems where the axes (components) are linear
combinations of the original variables and represent the directions of maximal variance
in the data. This means that the first component explains most of the variance, the
second component explains most of the residual variance after subtracting the first one,
and so on. Thus retaining only the first few principal components accounts for most of
the variance present in the original variables and filters out noise. PCA can be
performed by eigen decomposition!4 1514 1514,1514,1514,1514,1514,1514, 15 of the covariance
matrix of the data or, more efficiently, by singular value decomposition (SVD) of the
data matrix14 15,

For each component PCA outputs singular values (or eigenvalues) that indicate the
variance explained, sample scores (sample coordinates on the component) and gene
loadings (the coefficients of the genes in the linear combination, i.e. how much each

genes contribute to the component).

Visualizing the sample scores on the first few principal components helps to provide an
overview of the global structure of the data, for example by highlighting clusters or
trajectories (Fig2). The biological meaning of each component can be deduced by
analysing the gene loadings, for example by traditional gene set enrichment analysis16
17. To this purpose Chung et al. developed a method to systematically identify genes

significantly associated to principal components avoiding over-fitting’8. However
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interpreting principal components is not always easy because the components might be
enriched in many distinct biological processes and, vice versa, the same biological
process can be enriched in different components. The reasons for this include that in
PCA the components are defined maximizing the variance explained as a criterion,and
they are also constrained to be orthogonal. These conditions and constraints mean that
the principal components will not necessarily correspond to separate biological sources
of variance. This is an important limitation of PCA when the aim is to clearly separate
and remove unobserved confounders from interesting sources of variance (signal).
Using PCA there is a risk is that interesting signal is also removed together with

confounders.

Other unsupervised methods to decompose variance

Additional methods that relax some or all PCA constraints have been developed for
better separating sources of variance and to increase interpretability, known as factor
analysis methods. Similarly to PCA, these methods search for linear combinations of the
data (factors) that best explain the correlations among the variables but improve
interpretability by allowing for further rotations that better capture the underlining
structure of the data. For example the varimax!® method further rotates the data after
PCA (preserving orthogonality) in a way such that the genes have high or low loadings
only in one factor. Promax?2? also allows oblique rotations thus relaxing the
orthogonality constraint. Other methods based on factor analysis have been recently
proposed to better estimate sources of variance with the aim of correcting gene
expression from hidden confounders, such as surrogate variable analysis (SVA)Z1,
probabilistic estimation of expression residuals (PEER)22 and remove unwanted
variation (RUV)23 . The last two methods also allow estimating hidden factors in a semi-
supervised manner only on selected gene sets (i.e. control genes) to minimize the risk of

explaining away the signal together with confounders.

Among unsupervised method to deconvolve sources of signals, Independent Component
Analysis24 (ICA) is one of the most flexible. Its rationale stems from central limit
theorem, which states that mixtures (convolution) of independent signals tend to be
normally distributed. Thus an effective strategy to separate the hidden independent

source signals from the measured mixed signal is to find linear combinations
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(components) that maximize non-gaussianity (rather than variance as in PCA). Several
measure of non-gaussianity have been proposed such as kurtosis, negentropy or mutual
information24. Components obtained by ICA are linearly independent (a stronger
condition than uncorrelated as in PCA) but they do not need to be orthogonal as in PCA.
ICA has been applied to gene expression data25 26 and it can outperform PCA in teasing

apart independent biological processes underlying expression differences26(Fig3).

Using a reference expression dataset

If one wants to match data to predetermined states or types then a good approach is to
compare the data to existing reference expression profiles. A simple approach is to use
a subset of relevant genes from a reference dataset to build a model that predicts the
corresponding state in the dataset of interest. For example, the expression of many
genes in yeast correlates linearly with growth rate under many different conditions®
and a simple linear model including these genes can infer the relative growth rates of
new conditions from gene expression?’. Similarly, the proportion of cells in a sample in
each stage of the cell cycle can be inferred by comparison to reference datasets defining
sets of genes activated at different phases during the cell cycle. The expression level in
each of these genes in an asynchronous population (vector A) can then be expressed as
the weighted average of their expression at each cell cycle stage (matrix R) where the
weights (matrix W) are the unknown fractions of cells at each cell cycle stage in the
population (A=WR). These fractions can be determined by solving the system for W28,
The same modelling framework can be used to deconvolve cell type fractions from gene
expression data of whole tissues when cell type-specific expression signature are
known8. Similarly, cell type-specific expression profiles can be inferred in complex

tissues if the fraction of each different cell type in the tissue is known?°.

More powerful methods to match expression data to a reference dataset include partial
least squares (PLS) and canonical correlation analysis (CCA) >. These two related
statistical techniques analyse the relationship between two datasets (covariance for
PLS, correlation for CCA) of multiple dependent and multiple independent variables
such as two gene expression datasets measuring the same genes in two different sets of
conditions. They decompose the covariance (or correlation in CCA) between the two

datasets by finding linear combinations of the reference dataset that best explain linear

Page 6 of 21
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combinations of the independent dataset, in a manner similarly to PCA except that in
this case only the variance shared between the two datasets is taken into account. Using
these methods as multiple advantages: first one can find multiple processes shared with
a reference and quantify how much variance is explained by each. Further, the approach
leaves the variance not explained by the reference untouched. This avoids that specific
signals of interest are explained away together with global confounders when the aim is
to correct gene expression before downstream analysis. This is in contrast to using
reference genes whose expression in the data of interest might reflect a combination of

underlining processes some of which might not be present in the reference.

Tackling non-linearity

Many biological processes such as the cell cycle, development and differentiation show
complex non-linear dynamics such as oscillations or bifurcations. In these cases, linear
methods (such as those described above) are a useful first step to reduce
dimensionality, visualize the data and filter out noise, but they cannot directly be used
to order the data along a non-linear dynamic process. Reconstructing non-linear
dynamics from the data might be challenging because classical distance measures are
not appropriate to define, for example, how close two data points are in a trajectory and

hence their ordering (Fig4a).

In some cases, simple transformations can be used to infer the correct dynamics and to
order the data. For example if PCA (or ICA) transformed data lie on (a portion of) a cycle
in a low dimensional space, a simple transformation in polar coordinates can recover

the correct order of the data points along the dynamics> 1415,

In the case of more complex dynamics, finding the geometry of the data and ordering or
clustering data points might be harder. When studying development and the data points
lie in a single trajectory, ordering them can be seen as an instance of the well known
travelling salesman problem to find the shortest path connecting all the points, for

which many algorithms have been developed39.

However, often data points are arranged in a more complex way than one simple

trajectory as in the case of lineage bifurcations during differentiation31. General
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approaches to this problem start by building a graph that connects data points only to
their nearest neighbours (with the aim to preserve only the local distances) and then
finding the minimum spanning tree (MST) that connects all the data points (Fig4B). In
the simplest case, the diameter of this graph represents the dynamic trajectory along
which data points can then be sorted32(Fig4C). This strategy has been successfully
applied to uncover trajectories and bifurcations both for low and medium dimensional
data such as flow cytometry coupled with mass spectrometry (cyto-mass) or single cell
quantitative real time PCR (qRT-PCR) expression measurements33 34 and for high
dimensional gene expression data after applying a linear dimensionality reduction step

such as PCA30.32 ICA35 or a clustering step36.

Alternatively, several methods have been developed that start by building a nearest
neighbour graph and use the shortest path (geodesic) distance between points instead
of the euclidean distance to perform non-linear dimensionality reduction and
clustering. Examples include Isomap?7, locally linear embedding (LLE)38 and laplacian
eigenmaps3?. Other non-linear dimensionality reduction methods such as diffusion
maps40 or the t-distributed stochastic linear embedding (t-SNE)*! are based on
alternatives to classical distance metrics but again with the same objective of preserving
local similarities rather than global ones. [Isomaps3?, diffusion maps*? and t-SNE*3 have
been used in a biological context to discover trajectories, bifurcations and cell
heterogeneity in medium or high dimensional data on differentiation, development and

disease.

3.Applications

Interpreting functional genomics data

One of the first applications of expression deconvolution was in the interpretation of
systematic functional genomic data such as analysing the consequences of gene
deletion. In an early study in yeast, Lu et al showed that it is possible to deconvolve the

fraction of cells in each cell cycle phase from bulk microarray expression data in
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asynchronous populations by using reference genes that oscillate during the cell cycle28.
This deconvolution made it possible to evaluate the effects of various environmental
and genetic perturbations on the cell cycle dynamics from bulk gene expression,
characterizing both the specific phase of the cell cycle and the severity of defects (Fig5).
For example, based on the changes in gene expression the authors inferred that about

half out of the 300 tested gene deletions affect cell cycle progression.

More recently O’Duibhir et al performed a similar analysis on 1485 gene expression
profiles of yeast gene deletion strains0. They first found that 25% of the 700 mutants
that differ from wild type share a common expression signature that is very similar to a
‘slow growth’ signature induced by nutrient limitation® or environmental stress. In
yeast, the growth rate, the stress response and metabolic activity are tightly
coordinated with the cell cycle?, and the authors argued that a change in the fraction of
cells at different cell cycle stages in a population can account for expression changes in

many different experiments10.

Analysis of complex tissues

Gene expression deconvolution is also useful for interpreting physiological changes in
complex samples such as tissues. Tissues are a mixture of cell types so differential
expression can be driven by: (1) changes in the relative abundance of different types,
(2) changes that occur only in a subset of cell types, (3) changes common to every cell
type, or (4) a combination of these three. Expression deconvolution can help
discriminate among these scenarios 8 29 4446, Deconvolution of cell type fractions based
on reference expression datasets showed that systemic lupus SLE patients have a
specific increase in activated natural killer and T helper lymphocytes8. In contrast,
deconvolution of cell-specific gene expression from whole blood samples in
combination with cell-type frequency revealed that kidney transplant recipients
experiencing rejection had hundreds of differentially expressed genes specifically in

monocytes2°.

Discovery of new cell types and states.
Single cell RNA sequencing (RNA-seq) technologies*’-5%are opening up new possibilities

for the analysis of complex heterogeneous samples. Whole tissues can be dissociated
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into single cells that can be separately profiled48 51. Whole genome single cell profiles
are inherently stochastic which makes the analysis of biological variance more
challenging®Z, nonetheless they dramatically improve the ability to discover and
characterize cell types and states. Cell types and states are classically defined by
measuring a combination of a few selected markers using flow cytometry. Even in the
most advanced configuration (flow cytometry coupled with mass spectrometry)?®3, this
approach allows about 40 markers to be measured in parallel for each cell, thus
introducing selection bias. In contrast, RNA-seq allows the expression of all genes to be
profiled across hundreds or thousands of cells, so providing an unbiased ab initio
characterization of cell states and types including rare ones*8 51, Jaitin et al., for
example, could decompose by hierarchical clustering the heterogeneous dendritic cell
group into four functionally distinct subclasses and showed how the relative abundance
of these cell types is remodelled after infection8. In another recent study, Zeisel et al.
used single cell RNA-seq to identify 47 subclasses of cells in the mouse cortex and

hippocampus>1.

Development and differentiation

Gene expression deconvolution is also useful for interpreting dynamical biological
processes from simple responses to stimuli> to more complex dynamics such as
development and differentiation in multicellular organisms. Cell state trajectories can
be reconstructed and data points can be ordered along these with little or no a priori
chronological information both from average> 303136 and single cell expression data3>
42,5455 Inferring the precise physiological time point of each sample from gene
expression can also be important in experiments where the exact chronological time
point at which each sample was collected was controlled and recorded, for example
because of heterogeneity in the rates of development between genotypes, individual

cells or experimental batches>.

For example, Shalek et al showed by using PCA that the response of single dendritic
cells to a pathogenic stimulus is variable in time and includes some precocious cells at
early time points that are more advanced in the dynamic response>* and more similar to
cells at later time points. Studying early blood development in mouse embryos using

PCA and diffusion maps Moignard et al. revealed heterogeneity along the differentiation

Page 10 of 21
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dynamics not only within embryos collected at the same chronological time but also
between single cells within individual embryos#2. These two examples highlight two
important advantages of using single cell data and data from single individuals to
analyse dynamical progressions: first, one can quantify how synchronous a process is;
and second, while in average data the differences in physiological time within each time
point are averaged out and decrease the signal, analysis of single cells or individuals
ordered along a time-series allows analysis of the full dynamic response*2 even when
the system is asynchronous. Another example is provided by the analysis of blood
development>5, which provided more power to discover cascades of causal regulators of

differentiation3> 55,

Reconstructing 3D spatial gene expression

In multicellular organisms gene expression not only varies in time but also in space.
Methods that retain full spatial information of genome-wide gene expression exist but
they are still limited in throughput and are laborious®®. Junker at al proposed a method
similar to tomography where a sample is cryo-sectioned in different directions, each
section is analysed by RNA-seq and spatial expression is mathematically reconstructed.
Applying this method, they constructed an atlas of 3D expression patterns for zebrafish
embryos. Although impressive, ambiguities remain in the atlas when genes are
expressed in more than one contiguous region because the system is
underdetermined>’. To overcome this fundamental limitation, RNA-seq would have to
be performed on slices at different angles across the sample, which would likely require
averaging across different embryos. An alternative approach for reconstructing 3D
expression patterns is to use the known spatial distributions of landmark genes, for
example mapped by in situ hybridisation. This idea has been applied to reconstruct
spatial gene expression in zebrafish embryos>8 and in the brains of annelid worms>?. In
these studies, samples were first dissociated into single cells that were RNA-seq profiled
and spatial gene expression was computationally reconstructed by measuring the
similarity of the expression of each gene to the marker genes with know spatial
expression patterns. A similar approach was also used for the spatial reconstruction of
a much smaller number of gene expression profiles in the mouse otocyst, the precursor

of the inner ear®0.
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Interpreting the effects of genetic variation

A central goal of many fields of biology such as human genetics and plant or animal
breeding is to understand how natural genetic variation amongst individuals alters
their characteristics. Here too the decomposition of expression profiles can be useful,
either to remove non-genetic variation and improve the power when asking how
genetic variation influences gene expression or to infer additional phenotypic traits or

hidden environmental perturbations from gene expression components.

Expression quantitative trail loci (eQTLs) are genetic variants that alter gene
expression. eQTLs are identified by performing genome-wide expression profiling on
genetically heterogeneous populations. Gene expression is influenced by many non-
genetic factors that can obscure subtle genetic effects. These non-genetic factors can be
known covariates such as sex or age but they are often hidden uncontrolled
experimental variables. eQTL studies are particularly sensitive to these because they
usually include many experimental batches. Controlling for both known and hidden
confounders greatly increase the power to detect significant eQTLs?. The simplest and
most widely used approach to improve cis-eQTL detection is to remove the first few
principal components, because this only removes broad variance components
preserving local genetic effects. This approach however is not well suited for improving
the detection of genetic loci that cause large-scale gene expression changes in trans

because their signal might be might be removed together with confounders.

Beyond increasing statistical power, the analysis of hidden confounders can be useful
for discovering genotype-environment interactions, i.e. genetic variants that change
gene expression differently under different conditions, for example cell type-©1, tissue-62
or environmental-specific eQTLs®3. If a hidden confounder reflects a biological source
of variance, it should be treated as a covariate instead of being corrected for when
testing the genetic effects on gene expression. Parts et al., for example, used a sparse
factor analysis model to infer different cellular states (defined by the activity of
different molecular pathways) and showed that the effect of some genetic variants is

highly dependent on the cellular state®.
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As another example, Curtis et al. used an integrative clustering approach to discover
new molecular cancer subtypes from gene expression heterogeneity and to characterize
the impact of genetic variation on these cancer subtypes. They further showed that
integrative clustering combining gene expression and genomic information is predictive

of survivalé4.

If a dynamic biological process underlies the hidden source of variance in an eQTL
dataset, then the data can be used to investigate how time-dependent processes such as
development are influenced by genetic variation. For example, we recently investigated
how natural genetic variation affects gene expression in both space and time during 12
hours of the development of C. elegans by identifying and exploiting small differences in
the exact physiological stages at which each sample was expression profiled ¢5. The
physiological stage of each sample was inferred by comparing the expression to a
reference gene expression time series using CCA (FigbA), and the tissue-specificity of
expression trends were inferred by comparison to expression profiles of sorted tissue
samples. This allowed us to examine how sequence variation in the genome alters how
genes are expressed in time (Fig6B), and also to ask whether these effects are tissue-
specific or not. In this way we were able to identify hundreds of examples where
genetic variation close to a gene increased the amplitude of oscillations, altered the rate

of induction, or completely altered the dynamics®.

Summary

We have highlighted in this review how both bulk and single cell gene expression data
can be decomposed into the constituent cell types and states and used to reconstruct
spatial and temporal patterns of expression. This allows biological processes to be
studied at multiple levels using a single expression dataset (that may actually have been

generated for a different purpose).

One important lesson to be learned is that ‘hidden’ confounders in expression data can
be more than artefacts to correct for. Rather, they can identify important biological

sources of variance that can be interpreted and used to make interesting discoveries.
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Another important lesson is that, although it is tempting to apply a simplifying discrete
view of a process, this often results in a loss of information and power because of the

intrinsically continuous nature of many biological processes in both time and space.

As the cost of single cell RNA sequencing falls and the methods for sample preparation
become more routine, these kinds of analyses will become increasingly important and
widely used. In particular, we envisage that the application of single cell RNA
sequencing to complex samples such as human tissue samples will facilitate the analysis
of how genetic variation influences many different dynamic biological processes such as

disease progression, development and tissue composition.
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Fig 3. Finding the sources of variance in gene expression. Gene expression
measures often include many mixed sources of signal. (A) Three measured signals
constituted by a linear combination of (B) three original sources of signal along a time
(or space) dimension. (C) ICA better estimates the original sources of signal than (D)

PCA.

Fig 4. Identification of a non linear trajectory and the inference of the correct
order of data points along this trajectory. A Synthetic dataset (jelly-roll) of points
arranged in a spiral. Points a and b are closer than a and c in euclidean space despite

being at opposite end of the spiral. B. The minimum spanning tree of the data - here
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data points are connected according to their shortest path distance. C Data points are
correctly sorted along a trajectory determined by the diameter of the minimum

spanning tree (adapted from Magwene et al.32).

M/G1

Fig 5. Interpreting the effect of genetic and environmental perturbations on cell
cycle dynamics. The angular position indicates the phase of the cell cycle affected,
while the distance from the centre (occupied by wild type) indicates the severity of the

defect. Both mutants a and b affect mitosis but mutant a has a more severe effect.

Mutant c affects S phase (adapted from Lu et al.28).

A B Dynamic eQTL

0 %o tr-180 alleleA
] %3 - st 80 alleleB
S S ?

o) o

g |2 ° S

E | 2 inferred @

) ° <

o 300 developmental age ©

L kel

a °o K]

é» ® o Younger  Older

Axis 1 (0ogenesis) inferred developmental age

Fig 6. The impact of genetic variation on developmental dynamics. Worms switch
from spermatogenesis to oogenesis when maturing. (A) the developmental age of each
sample is inferred from the trajectory on the components related to spermatogenesis
and oogenesis. (B) A dynamic eQTL analysis shows the complex effect of local genetic
variation on the expression dynamics of the str-180 gene (right) that could not be

appreciated when developmental time is not included as a covariate in the analysis
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(left). Analysis from Francesconi and Lehner 5 of data from Rockman et al.¢s.
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