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Abstract 14 

Genome-wide gene expression profiling is a fast, cheap and standardised analysis that 15 

provides a high dimensional measurement of the state of a biological sample.  In this 16 

review we describe some of the computational methods that can be applied to identify 17 

and interpret sources of variance in gene expression in whole organisms, organs, 18 

tissues or single cells.  This allows the identification of constituent cell types and states 19 

in complex mixtures, the reconstruction of temporal trajectories of development, 20 

differentiation and progression, and the reconstruction of spatial patterning.  When 21 

applied to genetically variable samples, these methods allow the efficient investigation 22 

of how genetic variation influences gene expression in space and time.   23 

  24 
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1. Sources of variability in biological samples 1 

Differences in gene expression measured by RNA sequencing or using DNA microarrays 2 

can be purely technical (this can be estimated1) or due to biological differences between 3 

samples.  These biological differences may be part of the experimental design or they 4 

may be due to uncontrolled experimental variation in the state of each sample2-7. 5 

Uncontrolled experimental variation is usually regarded as a confounder but it might 6 

also be interesting when the sources of variation are correctly identified and 7 

understood (Fig1).  In this review we provide an overview of the computational 8 

methods that can be used to identify and understand controlled and uncontrolled 9 

variance in gene expression datasets and highlight examples of how these have been 10 

used to make interesting discoveries. 11 

 12 

In gene expression data from mixtures of cell types such as tissues, organs or tumours, 13 

an important source of variance derives from cell heterogeneity. This may come from 14 

the process of interest, for example a condition might change the proportion of different 15 

cell types within tissues8. Or different amounts of contaminating tissues could confound 16 

the analysis, for example with patient biopsies. In this case it is important to factor out 17 

this confounder to increase the power to detect differences in the tissue of interest.  18 

 19 

Even when analysing populations of sorted pure cell types (or unicellular organisms) 20 

heterogeneity is still present. Cells are not static entities but they dynamically adjust 21 

their state in response to environmental stimuli. It might be hard to control all (micro-) 22 

environmental factors that can trigger some cell response. A typical example is growth 23 

rate: cells adjust their global gene expression according to growth rate - increasing for 24 

example ribosomes and translation-related genes and decreasing stress related genes - 25 

no matter what the growth-rate-limiting factor is9, 10. Any perturbation that changes 26 

growth rate will consequently impact gene expression.  27 

 28 

Moreover cells go through oscillations, for example cell cycles, metabolic cycles and 29 

circadian rhythms. This heterogeneity will be present in unsynchronized single cells but 30 

also potentially in bulk measures of asynchronous populations where oscillatory 31 

dynamics are convoluted in the average expression data; population measures reflect 32 

the average of gene expression of different cell cycle or other oscillatory stages 33 
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weighted by the fractions of cells that are at each stage. Conditions, treatments (or 1 

confounders) that change the oscillatory dynamics will change these fractions and will 2 

leave a trace on gene expression.  3 

 4 

Even more complex dynamics are present when studying systems undergoing 5 

development or differentiation. When studying fast developing model systems such as 6 

Drosophila melanogaster or Caenorhabiditis elegans that complete development, even a 7 

few hours’ difference in precise staging can introduce substantial variation in gene 8 

expression5, 11, 12. This might be related to the experimental conditions of interest (that 9 

could cause a delay in development) or it could be a confounder if not properly 10 

controlled (experimental batches might be at slightly different developmental stages). 11 

 12 

In summary, even in a simple perturbation and expression profiling experiment it is 13 

important to understand and correctly decompose gene expression variance into the 14 

corresponding sources. This will help to: (1) better understand and interpret the global 15 

effects of a treatment/condition/mutation, for example as developmental delays or 16 

changes in growth rate or cell composition; (2) tease apart specific effects and direct 17 

targets of treatment/condition/mutation beyond the developmental delays or changes 18 

in growth rate; and (3) control for experimental confounders and increase the power to 19 

detect the effects of interest.  However, the real power of understanding and 20 

decomposing expression profiles is the application to large datasets in which new cell 21 

states, spatial patterning or temporal ‘trajectories’ of expression can be identified.  In 22 

addition, if this is performed in combination with genetically varying samples, the 23 

impact of genetic variation on these states or spatial and temporal patterns can be 24 

determined. 25 

 26 

2. Computational approaches for inferring cell states, sample compositions, time and 27 

space from gene expression 28 

 29 

Global gene expression data is typically highly redundant because many genes (for 30 

example those involved in the same biological processes) share correlated expression 31 

profiles.  Thus it is useful to represent (map) the high dimensional data listing the 32 
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expression of tens of thousands of genes onto a lower and more interpretable 1 

dimensional space, a task known as dimensionality reduction. Ideally after this step the 2 

data would be represented by a few dimensions that account for most of the variance in 3 

the data and where each dimension represents a distinct, interpretable biological 4 

process.  At the same time it is desirable to filter out non-biological, uninteresting 5 

variance (technical noise). 6 

 7 

Ab initio (unsupervised) methods for dimensionality reduction: principal 8 

components analysis 9 

Depending on the goal of the study and on the nature of the biological process of 10 

interest, different computational approaches for reducing dimensionality can be used.  11 

If the goal is to discover new cell types, states or trajectories ab initio from the data, one 12 

of most widely used technique is principal component analysis13 (PCA). PCA rotates the 13 

data into new orthogonal coordinate systems where the axes (components) are linear 14 

combinations of the original variables and represent the directions of maximal variance 15 

in the data. This means that the first component explains most of the variance, the 16 

second component explains most of the residual variance after subtracting the first one, 17 

and so on. Thus retaining only the first few principal components accounts for most of 18 

the variance present in the original variables and filters out noise. PCA can be 19 

performed by eigen decomposition14, 1514, 1514, 1514, 1514, 1514, 1514, 1514, 15 of the covariance 20 

matrix of the data or, more efficiently, by singular value decomposition (SVD) of the 21 

data matrix14, 15. 22 

For each component PCA outputs singular values (or eigenvalues) that indicate the 23 

variance explained, sample scores (sample coordinates on the component) and gene 24 

loadings (the coefficients of the genes in the linear combination, i.e. how much each 25 

genes contribute to the component).  26 

 27 

Visualizing the sample scores on the first few principal components helps to provide an 28 

overview of the global structure of the data, for example by highlighting clusters or 29 

trajectories (Fig2). The biological meaning of each component can be deduced by 30 

analysing the gene loadings, for example by traditional gene set enrichment analysis16, 31 

17. To this purpose Chung et al. developed a method to systematically identify genes 32 

significantly associated to principal components avoiding over-fitting18. However 33 
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interpreting principal components is not always easy because the components might be 1 

enriched in many distinct biological processes and, vice versa, the same biological 2 

process can be enriched in different components. The reasons for this include that in 3 

PCA the components are defined maximizing the variance explained as a criterion,and 4 

they are also constrained to be orthogonal.  These conditions and constraints mean that 5 

the principal components will not necessarily correspond to separate biological sources 6 

of variance. This is an important limitation of PCA when the aim is to clearly separate 7 

and remove unobserved confounders from interesting sources of variance (signal). 8 

Using PCA there is a risk is that interesting signal is also removed together with 9 

confounders. 10 

 11 

Other unsupervised methods to decompose variance 12 

Additional methods that relax some or all PCA constraints have been developed for 13 

better separating sources of variance and to increase interpretability, known as factor 14 

analysis methods.  Similarly to PCA, these methods search for linear combinations of the 15 

data (factors) that best explain the correlations among the variables but improve 16 

interpretability by allowing for further rotations that better capture the underlining 17 

structure of the data. For example the varimax19 method further rotates the data after 18 

PCA (preserving orthogonality) in a way such that the genes have high or low loadings 19 

only in one factor. Promax20 also allows oblique rotations thus relaxing the 20 

orthogonality constraint. Other methods based on factor analysis have been recently 21 

proposed to better estimate sources of variance with the aim of correcting gene 22 

expression from hidden confounders, such as surrogate variable analysis (SVA)21, 23 

probabilistic estimation of expression residuals (PEER)22 and remove unwanted 24 

variation (RUV)23 . The last two methods also allow estimating hidden factors in a semi-25 

supervised manner only on selected gene sets (i.e. control genes) to minimize the risk of 26 

explaining away the signal together with confounders. 27 

 28 

Among unsupervised method to deconvolve sources of signals, Independent Component 29 

Analysis24 (ICA) is one of the most flexible.  Its rationale stems from central limit 30 

theorem, which states that mixtures (convolution) of independent signals tend to be 31 

normally distributed. Thus an effective strategy to separate the hidden independent 32 

source signals from the measured mixed signal is to find linear combinations 33 
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(components) that maximize non-gaussianity (rather than variance as in PCA). Several 1 

measure of non-gaussianity have been proposed such as kurtosis, negentropy or mutual 2 

information24. Components obtained by ICA are linearly independent (a stronger 3 

condition than uncorrelated as in PCA) but they do not need to be orthogonal as in PCA. 4 

ICA has been applied to gene expression data25, 26 and it can outperform PCA in teasing 5 

apart independent biological processes underlying expression differences26(Fig3).  6 

 7 

Using a reference expression dataset 8 

If one wants to match data to predetermined states or types then a good approach is to 9 

compare the data to existing reference expression profiles.   A simple approach is to use 10 

a subset of relevant genes from a reference dataset to build a model that predicts the 11 

corresponding state in the dataset of interest.  For example, the expression of many 12 

genes in yeast correlates linearly with growth rate under many different conditions9 13 

and a simple linear model including these genes can infer the relative growth rates of 14 

new conditions from gene expression27.  Similarly, the proportion of cells in a sample in 15 

each stage of the cell cycle can be inferred by comparison to reference datasets defining 16 

sets of genes activated at different phases during the cell cycle. The expression level in 17 

each of these genes in an asynchronous population (vector A) can then be expressed as 18 

the weighted average of their expression at each cell cycle stage (matrix R) where the 19 

weights (matrix W) are the unknown fractions of cells at each cell cycle stage in the 20 

population (A=WR). These fractions can be determined by solving the system for W28.  21 

The same modelling framework can be used to deconvolve cell type fractions from gene 22 

expression data of whole tissues when cell type-specific expression signature are 23 

known8. Similarly, cell type-specific expression profiles can be inferred in complex 24 

tissues if the fraction of each different cell type in the tissue is known29. 25 

 26 

More powerful methods to match expression data to a reference dataset include partial 27 

least squares (PLS) and canonical correlation analysis (CCA) 5. These two related 28 

statistical techniques analyse the relationship between two datasets (covariance for 29 

PLS, correlation for CCA) of multiple dependent and multiple independent variables 30 

such as two gene expression datasets measuring the same genes in two different sets of 31 

conditions. They decompose the covariance (or correlation in CCA) between the two 32 

datasets by finding linear combinations of the reference dataset that best explain linear 33 
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combinations of the independent dataset, in a manner similarly to PCA except that in 1 

this case only the variance shared between the two datasets is taken into account. Using 2 

these methods as multiple advantages: first one can find multiple processes shared with 3 

a reference and quantify how much variance is explained by each. Further, the approach 4 

leaves the variance not explained by the reference untouched. This avoids that specific 5 

signals of interest are explained away together with global confounders when the aim is 6 

to correct gene expression before downstream analysis. This is in contrast to using 7 

reference genes whose expression in the data of interest might reflect a combination of 8 

underlining processes some of which might not be present in the reference.  9 

 10 

Tackling non-linearity 11 

Many biological processes such as the cell cycle, development and differentiation show 12 

complex non-linear dynamics such as oscillations or bifurcations. In these cases, linear 13 

methods (such as those described above) are a useful first step to reduce 14 

dimensionality, visualize the data and filter out noise, but they cannot directly be used 15 

to order the data along a non-linear dynamic process. Reconstructing non-linear 16 

dynamics from the data might be challenging because classical distance measures are 17 

not appropriate to define, for example, how close two data points are in a trajectory and 18 

hence their ordering (Fig4a). 19 

 20 

In some cases, simple transformations can be used to infer the correct dynamics and to 21 

order the data. For example if PCA (or ICA) transformed data lie on (a portion of) a cycle 22 

in a low dimensional space, a simple transformation in polar coordinates can recover 23 

the correct order of the data points along the dynamics5, 14, 15.  24 

 25 

In the case of more complex dynamics, finding the geometry of the data and ordering or 26 

clustering data points might be harder. When studying development and the data points 27 

lie in a single trajectory, ordering them can be seen as an instance of the well known 28 

travelling salesman problem to find the shortest path connecting all the points, for 29 

which many algorithms have been developed30.  30 

 31 

However, often data points are arranged in a more complex way than one simple 32 

trajectory as in the case of lineage bifurcations during differentiation31. General 33 
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approaches to this problem start by building a graph that connects data points only to 1 

their nearest neighbours (with the aim to preserve only the local distances) and then 2 

finding the minimum spanning tree (MST) that connects all the data points (Fig4B). In 3 

the simplest case, the diameter of this graph represents the dynamic trajectory along 4 

which data points can then be sorted32(Fig4C). This strategy has been successfully 5 

applied to uncover trajectories and bifurcations both for low and medium dimensional 6 

data such as flow cytometry coupled with mass spectrometry (cyto-mass) or single cell 7 

quantitative real time PCR (qRT-PCR) expression measurements33, 34 and for high 8 

dimensional gene expression data after applying a linear dimensionality reduction step 9 

such as PCA30, 32, ICA35 or a clustering step36.  10 

 11 

Alternatively, several methods have been developed that start by building a nearest 12 

neighbour graph and use the shortest path (geodesic) distance between points instead 13 

of the euclidean distance to perform non-linear dimensionality reduction and 14 

clustering.  Examples include Isomap37, locally linear embedding (LLE)38 and laplacian 15 

eigenmaps39.  Other non-linear dimensionality reduction methods such as diffusion 16 

maps40 or the t-distributed stochastic linear embedding (t-SNE)41 are based on 17 

alternatives to classical distance metrics but again with the same objective of preserving 18 

local similarities rather than global ones. Isomaps31, diffusion maps42 and t-SNE43 have 19 

been used in a biological context to discover trajectories, bifurcations and cell 20 

heterogeneity in medium or high dimensional data on differentiation, development and 21 

disease. 22 

 23 

 24 

 25 

3. Applications 26 

 27 

Interpreting functional genomics data  28 

One of the first applications of expression deconvolution was  in the interpretation of 29 

systematic functional genomic data such as analysing the consequences of gene 30 

deletion.  In an early study in yeast, Lu et al showed that it is possible to deconvolve the 31 

fraction of cells in each cell cycle phase from bulk microarray expression data in 32 
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asynchronous populations by using reference genes that oscillate during the cell cycle28.  1 

This deconvolution made it possible to evaluate the effects of various environmental 2 

and genetic perturbations on the cell cycle dynamics from bulk gene expression, 3 

characterizing both the specific phase of the cell cycle and the severity of defects (Fig5).   4 

For example, based on the changes in gene expression the authors inferred that about 5 

half out of the 300 tested gene deletions affect cell cycle progression. 6 

 7 

More recently O’Duibhir et al performed a similar analysis on 1485 gene expression 8 

profiles of yeast gene deletion strains10. They first found that 25% of the 700 mutants 9 

that differ from wild type share a common expression signature that is very similar to a 10 

‘slow growth’ signature induced by nutrient limitation9 or environmental stress. In 11 

yeast, the growth rate, the stress response and metabolic activity are tightly 12 

coordinated with the cell cycle9, and the authors argued that a change in the fraction of 13 

cells at different cell cycle stages in a population can account for expression changes in 14 

many different experiments10.  15 

 16 

Analysis of complex tissues 17 

Gene expression deconvolution is also useful for interpreting physiological changes in 18 

complex samples such as tissues.  Tissues are a mixture of cell types so differential 19 

expression can be driven by: (1) changes in the relative abundance of different types, 20 

(2) changes that occur only in a subset of cell types, (3) changes common to every cell 21 

type, or (4) a combination of these three. Expression deconvolution can help 22 

discriminate among these scenarios 8, 29, 44-46. Deconvolution of cell type fractions based 23 

on reference expression datasets showed that systemic lupus SLE patients have a 24 

specific increase in activated natural killer and T helper lymphocytes8. In contrast, 25 

deconvolution of cell-specific gene expression from whole blood samples in 26 

combination with cell-type frequency revealed that kidney transplant recipients 27 

experiencing rejection had hundreds of differentially expressed genes specifically in 28 

monocytes29. 29 

 30 

Discovery of new cell types and states. 31 

Single cell RNA sequencing (RNA-seq) technologies47-50are opening up new possibilities 32 

for the analysis of complex heterogeneous samples. Whole tissues can be dissociated 33 
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into single cells that can be separately profiled48, 51. Whole genome single cell profiles 1 

are inherently stochastic which makes the analysis of biological variance more 2 

challenging52, nonetheless they dramatically improve the ability to discover and 3 

characterize cell types and states. Cell types and states are classically defined by 4 

measuring a combination of a few selected markers using flow cytometry. Even in the 5 

most advanced configuration (flow cytometry coupled with mass spectrometry)53, this 6 

approach allows about 40 markers to be measured in parallel for each cell, thus 7 

introducing selection bias. In contrast, RNA-seq allows the expression of all genes to be 8 

profiled across hundreds or thousands of cells, so providing an unbiased ab initio 9 

characterization of cell states and types including rare ones48, 51. Jaitin et al., for 10 

example, could decompose by hierarchical clustering the heterogeneous dendritic cell 11 

group into four functionally distinct subclasses and showed how the relative abundance 12 

of these cell types is remodelled after infection48. In another recent study, Zeisel et al. 13 

used single cell RNA-seq to identify 47 subclasses of cells in the mouse cortex and 14 

hippocampus51.  15 

 16 

Development and differentiation 17 

Gene expression deconvolution is also useful for interpreting dynamical biological 18 

processes from simple responses to stimuli54 to more complex dynamics such as 19 

development and differentiation in multicellular organisms. Cell state trajectories can 20 

be reconstructed and data points can be ordered along these with little or no a priori 21 

chronological information both from average5, 30, 31, 36 and single cell expression data35, 22 

42, 54, 55.  Inferring the precise physiological time point of each sample from gene 23 

expression can also be important in experiments where the exact chronological time 24 

point at which each sample was collected was controlled and recorded, for example 25 

because of heterogeneity in the rates of development between genotypes, individual 26 

cells or experimental batches5.     27 

 28 

For example, Shalek et al showed by using PCA that the response of single dendritic 29 

cells to a pathogenic stimulus is variable in time and includes some precocious cells at 30 

early time points that are more advanced in the dynamic response54 and more similar to 31 

cells at later time points. Studying early blood development in mouse embryos using 32 

PCA and diffusion maps Moignard et al. revealed heterogeneity along the differentiation 33 
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dynamics not only within embryos collected at the same chronological time but also 1 

between single cells within individual embryos42. These two examples highlight two 2 

important advantages of using single cell data and data from single individuals to 3 

analyse dynamical progressions: first, one can quantify how synchronous a process is; 4 

and second, while in average data the differences in physiological time within each time 5 

point are averaged out and decrease the signal, analysis of single cells or individuals 6 

ordered along a time-series allows analysis of the full dynamic response42 even when 7 

the system is asynchronous.  Another example is provided by the analysis of blood 8 

development55, which provided more power to discover cascades of causal regulators of 9 

differentiation35, 55.   10 

 11 

Reconstructing 3D spatial gene expression 12 

In multicellular organisms gene expression not only varies in time but also in space. 13 

Methods that retain full spatial information of genome-wide gene expression exist but 14 

they are still limited in throughput and are laborious56.  Junker at al proposed a method 15 

similar to tomography where a sample is cryo-sectioned in different directions, each 16 

section is analysed by RNA-seq and spatial expression is mathematically reconstructed. 17 

Applying this method, they constructed an atlas of 3D expression patterns for zebrafish 18 

embryos.  Although impressive, ambiguities remain in the atlas when genes are 19 

expressed in more than one contiguous region because the system is 20 

underdetermined57.   To overcome this fundamental limitation, RNA-seq would have to 21 

be performed on slices at different angles across the sample, which would likely require 22 

averaging across different embryos.   An alternative approach for reconstructing 3D 23 

expression patterns is to use the known spatial distributions of landmark genes, for 24 

example mapped by in situ hybridisation.  This idea has been applied to reconstruct 25 

spatial gene expression in zebrafish embryos58 and in the brains of annelid worms59. In 26 

these studies, samples were first dissociated into single cells that were RNA-seq profiled 27 

and spatial gene expression was computationally reconstructed by measuring the 28 

similarity of the expression of each gene to the marker genes with know spatial 29 

expression patterns.  A similar approach was also used for the spatial reconstruction of 30 

a much smaller number of gene expression profiles in the mouse otocyst, the precursor 31 

of the inner ear60.  32 

 33 
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 1 

Interpreting the effects of genetic variation 2 

A central goal of many fields of biology such as human genetics and plant or animal 3 

breeding is to understand how natural genetic variation amongst individuals alters 4 

their characteristics.  Here too the decomposition of expression profiles can be useful, 5 

either to remove non-genetic variation and improve the power when asking how 6 

genetic variation influences gene expression or to infer additional phenotypic traits or 7 

hidden environmental perturbations from gene expression components. 8 

 9 

Expression quantitative trail loci (eQTLs) are genetic variants that alter gene 10 

expression.  eQTLs are identified by performing genome-wide expression profiling on 11 

genetically heterogeneous populations.  Gene expression is influenced by many non-12 

genetic factors that can obscure subtle genetic effects. These non-genetic factors can be 13 

known covariates such as sex or age but they are often hidden uncontrolled 14 

experimental variables. eQTL studies are particularly sensitive to these because they 15 

usually include many experimental batches. Controlling for both known and hidden 16 

confounders greatly increase the power to detect significant eQTLs7. The simplest and 17 

most widely used approach to improve cis-eQTL detection is to remove the first few 18 

principal components, because this only removes broad variance components 19 

preserving local genetic effects. This approach however is not well suited for improving 20 

the detection of genetic loci that cause large-scale gene expression changes in trans 21 

because their signal might be might be removed together with confounders. 22 

 23 

Beyond increasing statistical power, the analysis of hidden confounders can be useful 24 

for discovering genotype-environment interactions, i.e. genetic variants that change 25 

gene expression differently under different conditions, for example cell type-61, tissue-62 26 

or environmental-specific eQTLs63.   If a hidden confounder reflects a biological source 27 

of variance, it should be treated as a covariate instead of being corrected for when 28 

testing the genetic effects on gene expression. Parts et al., for example, used a sparse 29 

factor analysis model to infer different cellular states (defined by the activity of 30 

different molecular pathways) and showed that the effect of some genetic variants is 31 

highly dependent on the cellular state6.  32 

 33 
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As another example, Curtis et al. used an integrative clustering approach to discover 1 

new molecular cancer subtypes from gene expression heterogeneity and to characterize 2 

the impact of genetic variation on these cancer subtypes. They further showed that 3 

integrative clustering combining gene expression and genomic information is predictive 4 

of survival64. 5 

 6 

If a dynamic biological process underlies the hidden source of variance in an eQTL 7 

dataset, then the data can be used to investigate how time-dependent processes such as 8 

development are influenced by genetic variation. For example, we recently investigated 9 

how natural genetic variation affects gene expression in both space and time during 12 10 

hours of the development of C. elegans by identifying and exploiting small differences in 11 

the exact physiological stages at which each sample was expression profiled 65. The 12 

physiological stage of each sample was inferred by comparing the expression to a 13 

reference gene expression time series using CCA (Fig6A), and the tissue-specificity of 14 

expression trends were inferred by comparison to expression profiles of sorted tissue 15 

samples.  This allowed us to examine how sequence variation in the genome alters how 16 

genes are expressed in time (Fig6B), and also to ask whether these effects are tissue-17 

specific or not.  In this way we were able to identify hundreds of examples where 18 

genetic variation close to a gene increased the amplitude of oscillations, altered the rate 19 

of induction, or completely altered the dynamics5. 20 

 21 

Summary 22 

We have highlighted in this review how both bulk and single cell gene expression data 23 

can be decomposed into the constituent cell types and states and used to reconstruct 24 

spatial and temporal patterns of expression.  This allows biological processes to be 25 

studied at multiple levels using a single expression dataset (that may actually have been 26 

generated for a different purpose). 27 

 28 

One important lesson to be learned is that ‘hidden’ confounders in expression data can 29 

be more than artefacts to correct for.  Rather, they can identify important biological 30 

sources of variance that can be interpreted and used to make interesting discoveries.   31 

 32 
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Another important lesson is that, although it is tempting to apply a simplifying discrete 1 

view of a process, this often results in a loss of information and power because of the 2 

intrinsically continuous nature of many biological processes in both time and space.   3 

 4 

As the cost of single cell RNA sequencing falls and the methods for sample preparation 5 

become more routine, these kinds of analyses will become increasingly important and 6 

widely used.  In particular, we envisage that the application of single cell RNA 7 

sequencing to complex samples such as human tissue samples will facilitate the analysis 8 

of how genetic variation influences many different dynamic biological processes such as 9 

disease progression, development and tissue composition. 10 
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 4 

 5 

Fig 1 Sources of variance in gene expression data. Genome wide gene expression 6 

profiles can capture diverse intentional and unintentional influences.  7 

 8 
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 1 

 2 

Fig 2. How to interpret high dimensional gene expression data.  Projecting data in a 3 

low dimensional space (dimensionality reduction) is useful to filter out noise and helps 4 

to visualize the global structure of the data, for example highlighting clusters or 5 

trajectories. In the ideal case each dimension represents a distinct and interpretable 6 

biological process or function. Then clustering or methods to sort data points in 7 

trajectories can be applied.  8 

 9 
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 1 

 2 

Fig 3. Finding the sources of variance in gene expression.  Gene expression 3 

measures often include many mixed sources of signal.  (A) Three measured signals 4 

constituted by a linear combination of  (B) three original sources of signal along a time 5 

(or space) dimension. (C) ICA better estimates the original sources of signal than (D) 6 

PCA.  7 

 8 

 9 

 10 

 11 

Fig 4. Identification of a non linear trajectory and the inference of the correct 12 

order of data points along this trajectory. A Synthetic dataset (jelly-roll) of points 13 

arranged in a spiral. Points a and b are closer than a and c in euclidean space despite 14 

being at opposite end of the spiral.  B. The minimum spanning tree of the data – here 15 
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data points are connected according to their shortest path distance. C Data points are 1 

correctly sorted along a trajectory determined by the diameter of the minimum 2 

spanning tree (adapted from Magwene et al.32). 3 

 4 

 5 

 6 

Fig 5. Interpreting the effect of genetic and environmental perturbations on cell 7 

cycle dynamics. The angular position indicates the phase of the cell cycle affected, 8 

while the distance from the centre (occupied by wild type) indicates the severity of the 9 

defect. Both mutants a and b affect mitosis but mutant a has a more severe effect. 10 

Mutant c affects S phase (adapted from Lu et al.28). 11 

 12 

 13 

 14 

Fig 6. The impact of genetic variation on developmental dynamics. Worms switch 15 

from spermatogenesis to oogenesis when maturing. (A) the developmental age of each 16 

sample is inferred from the trajectory on the components related to spermatogenesis 17 

and oogenesis. (B) A dynamic eQTL analysis shows the complex effect of local genetic 18 

variation on the expression dynamics of the str-180 gene (right) that could not be 19 

appreciated when developmental time is not included as a covariate in the analysis 20 
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(left).  Analysis from Francesconi and Lehner 5 of data from Rockman et al.65. 1 

 2 

 3 
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