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Abstract 

Drug side effects, or adverse drug reactions (ADR), have become a major public health concern and 

often caused drug development failure and withdrawal. Some ADRs always occur concomitantly. 

Therefore, identifying these ADRs and their common molecular basis can better promote the prevention 

and treatment. In this paper we predicted the potential proteins for similar mechanism ADR pairs based 

on three layers of information. i) The drug co-occurrence between a pair of ADRs. ii) The correlation 

between a protein and an ADR-pairs based on the co-occurrence of drugs. iii) The interaction between 

these proteins within the protein-protein interaction (PPI) network. Methods of randomization and 

functional annotation are used to investigate and analyze the relation between causative proteins and 

similar ADR pairs. The prediction accuracy of relation between similar ADR pairs and related proteins 

reached 80%, and it increases more with the number of drugs shared by the ADR pairs. From the ADR 

network made of single ADRs from predicted similar ADR pairs, we found some ADRs are involved in 

multiple ADR pairs. Functional analysis of these ADR related proteins suggests the similar molecular 

basis is shared by multiple ADR pairs containing the same ADR. And these ADR pairs are almost 

caused by the same drug sets. The results of this study are reliable and can provide theoretical basis for 

better prevention and treatment of the ADRs always occurring concomitantly.  

 

Introduction 

Drug side effects, or adverse drug reactions (ADR), have become a 

major public health concern and caused drug development failure 

and withdrawal1. How to prevent and avoid side effects induced by 

drugs is a challenging issue in drug development and clinical 

practices. The key problem is to understand the pathogenesis, 

namely which proteins and/or biological pathways correlate to the 

side effect. Currently, there is little knowledge about the association 

between ADRs and ADR-related proteins2. What’s more, the related 

proteins of some ADRs are completely lack. Therefore, we urgently 

need to systematically identify ADR related proteins to promote 

experimental researches. 

Some strategies in this field have been studied and achieved 

remarkable successes. The docking analysis of drug structure 

binding sites was one of the early predicting method for potential 

drug targets. Xie et al3 generated off-target binding networks by 

comparing the structure of ligand-binding sites in all known protein 

structures. Using this analysis, the authors identified possible off-

target for torcetrapib even though the binding site of ligand is not 

fully described. System biology analysis was another efficient 

method to predict relation between drug, target and side effects using 

qualitative graphical models or quantitative mathematical model4. In 

a recent study, Philip Bourne and colleagues3 have used a chemical 

systems biology approach to explain the serious side-effects of a 

drug that was being trialed for prevention of cardiovascular disease. 

First, they can provide more detailed descriptions (even signatures) 

of drug effects, and second, they can provide a framework for the 

design of novel therapeutic strategies5. Griet Laenen6 also used 

graph model of protein interaction network to predict drug targets, 

combined with drug gene expression profile. This approach relies on 

the analysis of gene expression following drug treatment in the 

context of a functional protein association network. Eugen 

Lounkine7 developed an association metric to prioritize predicted 

off-targets, creating a drug–target–adverse drug reaction network. 

Both Griet Laenen and Eugen Lounkine’s work provide insight on 

the importance of network relation among drugs, targets and side 

effects. In addition, many other studies regard the similarity as a 

measure to predict relation among drugs, targets and side effects. 

Liat Perlman8 introduced a novel framework -- Similarity-based 

Inference of drug-TARgets (SITAR) -- for incorporating multiple 

drug-drug and gene-gene similarity measures for drug target 

prediction. Lucas Brouwers9 took similarity between side effects into 

account and found that side-effect similarity of drugs could be 

caused by overlapping of drug targets and the close neighbor targets 

in network.  
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There are another two representative methods. The first one is 

proposed by Mizutani S’ group which identified correlated sets of 

side effects and proteins. They proposed an algorithm using sparse 

canonical correlation analysis (SCCA) based on the drug co-

occurrence of drugs in protein-binding profiles and side effect 

profiles2. The second one is proposed by Kuhn M and his colleagues. 

Kuhn M utilized the fisher’s exact test to identify the significant 

relations between ADRs and proteins based on drug-protein and 

drug-ADR profiles10. Kuhn’s group also classified predicted proteins 

into categories and clustered them based on the co-occurrence of 

drugs in the protein binding profiles and side effect profiles. Nearly 

all these methods focused on single ADRs, however, many ADRs 

are not independent and they often occur concomitantly11. For 

instance, sweat increasing, lachrymation and pinpoint pupil always 

occur concomitantly after accidental administration of 

organophosphorus pesticide. Studies have shown that the sweat 

increasing, lachrymation and pinpoint pupil occur together because 

these ADRs are associated with the same ADR related protein 

cholinesterase (ChE)12. The pesticide inhibits the activation of ChE, 

and then acetylcholine (Ach) cumulates which leads to the ADRs 

above occurring at the same time. Therefore, identifying these ADRs 

and their common related proteins is important to the prevention and 

treatment. However, the surveys on this direction remain lacking. 

Studies have shown that drugs inducing similar ADRs have 

common substructure and similar protein profiles13, 14. Therefore, the 

co-occurrence of drugs in ADR pairs reflects the correlation between 

their some related proteins and similar ADR pairs. 

Some works have shown that proteins with interaction and close 

distance across the PPI network tend to share the same pathways6, 9. 

And drug targets with similar pharmacological action tend to have 

interaction with one another across the PPI network15. We can gain 

insight from these studies that side effects similarity and protein 

network contribute to the prediction of relation between side effect 

and proteins. Therefore, we supposed proteins inducing a pair of 

ADRs tend to interact with each other directly in the PPI network. 

In this paper we assessed the similarity between two ADRs with 

the common drugs (also called co-occurrence drugs) and found the 

candidate protein set for ADR pair based on co-occurrence of drugs. 

Then we screened proteins with direct interactions across the PPI 

network as predicted related proteins set of ADR pairs.  

Our purpose is to find proteins shared by an ADR pair with the 

similar pathogenic mechanism. It can firstly help explain the 

mechanism of two ADRs always occurring concomitantly, and may 

also help study single ADRs without related proteins information so 

far. Finally the shared proteins provide more effective treatment 

schemes on ADRs occurring concomitantly. 

Methods 

(1) DATA  

(1.1) Discovery data The ADR-drug relations (frequency > 0.01) 

were extracted from the SIDER 2 database16. The higher frequency 

in patients indicates a closer relationship between drugs and ADRs. 

The influence of rare variance and epigenetic effect were eliminated 

via limiting the frequency (frequency > 0.01) of ADRs in SIDER. 

We also removed ADRs with ambiguous names such as pain, ache 

and so on, because these ADRs have unclear descriptions and always 

correlate with too many drugs. And then we standardized ADR 

terms and drug names according to MedDAR17 dictionary and 

PubChem18, respectively. Drug-related proteins were extracted from 

three databases (SUPER TARGET and Matador19, STITCH20 and 

PROMISCUOUS21), and then converted into gene symbol. To 

preserve the specific relation between predicted proteins and ADRs, 

we removed the top 10 common proteins (Figure1). As observed, all 

these common proteins belong to the kinase and metabolic enzymes. 

To guarantee the statistic performance, we removed ADRs that are 

related to less than three drugs. Finally, we obtained 909 side effects, 

327 drugs, 6670 ADR-drug relations in total and 7297 drug-protein 

relations.  

(1.2) Validation data The validation data consists of two parallel 

sections. The first section was text mining from published literatures 

and databases. If the relation between an ADR and a protein exists in 

literatures or databases, this predicted relation can be verified. The 

second section was mapping proteins to adverse outcome pathway 

(AOP)22. HTS assays are focused on different adverse outcome 

pathways and more than 10,000 small molecules were screened. To 

verify the pair of similar ADRs can possibly occur together and both 

caused by the same protein, we classified the ADR terms and 

proteins AOP terms based on ICD disease classification system23. 

The ICD main page can be got from this website 

(http://www.who.int/classifications/icd/en/).  

The proteins related AOPs were downloads from AOPwiki 

(https://aopkb.org/aopwiki/index.php/Main_Page). 

 

Figure 1 degree distribution of common proteins  

The vertical axis represents the number of drugs related with the 

protein in horizontal axis. The horizontal axis represents the top 20 

proteins with the largest degrees. All of these common proteins 

correlate with more than 50 drugs and the top 10 proteins are all 

metabolic enzymes. To preserve the specificity between proteins and 

ADRs we removed the top 10 common proteins from the drugs’ 

related proteins. 

(2) Proteins prediction for similar ADR pairs 

(2.1) Screening similar ADR pairs A Tanimoto coefficient (TC)24 

means the number of drugs shared by two ADRs by the total number 
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of drugs inducing the two ADRs. We used the TC value to evaluate 

the similarity between any two ADRs. To confirm the threshold of 

the TC for each similar ADR pair, we utilized randomizations to 

screen the statistical significant ADR-ADR relations. First, drugs 

corresponding to an ADR were randomly replaced by the same 

number drugs from the whole drug group. Second, the new TC value 

was calculated for each pair of ADRs after once exchange. This 

above pipeline was repeated for 1,000 times and the P value was 

calculated from the distribution. ADR pairs with the P value less 

than 0.05 were supposed to be the similar ADR pairs. 

(2.2) Screening specific proteins shared by similar ADR pairs 

The drugs’ related proteins were supposed to be the potential 

causative proteins for the corresponding ADRs. To identify proteins 

significantly related to the ADR pairs, we randomly exchanged 

drugs with the same number of drugs from the whole drug sets, 

which were repeated 1000 times. The raw score is counted using the 

formula [Si=Ni/N, Si means the raw score of protein i, Ni means the 

number of drugs related to the protein i, N means the number of 

drugs inducing the ADR]. After generating 1000 times, we got the 

background distribution of new scores with the similar formula 

[Si=Ni’/N, Si means the random score of protein I, Ni’ means the 

number of drugs related to protein i after exchange]. Last, we 

determined whether a protein correlates with an ADR pair by 

transforming the rank of raw score in distribution into P value. We 

chose the proteins with a P value less than 0.05 as the candidate 

proteins25.  

For each ADR pair, proteins with direct interactions within the 

candidate proteins tend to have similar biological functions and 

induce similar phenotypic effects. STRING 9.0526 is used to identify 

the interaction relation between candidate proteins. STRING is a 

database of known and predicted protein interactions. The 

interactions include direct (physical) and indirect (functional) 

associations derived from four sources: genomic context, 

experiment, co-expression and previous knowledge. The interaction 

type was restricted to neighbor, database, and experiment with 

medium confidence 0.400. We filtered the independent proteins 

which were assumed to be low likelihood. Thus, the proteins with 

interactions were supposed to be the specific causative proteins of 

ADR pairs. 

(2.3) Function analysis of predicted protein set for each pair of 

ADRs We analysed the functional specificity of each ADR pair via 

Gene Ontology. We performed two kinds of enrichment: biological 

process (BP) and molecular function (MF). Each protein set was 

enriched on the GO terms using DAVID27. BP and MF were 

restricted to the GOTERM_BP_FAT and GOTERM_MF_FAT, 

respectively. 

(3) Results verification 

The verification process included two parts, text mining and disease 

classification. Firstly, it’s a true positive result if the relation 

between an ADR and protein exists in the published papers in the 

PubMed abstracts or in the disease related database such as DART 

and CTD. Secondly, we downloaded all the adverse outcome 

pathways (AOPs) of the predicted ADR related proteins from 

AOPwiki. Then all the adverse outcome pathways and adverse drug 

reactions were classified into different terms according to the ICD 

disease classification system. As the ADRs and AOPs both describe 

drugs or proteins adverse actions to body, both ADRs and AOPs 

were treated as disease terms and were manually classified according 

to the keywords in each ADR and AOP term. It’s a true positive 

result if the ADR and protein’s AOP were classified into a same 

disease term.  

 

Result 

1. Similar ADR pairs identification 

909 ADRs with a frequency of more than 1% were extracted 

from the SIDER database and formed 412686 pairs. The TC value of 

each ADR pair was calculated based on the drug co-occurrence. A 

higher TC value suggests a higher similarity between two ADRs and 

this pair is more likely to share the same causal proteins. 

Randomization was generated to reorder drugs to confirm the TC 

threshold of each pair of ADRs. Finally, 319 similar ADR pairs were 

significantly similar with P values less than 0.05 (additional file 1). 

We found that one ADR present in multiple similar ADR pairs. 

Therefore, we constructed an ADR-ADR network to investigate the 

number of each ADR composing similar ADR pairs. In this network, 

nodes represent ADRs and edges represent similar relations（figure 

2）. The degree of each ADR in the network is different, ranging 

from 1 to 23 (Figure 3). The larger degree an ADR has in the 

network, the more similar ADR pairs it belongs to. There are totally 

10 side effects (16.67%) with a degree larger than 10 such as 

paresthesias and oedema. And 15 side effects (25%) have the degree 

larger than 5 but less than 10, such as somnolence and indigestion. 

The ADR with the highest degree is dyspnea, which belongs to 23 

similar ADR pairs.  
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Figure 2 Network of single ADRs composing similar ADR pairs. 

The nodes represent ADRs and edges represent similar relations 

between ADRs. The node size represents the degree of node in the 

network. Some ADRs with high degree compose similar ADR pairs 

with many ADRs while some ADRs with low degree compose 

similar ADR pairs with only specific ADRs. 
 

Figure 3 Degree of each ADR in the network 

The degree of each ADR represents the number of ADRs with 

similar relations to it. All the single ADRs in the network are 

analysed and the degree distribution can be seen in Figure 3. The 

horizontal axis is the list of single ADRs and the vertical axis 

represents the degree of each ADR. 

2. Significant protein sets for each ADR pair 

Co-occurrence drugs were defined as drugs inducing either ADR 

in a similar pair. We obtained 683 drugs and their 814 related 

proteins (additional file 2). 8116 ADR pair-protein relations are 

significant after randomization. For a pair of ADR, we extracted 

proteins with direct interactions in PPI from its related proteins. 

Consequently, 1908 relations consisted of 153 ADR pairs and 301 

related proteins were significant in both statistic and biology 

(additional file 3). We used GO enrichment analysis28 to find the 

specific function of these specific proteins, and constructed the 

network consisting of ADR pairs and GO terms (figure 4). We found 

the functions of ADR pairs were completely overlapped or partially 

overlapped, which contained the same ADR. For example, vascular 

disorders, thoracic complications; gastrointestinal disorders, 

mediastinal disorders; gastrointestinal disorders, thoracic 

complications are three similar ADR pair. All these three similar 

ADR pairs are related with cysteine metabolic process, response to 

nitrosative stress and sulfur amino acid catabolic process. We used 

node size to indicate the degree of each node in the network. The big 

nodes in purple are ADR pairs involving broad biology activities, 

such as dizziness and hypotension, which suggests the complexity of 

this ADR pair’s pathogenesis. The big nodes in red are biology 

processes involved in many different ADR pairs, such as estrogen 

receptor activity and phosphodiesterase activity, and we found such 

biology processes are always involved in ADR pairs consisting of 

common ADRs rather than serious ones. For instance, 

phosphodiesterase activity is involved in 38 similar ADR pairs, and 

these ADR pairs mainly concentrate on the ADR of anorexia, nausea, 

vomiting and other common symptoms. Meanwhile, some functions 

with low degree only correlate with specific ADR pairs, such as the 

function of down regulation of smooth muscle contraction that only 

correlates with the ADR pair of nervousness and palpitation. The 

palpitation is a severe side effect which may cause arrhythmia and 

even heart failure. The smooth muscle contraction abnormal induced 

by drugs has been proved to be a main reason of palpitation29. The 

abnormal release of neurotransmitters induced by dysfunction of 

smooth muscle contraction can also cause nervousness30. 

All these findings suggest that some functions are involved in 

many ADRs, and they usually regulate multiple biology activities 

and therefore they always correlate with common ADRs. In contrary, 

some functions only correlate with specific ADRs, which are usually 

severe ADRs. These functions often regulate specific biology 

processes and severe ADRs occur when these specific processes are 

abnormal. 

 

Figure 4 The network of similar ADR pairs and functional 

annotations  

The purple and red nodes in the network represent ADR pairs and 

functional annotations, respectively. The node size represents the 

degree of each node in the network. So the big nodes in purple are 

ADR pairs involving various biology functions and big nodes in red 

are functions related with numerous ADR pairs. 
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3. Validation of the results 

Two methods were used in our validation. Firstly, we searched the 

relation between an ADR and a protein in PubMed and related 

databases. If the relation was reported in published literatures or 

databases, it could be treated as a positive result. Secondly, we 

mapped proteins onto adverse outcome pathway (AOPs) to 

investigate whether the protein and ADR have functional 

relationship. If an ADR and the protein related AOP were classified 

in the same disease category by international classification of 

diseases (ICD), this relation could be treated as a positive result. 

Detailed biological interpretation were further produced on some 

notable results. 

3.1 Text mining We utilized text mining to validate the results of 

ADR pairs from published literatures and databases. 80% of 1908 

significant ADR pair-protein relations were validated by text mining. 

The validation results were classified into three categories. In 22% 

of the results, both ADRs in a similar pair can be proved related with 

the predicted protein. In 58% of the results, either ADR can be 

proved to associate with the predicted protein. ADR pair-protein 

relations in the rest 20% are novel predictions which haven’t been 

researched or verified (additional file 4).  

In order to discover the influence of drug numbers to predicting 

accuracy, we analysed the correlation between sharing drug numbers 

and predicting accuracy (Figure 5). We found the more drugs a pair 

of similar ADRs shares, the higher prediction accuracy it reaches. 

 

 

Figure 5 The correlation between the number of drugs shared by two 

similar ADRs and the accuracy  

The horizontal axis indicates the intervals of accuracy and vertical 

axis indicates the number of drugs shared by two ADRs. The red 

curve indicates either ADR-protein relation in an ADR pair can be 

proved. The blue curve indicates that both ADR-protein relations in 

an ADR pair can be proved. 

3.2 Disease classification All the ADR terms and proteins related 

adverse outcome pathways were all classified according to the ICD 

system. Finally, in 812 (43%) of 1908 results both of the two ADRs 

were classified into the same disease classification with the predicted 

proteins’ AOPs. In another 620 (32%) results, either of the ADR 

were classified into the same classification with predicted proteins’ 

AOPs. In addition, 366 (19%) results were not verified because the 

proteins were failed to map onto AOPs. The rest 110 (6%) results 

were unverified or two ADRs belong to diverse disease 

classifications. (additional file 4) 

Integrating the text mining and disease classification result, 54% 

of predicted relations which present between both two ADRs and the 

protein were proved by either text mining or disease classification. 

And 5% of the relations between two ADRs and the protein were 

proved by neither of the two methods. The detailed verification ratio 

of each categories were shown in Table 1. 

Table 1 verification ratio of each predicted relation 

categories. 

categories 
text 

mining 

disease 

classification 

integra

tion 

both ADRs 

proved 
22% 43% 54% 

single ADR 

proved 
58% 32% 41% 

neither ADR 

proved 
20% 25% 5% 

 

3.3 Biology interpretation We further illustrated the three kinds of 

validated ADR pairs via biological interpretation, respectively. 

Taking anemia, anorexia （ C0002871, C0003123 ） as an 

example, we predicted 14 related proteins, in which 6 proteins (ADA

，CACNA1I，ESR2，CACNA1G，PDE4C，PDE4D) have been 

proved related to the two ADRs. We further analysed the biological 

mechanism of ADA inducing these two ADRs. Many literatures 

have showed that anemia and anorexia always occur concomitantly 

in clinic31. In our findings, anemia and anorexia is a pair of similar 

ADRs (TC=0.86) and they share 17 approved drugs (Figure 6(A)), 

12 of which are classified by ATC as Immunomodulatory drugs. The 

rest drugs are two anti-infection drugs, two nervous system drugs 

and one antiparasitic drug. It should be pointed that, as for the 17 

related drugs, even though they have diverse indications, most of 

them target ADA. This gene encodes adenosine deaminase that 

catalyzes the hydrolysis of adenosine to inosine. Raised levels of this 

enzyme have been proved to associate with congenital hemolytic 

anemia32. Abnormity of this enzyme causes immunodeficiency 

disease, in which both B and T lymphocytes are impaired. Studies 

also found that anorexia is associated with weight loss in patients 

with acquired immune deficiency syndrome33. Therefore, when 

drugs perturb ADA’s function, abnormal adenosines metabolite 

makes damage to T and B immune cells, and eventually cause 

immune system disease with the symptom of anemia and anorexia. 

Though reported in clinical adverse reaction monitoring center 

and literatures, many ADRs’ molecular mechanisms are still unclear. 

In 58% of our predictions, only one ADR in a similar pair can be 

validated. These related proteins can be inferred as related proteins 

for the other ADR due to the similar mechanism within the same 

ADR pairs. 
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Figure 6 category annotations of drugs and proteins  

There are two kinds of nodes in Figure 6, drugs and proteins. Edge 

in blue represents the interaction between proteins and edge in 

yellow represents the relation between drugs and proteins. All drugs 

can be classified to different categories according to the ATC code. 

And proteins can also be divided to several categories. (A) Drugs 

and proteins of anemia, anorexia. (B) Drugs and proteins of anxiety, 

somnolence. (C) Drugs and proteins of indigestion, dyspnea. 

ADRA2A was predicted to be the causative gene of anxiety and 

somnolence (C0003467, C2830004) (Figure 6(B)). Adrenine and its 

receptors (ADRAs) play crucial roles in brain development and 

regulation of mood34. The relation between ADRA2A and 

somnolence hasn’t been researched yet. However, dysfunction in 

neurotransmitter and hormone signal contribute to this disease 

process35. Adrenergic receptor ADRA2A impacts on the 

neurotransmitter content in central nervous system. Therefore, drugs 

targeting this protein will induce various neural symptoms such as 

somnolence. 

There are also 20% of the ADR pair-protein relations with no 

evidence. These relations are significant in both statistics and 

biology. We found biological correlation between the predicted 

protein and ADR pair using NCBI GENE database (or molecular 

function from GO term). 

Taking the indigestion, dyspnea (C0013395, C0013404) for 

instance, records from clinic have showed patients with 

gastrointestinal symptoms such as indigestion may also have 

pulmonary symptoms like dyspnea36. And we predicted 10 proteins, 

containing five 5-HT receptors, three DA receptors, one cholinergic 

receptor and one adrenergic receptor. Only DAD2 and HTR2C can 

be proved inducing dyspnea. Even though the other genes haven’t 

been validated to cause this pair of ADRs, we found all these genes 

participate in the biological process of indigestion and dyspnea. 

These proteins are important neurotransmitter mainly 

distributing on the gastrointestinal and tracheal smooth muscle such 

as HTRs and cholinergic receptor 37. DA receptors mainly distribute 

in the coronary vascular, gastrointestinal vascular37. These proteins 

regulate the bronchial caliber and blood flow in cardiovascular and 

gastrointestinal tracts. When drugs target these proteins, indigestion 

and dyspnea may occur as a result of the caliber and blood flow 

change in gastrointestinal tracts and bronchus. 

Discussion 

In clinical practices, we find some ADRs are not independent but 

correlating with each other. Hence, the potential relation between 

ADRs is an important aspect to consider when studying the 

mechanism of ADR occurrences. Nevertheless, the studies on this 

direction remain rare and their related proteins remain undefined, 

which inhibits the researches of these ADRs occurrence mechanism, 

failing to prevent and treat these ADRs. 

In this paper, we integrated sources of drug-protein and drug-

ADR relations. Causative proteins were predicted according to the 

hypothesis that ADRs occur not relying on the isolated proteins but 

on the proteins with interactions9. We predicted causative proteins of 

similar ADR pairs based on three layers information: i) The drug co-

occurrence between a pair of ADRs. ii) The correlation between a 

related protein and an ADR pairs based on the co-occurrence of 

drugs. iii) The interaction between these proteins within the protein-

protein interaction (PPI) network. Randomization was used to 

identify significant ADR pair-protein relations. All the relations with 

P value less than 0.05 were significant which suggests that the 

relation between ADR pair and proteins was not randomly 

generated. Then we identified the protein set in which proteins 

interact with each other as predicted proteins set.  

This study predicted similar ADR pairs based on drugs co-

occurrence, which lowered the promiscuity of drug chemical 

structure, highlighted the common substructural features of the co-

occurrence drugs. We also predicted ADR pairs’ causative proteins 

according to the interactions among them, which further highlights 

the linkage characteristics among proteins in certain functions. 

Compared with the results of single ADR related proteins prediction 

and the previous methods
2, 10

, the outcome turned out better that the 

accuracy (65%) of single ADRs equals with previous studies and the 

accuracy of ADR pairs reached 80%, which suggests the 

forementioned two layer information (the common substructural 

features of the co-occurrence drugs and the linkage characteristics 

among proteins in certain functions) enhance the performance in 

similar ADR pair related proteins prediction .  

Functional enrichments found that the functions of multiple 

similar ADR pairs containing the same ADR are involved identical 

or similar biology functions. The similar molecular basis of multiple 

ADR pairs explains the reason that some ADRs occur 

simultaneously in clinical practices.  

We also found the functional differences between a single ADR 

and the ADR pairs including the single ADR such as back pain. 

Back pain induced by 219 drugs is related with 10 biology functions 

(additional files 4). When back pain composes similar ADR pairs 

with abdominal pain, indigestion, myalgia, sinusitis, and arthralgias, 

they are all associated with benzodiazepine receptor activity, and the 

drug sets inducing back pain and the five ADRs stated above are 

similar. This phenomenon further suggests that drug co-occurrence 

highlights the drugs’ common substructures inducing similar ADR 

pairs via similar mechanism. (Figure 7) 
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Figure 7 network of the function of back pain and its similar ADRs  

The network consist of 9 ADRs (in red) similar to back pain and 

drugs (in green) shared by these ADR pairs. The function of 

benzodiazepine receptor activity is enriched using the predicted 

proteins from these ADR pairs. Edges in yellow indicate the relation 

between an ADR and the function. Edges in blue represent the 

relation between drugs and ADRs. Same drug set is shared by these 

ADRs with relation to the benzodiazepine receptor activity. 

It’s noteworthy that some ADRs only occur in specific 

populations which are mostly severe adverse effects without definite 

mechanism. Recent studies tend to explain these ADRs at the genetic 

level such as mutation and epigenetic38, 39. As we filtered out the 

influences of rare variance and epigenetic effect via limiting the 

frequency (frequency > 0.01) of ADRs in SIDER, our method is not 

applicable to predict the related proteins of these ADRs resulting 

from the mutation and epigenetic. In the following study, we may 

focus on the relation between ADR and gene alteration. 

Conclusions 

Similar side effects always occur concomitantly in clinic and 

compromise therapeutic efficacy. These ADRs share the similar 

biological processes and pathways, therefore, identifying the causal 

protein shared by both ADRs will uncover the molecular basis of 

ADR pairs occurring concomitantly and be helpful to better prevent 

and treat ADRs by targeting their sharing biological process and 

pathway.  

In this paper we predict potential related proteins of ADR pairs 

based on three layers of information. This proposed method is 

expected to be helpful in other ways. Firstly, we can identify the 

related proteins of both single ADR and similar ADR pairs. 

Secondly, the causal proteins shared by two similar ADRs may be 

regarded as the biomarker or a new therapeutic target. Thirdly, drugs 

targeting the causal proteins may induce the similar ADRs 

occurrence, thus these drugs should be used more carefully or 

choose alternative medicine. Identifying the causal proteins of 

similar ADRs provides a new insight to elucidate the mechanism of 

occurring concomitantly and optimize therapeutic medicine choice. 
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