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Abstract (250 words max):  21	
  

As genome-scale metabolic models become more sophisticated and dynamic, 22	
  

one significant challenge in using these models is to effectively integrate increasingly 23	
  

prevalent systems-scale metabolite profiling data into them. One common data 24	
  

processing step when integrating metabolite data is to smooth experimental time course 25	
  

measurements: the smoothed profiles can be used to estimate metabolite accumulation 26	
  

(derivatives), and thus the flux distribution of the metabolic model. However, this 27	
  

smoothing step is susceptible to the (often significant) noise in experimental 28	
  

measurements, limiting the accuracy of downstream model predictions. Here, we 29	
  

present several improvements to current approaches for smoothing metabolite time 30	
  

course data using defined functions. First, we use a biologically-inspired mathematical 31	
  

model function taken from transcriptional profiling and clustering literature that captures 32	
  

the dynamics of many biologically relevant transient processes. We demonstrate that it 33	
  

is competitive with, and often superior to, previously described fitting schemas, and may 34	
  

serve as an effective single option for data smoothing in metabolic flux applications. We 35	
  

also implement a resampling-based approach to buffer out sensitivity to specific data 36	
  

sets and allow for more accurate fitting of noisy data. We found that this method, as well 37	
  

as the addition of parameter space constraints, yielded improved estimates of 38	
  

concentrations and derivatives (fluxes) in previously described fitting functions. These 39	
  

methods have the potential to improve the accuracy of existing and future dynamic 40	
  

metabolic models by allowing for the more effective integration of metabolite profiling 41	
  

data.  42	
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Table of Contents entry 43	
  

We develop several methods to improve the estimation of metabolite concentrations 44	
  

and accumulation fluxes from noisy time-course data, including use of a sigmoidal 45	
  

impulse function and a resampling-based approach. 46	
  

 47	
  

   48	
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Introduction  49	
  

Genome-scale metabolic modeling is an area of research with the potential for 50	
  

significant impact on many biomedical and biotechnological applications. Such models 51	
  

have been used to identify drug targets that specifically inhibit cancer proliferation1, to 52	
  

identify genomic manipulations that can facilitate production of valuable chemicals2, and 53	
  

to uncover and characterize metabolic pathways even in well-understood models3. This 54	
  

approach entails using metabolic reconstructions that include all of the cataloged 55	
  

metabolic reactions in an organism (i.e., genome-scale reconstructions) in a defined 56	
  

mathematical modeling framework.  57	
  

Effectively modeling biological systems at the genome scale calls for 58	
  

measurements and data also at the genome scale. Metabolomics is the systems-scale 59	
  

measurement of the small molecule intermediates in metabolism (the metabolites), a 60	
  

field that has experienced rapid growth in the past decade. Modern analytical 61	
  

technology enables the characterization of metabolic profiles in cells with increasingly 62	
  

fine resolution; this provides relevant information to begin to replace steady state 63	
  

assumptions on a genome-wide scale. However, to date, very few genome-scale 64	
  

metabolic models have attempted to integrate metabolite profiling information, in 65	
  

contrast to the prominent use of transcriptomic, fluxomic, and proteomic data in such 66	
  

models4-8. In the few cases where metabolomics data have been integrated into these 67	
  

models, the application of the data has typically been in setting thermodynamic 68	
  

constraints and estimating free energies rather than in more direct applications9, 10.  69	
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The primary reason for this omission is that most metabolic models using 70	
  

genome-scale metabolic reconstructions assume the cell or organism to be at a steady 71	
  

state, typically to simplify the model framework and associated computational 72	
  

complexity. While models exploiting such an assumption have shown great utility, their 73	
  

validity and potential for extrapolation have an intrinsic limit: while the steady state 74	
  

assumption may be true over short time periods, it ultimately is violated once varying 75	
  

forms of metabolic regulation begin to exert their influence.  76	
  

The use of detailed ordinary differential equation (ODE) models would allow for 77	
  

the capture of dynamic behaviors and regulation, but application of ODE models on a 78	
  

genome-wide scale is not currently feasible due to (among other issues) the many 79	
  

unknown reaction rate and thermodynamic parameters11-13, each of which would require 80	
  

extensive effort to be ascertained experimentally. As such, significant recent effort has 81	
  

focused on softening the steady state assumption in genome-scale metabolic modeling 82	
  

without requiring a full ODE model of the entire metabolic system5, 6, 14. These efforts 83	
  

hold great promise for future biotechnological applications, and they are the motivation 84	
  

for the work presented here.  85	
  

Use of metabolomics data is a promising approach for bridging the gap between 86	
  

the steady state assumption and the dynamic intracellular reality. This data can be used 87	
  

to estimate the accumulation or depletion “fluxes” of certain metabolites in a system, 88	
  

which can then be used in place of the steady state assumption so common in genome-89	
  

scale metabolic modeling. This approach has been described and implemented in 90	
  

multiple prior works15-19. The most common approach to estimating these accumulation 91	
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fluxes from metabolite data is to first smooth the data or fit it to a specific mathematical 92	
  

function, and then use the resulting data or function to determine the flux of that 93	
  

metabolite at any given time (potentially between measured time points). The accuracy 94	
  

of these estimates has an obvious impact on the accuracy of the overall model, but 95	
  

effective estimation of these fluxes is a non-trivial problem given the noise inherent to 96	
  

measurement of metabolite levels and the limitations of the current methods for flux 97	
  

estimation15. 98	
  

One of the more thorough treatments of the problem of flux estimation from 99	
  

metabolite data for metabolic modeling was included in work by Ishii et al.18 While the 100	
  

main focus of that work was on developing a broader metabolic model, data smoothing 101	
  

and flux estimation were integral parts of the data processing for the algorithm. They fit 102	
  

a variety of polynomial and rational functions to simulated metabolite data and, on a 103	
  

metabolite-wise basis, selected as the representative function the one that minimizes 104	
  

the fitting error (accounting for the number of free parameters to minimize over-fitting). 105	
  

Of note is that none of the candidate fitting functions are derived from or selected based 106	
  

on biological insight. Additionally, as we show later, the fitting of an arbitrary dataset can 107	
  

yield unphysical results. Splines, another common alternative, are sensitive to noise and 108	
  

outliers—this is particularly problematic when the derivative of the concentration (the 109	
  

accumulation flux) is the important quantity being estimated. 110	
  

Here, we present two approaches for improving the estimation of accumulation 111	
  

fluxes from metabolite time series data. First, we investigate the use of a biologically 112	
  

reasonable and biologically-inspired sigmoidal impulse function20, 21 as an effective and 113	
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perhaps generalizable alternative to the fitting functions previously used. This functional 114	
  

form emulates behavior observed in known biological systems, and our work represents 115	
  

the first time that it has been applied in the context of metabolic modeling. Second, we 116	
  

investigate whether a resampling-based approach to smoothing and fitting data might 117	
  

yield more accurate concentration profile fits and derivative (flux) predictions than the 118	
  

previously used approach. In the course of these investigations, we also identified the 119	
  

importance of enforcing constraints on fitting equation parameter values to prevent the 120	
  

selection of unphysical solutions. Each of these approaches improves the accuracy of 121	
  

flux estimation from metabolite time series data, providing more reliable results to be 122	
  

integrated into the larger metabolic modeling framework with reasonable computational 123	
  

expense. 124	
  

 125	
  

Methods 126	
  

Fitting functions 127	
  

Eight functions, shown in Table 1, were considered as candidates to best fit the 128	
  

time series metabolite data. The first seven were used by Ishii et al.18. Four of these 129	
  

were polynomials, of order two to five. The other three were rational functions, 130	
  

composed of a first, second, or third order polynomial numerator and a first or second 131	
  

order polynomial denominator. The eighth function was the sigmoidal impulse, which 132	
  

was first presented in the context of filtering and clustering gene expression profiles20, 21; 133	
  

it is here applied for the first time in the context of metabolic models. Unlike the other 134	
  

functions, it has a biologically relevant interpretation: a two-phase transition from one 135	
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steady state to a (potentially new) steady state through an intermediate state. Its 136	
  

parameters directly correspond to features of this trajectory, representing: transition time 137	
  

delays; the initial, intermediate state, and steady-state metabolite levels; and the 138	
  

sharpness of the transitions 139	
  

 140	
  

Synthetic Reference Data 141	
  

We tested our new methods using two different ODE models of central carbon 142	
  

metabolism taken from the literature, which were used to generate noise-free “gold 143	
  

standard” synthetic reference data for our analyses. These models were selected 144	
  

because their dynamics are believed to reasonably represent in vivo metabolic 145	
  

dynamics; the fact that they are not genome-scale does not detract from their relevance 146	
  

as a model system, as the data smoothing/fitting step of flux estimation is independent 147	
  

of the scale of the model. 148	
  

The first model simulates central carbon metabolism in E. coli11. While the model 149	
  

includes 18 metabolites, only the 17 metabolites with substantial dynamics were 150	
  

included in our analysis. (As implemented, metabolite 1 was a fixed value.) The second 151	
  

model simulates central carbon metabolism in S. cerevisiae22, comprising 22 152	
  

metabolites (21 of which had substantial dynamics, and were included in our analysis—153	
  

changes in metabolite 17 were several orders of magnitude smaller than the 154	
  

concentration). While this model was initially presented in the context of stable 155	
  

concentration oscillations, the initial conditions we used for our simulations do not 156	
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produce oscillatory behaviors. To validate our implementation of the model, we used it 157	
  

to reproduce Fig. 6 from Hynne et al. (See Fig. S1)22.  158	
  

We obtained curated SBML code for both models from the BioModels Database, 159	
  

and solved systems of ODEs using the LSODA method in the Time Course module of 160	
  

Copasi 4.14, Build 89, with the default tolerances and parameters23, 24. For each model, 161	
  

we solved the system of ODEs using the initial conditions specified in Table S1, derived 162	
  

from those previously reported18, to simulate a perturbation in glucose concentration. As 163	
  

previously described18, we used a perturbation from 0.0556 mM to 1.67 mM for 164	
  

“Extracellular Glucose” in the E. coli model, and a perturbation from 2.5 mM to 5.0 mM 165	
  

for “Mixed flow glucose” in the S. cerevisiae model. For the E. coli model, we fixed the 166	
  

concentrations of ATP, ADP, AMP, NAD(H), and NADP(H) at their initial values, as was 167	
  

done previously. The resulting gold-standard data contained concentrations at intervals 168	
  

of 0.01 seconds for the E. coli model and 0.0025 minutes and for the S. cerevisiae 169	
  

model. 170	
  

To generate data for parameter estimation, simulated time points were sampled 171	
  

at 1 second intervals from 0 seconds to 20 seconds for the E. coli model, and at 0.25 172	
  

minute intervals from 0 minutes to 15 minutes for the S. cerevisiae model. The selection 173	
  

of different sampling rates was to be consistent with the approach taken by Ishii et al. 174	
  

for the E. coli  model, but to account for the different time scales of the dynamics in the 175	
  

two mathematical models as observed in the BioModels implementations while still 176	
  

keeping the number of samples used for each respective model the same as that used 177	
  

by Ishii et al. By keeping the number of samples the same as in previous work for each 178	
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respective model, our fitting results would be most directly comparable. We used a first-179	
  

order centered finite difference approximation on the ODE output to estimate the 180	
  

derivatives in the synthetic reference data for each metabolite, 𝐶!. 181	
  

 182	
  

Synthetic Noisy Data 183	
  

We generated sets of noisy metabolite time courses from this synthetic reference 184	
  

data. For each metabolite 𝐶!, we generated a noisy time course by adding noise at each 185	
  

sampled time point, 𝑡!, to the true value at that timepoint, 𝐶!(𝑡!), by drawing 5 simulated 186	
  

measurements from a normal distribution, 𝑁!,!   ~  (𝐶! 𝑡! ,𝐶𝑜𝑉 ∙ 𝐶!(𝑡!)), and then taking 187	
  

the mean of those 5 measurements, called 𝐷! 𝑡! . We refer to each individual noisy time 188	
  

course as 𝐷!,!. This approach paralleled the common experimental approach of taking 189	
  

biological replicate measurements and then collapsing them into one value for analyses. 190	
  

Here, we set the Coefficient of Variation (𝐶𝑜𝑉) to 0.15, a reasonable value for many 191	
  

mass spectrometry-based metabolite profiling approaches. The same noisy values were 192	
  

used for all functions, allowing for direct comparison of the performance of each 193	
  

function. In total, 500 noisy time courses were generated for each metabolite in each 194	
  

model for the Direct Fit Method (described below), while an additional 50 time courses 195	
  

were used as the base data for the Resampling Method (described below). 196	
  

 197	
  

Direct Fit Method 198	
  

We refer to a basic nonlinear least squares fitting of parameters as the “Direct 199	
  

Fit” method for the purposes of this work. In this approach, we directly fitted each 200	
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function of interest to each noisy time course, 𝐷!,!, to produce the smoothed time 201	
  

course estimate, 𝑓!,!,!. Best-fit parameters for a given function were selected by 202	
  

minimizing the root-mean-square-displacement (RMSD) of the function to the data, 203	
  

defined as 204	
  

𝑅𝑀𝑆𝐷!,!,! =
𝐷!,! 𝑡! − 𝑓!,!,! 𝑡!

!

𝑛 − 𝑝!!

 

where 𝑖 represents a specific metabolite, 𝑗 represents a function being fitted, 𝑘 205	
  

represents an individual time point, 𝑚 represents the use of a specific noisy data set, 𝑛 206	
  

is the number of sampled time points in the time course 𝐷!,!, and 𝑝! is the number of 207	
  

parameters being fit for function 𝑓!. The denominator reflects a penalty on the number of 208	
  

parameters for a function, to help guard against over-fitting when comparing different 209	
  

functions25. 210	
  

Polynomials were fit using the built-in polyfit() function in MATLAB. Rational 211	
  

functions and the impulse function were fitted using fmincon() in MATLAB to allow for 212	
  

bounds on the parameter space, as described in the Supplementary Methods (found in 213	
  

Supplementary File 1). To improve the likelihood of finding globally optimal parameter 214	
  

sets for the rational and impulse functions, we selected optimal parameters from 20 215	
  

solver runs seeded with different sets of initial conditions (see Supplementary Methods). 216	
  

 217	
  

Resampling Method 218	
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In an approach we refer to as the “Resampling Method”, we took advantage of 219	
  

the stabilizing effect of calculating the median of fits to multiple noisy datasets to 220	
  

produce more robust estimates of metabolite concentrations and derivatives. 221	
  

Starting with the noisy time courses that model experimental data (described 222	
  

above), we generated resampled time courses by repeating the procedure used to 223	
  

produce the original noisy time courses, but using a noisy time course 𝐷!,! as input 224	
  

rather than the true metabolite concentration 𝐶!. We again used a fixed 𝐶𝑜𝑉 of 15% for 225	
  

this procedure; however, in practice, a dataset-specific and/or metabolite-specific 𝐶𝑜𝑉 226	
  

could be estimated and use in place of the fixed 𝐶𝑜𝑉. We generated 250 such 227	
  

resampled noisy time courses, 𝑅!,!,!, for each initial noisy time course 𝐷!,!.  228	
  

We used the Direct Fit Method as described above to generate a nominal 229	
  

parameter solution from each base noisy time course 𝐷!,!. Then, for each resampled 230	
  

time course 𝑅!,!,! derived from that noisy time course, we fit the function of interest 231	
  

(once) using the parameter solution from the Direct Fit Method as the initial guess. 232	
  

Parameter fitting was performed as described above. 233	
  

We then used the resample-derived parameters to calculate concentration and 234	
  

derivative trajectories for each resampled time course 𝑅!,!,!, and calculated the median 235	
  

value across all resampled time courses at the time points of interest (either the original 236	
  

or interpolated time points, as described below). The output of the Resampling Method 237	
  

was this list of concentration and derivative medians. 238	
  

 239	
  

Performance Calculations 240	
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The performance of each fitting function using each method (direct and 241	
  

resampling) on both concentration and derivative predictions was quantified for each 242	
  

metabolite and for each base noisy time course, 𝐷!,!. Concentration accuracy is useful 243	
  

for assessing the effectiveness of smoothing, while derivative accuracy is more relevant 244	
  

for downstream applications in estimating flux distributions17. Accuracy for each noisy 245	
  

time course 𝐷!,! was calculated using an adjusted RMSD between the synthetic 246	
  

reference data, 𝐶!, and the predicted value for a given function, parameter set, and 247	
  

noisy data set, 𝑓!,!,!. Specifically, we calculate accuracy as 248	
  

𝑅𝑀𝑆𝐷!,!,! =
𝐶! 𝑡! − 𝑓!,!,! 𝑡!

!
!

𝑛! ⋅ 𝑆 ⋅ 𝜇
 

where 249	
  

𝑆 =
𝑓!,!,! 𝑡!

!
!

𝑛  

𝜇 =
𝑛 − 𝑝!
𝑛  

and 𝑛! is the number of time points used in assessing predictive accuracy, 𝑆 is a scaling 250	
  

factor facilitating comparison and visualization by controlling for differences in the 251	
  

magnitude of different metabolites, and 𝜇 is a penalty factor scaling with the number of 252	
  

parameters in a function and the number of data points used to fit the function. For 253	
  

calculating derivative accuracy, the derivative values 𝑓!,!,!! 𝑡!  and 𝐶!! 𝑡!  are substituted 254	
  

in place of 𝑓!,!,! 𝑡!  and 𝐶! 𝑡! . 255	
  

For these performance calculations, we more densely sampled metabolite 256	
  

concentration and derivative time courses to provide a more accurate representation of 257	
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interpolation performance, relevant to the general case of dynamic genome-scale 258	
  

metabolic modeling. For each model, results were sampled at time steps a factor of ten 259	
  

smaller than those used for the fitting data, resulting in 𝑛! = 201 interpolated points for 260	
  

the E. coli model and 𝑛! = 601 interpolated points for the S. cerevisiae model (these 261	
  

sets included the original sampled time points). 262	
  

We ranked the functions’ performance and averaged these ranks to provide a 263	
  

quantitative overall comparison of each function. We ranked the performance of each 264	
  

function for each noisy time course (𝐷!,!) of each metabolite and averaged the ranks for 265	
  

each function across all of these time courses. In both cases, a harmonic mean was 266	
  

used to average ranks, emphasizing the relative importance of comparing functions that 267	
  

perform strongly in some cases; in this way, the difference between rank 1 and rank 2 268	
  

was weighted more heavily than the difference between, for example, rank 4 and rank 5.  269	
  

This averaged rank approach was used to compare performance of fitting 270	
  

functions for the Direct Fit method only and for the Resampling Method only, as well as 271	
  

to compare performance between these two methods for all of the different fitting 272	
  

functions. 273	
  

The MATLAB codes used to generate gold standard datasets, fit parameter 274	
  

values, calculate metrics, and plot metrics, are collectively available in Supplementary 275	
  

File 2. 276	
  

 277	
  

Results 278	
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Two small-scale ODE metabolic models describing E. coli and S. cerevisiae 279	
  

metabolism were used to generate synthetic reference data for the assessment of new 280	
  

methods for concentration and flux inference from metabolite data. Using this synthetic 281	
  

reference data as a basis, noisy time courses were generated to represent the noisy 282	
  

data that typically result from metabolite profiling experiments. Eight different functions, 283	
  

including four polynomials, three rational functions, and one impulse model function (as 284	
  

described in the Methods section and in Table 1), were used as candidate fitting 285	
  

functions for these noisy metabolite time course data. Two different approaches were 286	
  

used to fit metabolite concentration curves to the noisy synthetic datasets generated 287	
  

from the original ODE models. 288	
  

The Direct Fit Method, described in the Methods section, was a standard fitting of 289	
  

functions to given experimental data. The approach used to assess the effectiveness of 290	
  

the Direct Fit Method for each of the candidate fitting functions is outlined in Fig. 1. 291	
  

Briefly, after multiple noisy time courses were generated from the synthetic reference 292	
  

data, each candidate function was fitted to each of the noisy time courses. Each of 293	
  

these fits was then assessed for their performance at recapitulating and interpolating the 294	
  

original data; these assessments were performed on both the fitted concentrations and 295	
  

the derivative values that resulted from those fitted concentrations. 296	
  

The Resampling Method, also described in the Methods section, involved fitting 297	
  

multiple noisy datasets generated from a single experimental (or noisy synthetic) 298	
  

dataset. By taking the median of these multiple fits, susceptibility to noise and outliers in 299	
  

the original experimental data was reduced, providing more robust estimates of 300	
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metabolite concentrations and derivatives. The approach used to assess the 301	
  

effectiveness of the Resampling Method for each of the candidate fitting functions is 302	
  

outlined in Fig. 2. Briefly, multiple “base” noisy time courses were generated from the 303	
  

original model to represent experimental measurements; these were fitted using the 304	
  

Direct Fit Method for comparison. In parallel, additional noisy time course profiles were 305	
  

generated (“resampled”) from each of these base noisy time courses and subsequently 306	
  

fitted using the methods described for the Direct Fit Method—yielding a fitted 307	
  

concentration for each resampled noisy time course for a given base noisy time course. 308	
  

For each base noisy time course, the median per time point of the fitted profiles (or 309	
  

profile derivatives) for the resampled noisy time courses was then used to determine the 310	
  

overall fitted profile. This profile, along with the Direct Fit Method profile, was compared 311	
  

to the original synthetic reference data to assess prediction accuracy. 312	
  

 313	
  

Parameter constraints improved the behavior of fitted results 314	
  

Fig. 3 provides representative examples of performance for different candidate 315	
  

fitting functions using the Direct Fit Method and the E. coli model. Polynomial functions 316	
  

provided computationally efficient data smoothing with little susceptibility to noise, but 317	
  

had limited abilities to qualitatively capture the dynamics present in the E. coli model. 318	
  

For certain sets of noisy data, the rational functions or the impulse function returned 319	
  

unphysical or unreasonable results. This result highlighted a shortcoming in the basic 320	
  

implementation of the rational functions and prompted the development of additional 321	
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constraints for use in the optimization step of fitting the rational functions and the 322	
  

impulse function.  323	
  

We observed that for approximately 29% of noisy datasets, the R22 rational 324	
  

function produced asymptotic behavior, as shown in Fig. 3D. The frequency of 325	
  

asymptote occurrence varied significantly across the different metabolites in the model, 326	
  

as shown in Fig. S3A. The source of these asymptotes was selection of “optimal” 327	
  

parameters such that the polynomial in the denominator of R22 had a root over the time 328	
  

range of the data. Technically, such parameter selections would be optimal based on 329	
  

the RMSD objective function, since the RMSD only considers the ability of the function 330	
  

to match the data provided for fitting. However, such selections lead to clearly 331	
  

unphysical profiles at interpolated points that would confound any efforts to use such 332	
  

fitted functions in genome-scale metabolic simulations. Accordingly, we constrained the 333	
  

RMSD optimization for all rational functions (as described in detail in the Supplementary 334	
  

Methods, Fig. S3, and Table S4) such that parameters could not be selected that would 335	
  

cause a zero in the denominator over the time range of the data. Fig. 3E shows the 336	
  

trajectory of R22 after adding additional constraints to the allowed parameter values in 337	
  

rational functions. However, this solution does not protect against near-asymptotic 338	
  

behavior in R22, where the denominator approaches but does not reach zero; Fig. 3F 339	
  

depicts such a case using a different set of noisy data for the same metabolite. 340	
  

Nonetheless, the results in Fig. 3E demonstrate significant improvement upon the 341	
  

results from Fig. 3D with no parameter constraints. 342	
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The impulse function exhibited a similar phenomenon, insofar as it yielded results 343	
  

that were technically correct based on the RMSD optimization function but were 344	
  

physically unreasonable. As depicted in Fig. 3B, the impulse function sometimes 345	
  

produced sharp shifts in concentration, which translated to sharp spikes in the derivative 346	
  

trajectory. In addition, we noticed that our parameter-fitting solver was prone to getting 347	
  

stuck in local minima when the resulting time delay parameters were outside the time 348	
  

span of the data. These observations led us to implement an additional parameter 349	
  

constraint strategy described in more detail in the Supplementary Methods.  350	
  

Briefly, one fixed constraint and two new adjustable optimization parameters 351	
  

were created that were used to constrain the possible parameter space. Since any 352	
  

arbitrary dataset would not provide evidence for a sigmoidal shift outside of the time 353	
  

range of the data, we constrained the possible sigmoidal response times to only be 354	
  

within the time range of the data. We then defined two parameters, hf and bf, to further 355	
  

constrain the parameter space based on the data. Since an arbitrary dataset would not 356	
  

provide evidence for initial steady state, intermediate state, and final steady state levels 357	
  

far outside of the range of the measured metabolite concentrations, the deviation of 358	
  

function values above the maximum and below the minimum measured values was 359	
  

constrained to be no more than hf times the range of the metabolite data (with an 360	
  

additional non-negativity constraint). Since an arbitrary dataset would not provide 361	
  

evidence for concentration changes at a higher frequency than that of the sampling 362	
  

frequency, sharp transitions between time points are unlikely to be realistic. Thus, the 363	
  

steepness of the sigmoidal shift was constrained to be less than a value proportional to 364	
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the range of the data divided by the time difference between data points, with bf as the 365	
  

proportionality constant. 366	
  

Using hf=0.1 and bf=0.5 resulted in more realistic profiles like those shown in Fig. 367	
  

3C. Importantly, in addition to the direct physical interpretation of these, the results of 368	
  

the parameter fitting are not highly sensitive to small changes in hf and bf (see Fig. S4), 369	
  

and as a result the values of hf and bf that we used were generalizable to both model 370	
  

systems even though they were selected only based on their performance for the E. coli 371	
  

model. 372	
  

 373	
  

The impulse model consistently fits metabolite data with low error 374	
  

To quantitatively assess the effectiveness of the candidate fitting functions using 375	
  

the Direct Fit Method in the E. coli model, we generated 500 noisy time course data sets 376	
  

for each of the 17 metabolites. The parameters resulting from fitting each noisy time 377	
  

course were used to calculate concentration and derivative trajectories, with the 378	
  

corresponding performance accuracy calculated and averaged as described in the 379	
  

Methods section. The results of these calculations are summarized in Table 2, which 380	
  

presents the averaged ranks for each function and each metric. Fig. 4A and 4B provide 381	
  

a detailed quantitative comparison of each fitting function. The impulse function, I, 382	
  

showed the best rank averages for accuracy in both concentration and derivatives, and 383	
  

was almost always the best-performing function across all of the metabolites. 384	
  

The notable exceptions to the superior performance of the impulse function were 385	
  

on Metabolites 12 and 18. Fig. 5 summarizes the performance of the impulse function 386	
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and an average fitting function, P4, for Metabolite 12, with representative fitted profiles in 387	
  

Fig. 5A and 5B, and a direct comparison between the performance of P4 and I in Fig. 388	
  

5C. P4 consistently performed better than I. However, as is clear from Fig. 5A and 5B, 389	
  

the total change in metabolite level was smaller than the expected range of variability of 390	
  

experimental measurements. Given the sparsity of samples, this metabolite’s profile is 391	
  

likely essentially unidentifiable, and so the performance of the different functions is likely 392	
  

based only on general trends of the functional forms near the ends of the time range, 393	
  

rather than any reliably accurate fitting. 394	
  

 395	
  

The Resampling Method can improve fitting and predictions in the E. coli 396	
  

model 397	
  

To quantitatively assess the performance of the Resampling Method in the E. coli 398	
  

model, we generated 50 noisy time courses from the synthetic reference data for each 399	
  

of the 17 metabolites, and for each noisy time course, an additional 250 resampled 400	
  

noisy time courses. For each noisy and resampled time course, each function was fitted 401	
  

as described in the Methods, and the resulting Direct Fit or Resampling Method 402	
  

trajectories used to calculate the performance metrics. The overall results are shown in 403	
  

Table 3. Results jointly ranking the performance of functions across both the Direct Fit 404	
  

Method and the Resampling Method are shown in Table 4. The Resampling Method 405	
  

had the greatest impact on the ranking of the rational function R22, resulting in it being 406	
  

similar in accuracy and consistency to the impulse function, I. This consistently good 407	
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performance is also evident in Fig. 4C and 4D, which provide a detailed quantitative 408	
  

comparison of each fitting function.  409	
  

The impacts of the Resampling Method varied across the different types of 410	
  

functions; representative graphs are presented in Fig. 6, with a complete summary 411	
  

provided in Table 4. Polynomial functions showed little to no change in results from 412	
  

using the Resampling Method, while rational functions show moderate to noticeable 413	
  

benefit. The impulse function benefited in some cases as well. Across all functions, use 414	
  

of the Resampling Method only infrequently caused decreased performance, and 415	
  

typically with very small changes relative to the magnitude of the error. 416	
  

 417	
  

S. cerevisiae model results show similar trends 418	
  

We then quantitatively assessed the performance of all candidate fitting functions 419	
  

using both the Direct Fit Method and the Resampling Method in the S. cerevisiae model. 420	
  

We generated 500 noisy time courses for each of the 21 metabolites for use in the 421	
  

Direct Fit method. For use in the Resampling Method we generated 50 base noisy time 422	
  

courses for each of the 21 metabolites, along with an additional 250 resampled noisy 423	
  

time courses for each base noisy time course. Parameters were fit for each method as 424	
  

described in the Methods section. Tables 5 and 6 present the average ranks for the 425	
  

Direct Method and Resampling Method, both separately and combined, respectively. 426	
  

Fig. 7 provides a detailed quantitative comparison of each fitting function. For this 427	
  

model, the R22 rational function and the impulse function, I, were usually among the 428	
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best-performing fitting functions, with R22 performing best for concentrations and I 429	
  

performing best for derivatives. 430	
  

 431	
  

Discussion 432	
  

The goal of this work was to improve the prediction of concentration and 433	
  

derivative time-course profiles derived from experimentally measured (or synthetic, 434	
  

noisy) metabolite data. Two small-scale model metabolic systems were used as the 435	
  

basis for assessing the performance of new methods to calculate and interpolate 436	
  

concentration and flux values based on metabolite data. These two models have 437	
  

different time scales and dynamics, which provided a broader assessment of the 438	
  

potential utility of our approaches. These models were also used in previous work on 439	
  

estimating flux distributions from metabolite data18, which allowed for direct comparison. 440	
  

Integrating these systems numerically provided an exact reference dataset to which we 441	
  

could compare fitted results. However, real metabolite concentration data contain 442	
  

significant variability, so we only used noisy synthetic data derived from this reference 443	
  

data to test the effectiveness of our approaches. In this way, we were able to generate 444	
  

data of defined quality and arbitrary quantity with known underlying dynamics; this 445	
  

allowed us to precisely and rigorously determine the performance of each approach 446	
  

under study.  447	
  

The approach of Ishii et al. was to fit all of the functions to the time course in 448	
  

question and select the function with the lowest fitting error, once accounting for the 449	
  

number of fitted parameters18. While this is certainly a viable approach that can be 450	
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extended to include the sigmoidal impulse model, here we have also investigated 451	
  

whether this single, biologically reasonable function can be used instead of selecting the 452	
  

best-fitting function from a list of arbitrary candidates. We consider the relative benefits 453	
  

of each function type below. 454	
  

 455	
  

Polynomials are consistent but inaccurate 456	
  

The polynomial functions are computationally inexpensive to fit, use few 457	
  

parameters (ranging from three to six), and are widely used for smoothing noisy data. 458	
  

They are consistent and well-behaved, exhibiting very little sensitivity to noise. (As 459	
  

described in Supplementary Methods and Tables S2 and S3, robustness of smoothed 460	
  

profiles to noise was also assessed, but was found to closely depend on the number of 461	
  

parameters used in a function and essentially represented a tradeoff between 462	
  

consistency and accuracy of fitting.) As demonstrated by their ranks in Tables 2, 3, and 463	
  

5, they can do a reasonable job in estimating concentrations and at times even in 464	
  

estimating derivatives (ranking as low as 2.5 but often closer to 3.5 or 4). However, they 465	
  

are ill-suited to capturing dynamics that include a terminal steady state, particularly 466	
  

since their functional form requires them to be monotonically increasing or decreasing at 467	
  

the ends of the time range; this also makes them a poor choice for even limited 468	
  

extrapolation. 469	
  

 470	
  

Resampling improves rational function accuracy 471	
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The rational functions (using three to five parameters) can exhibit a wider range 472	
  

of behaviors than the polynomials with the same number of parameters, and it has been 473	
  

reported that for many metabolite time courses, they yield better performance than the 474	
  

polynomials18. Our parameter restriction strategy was largely effective in addressing 475	
  

their potential to fit best with parameters that produce asymptotic behavior, though there 476	
  

are still lingering issues with near-asymptotes that yield spurious behavior and even 477	
  

negative concentrations for the R22 function (see Fig. 2F). However, as shown in Table 478	
  

3, this effect is largely ameliorated by the use of the Resampling Method to filter out 479	
  

asymptotic trajectories, making R22 one of the more effective functions we studied. 480	
  

 481	
  

The impulse function is a generally effective single fitting function model 482	
  

The last function, the sigmoidal impulse, is the product of two sigmoidal logistic 483	
  

functions20, 21. As previously stated, it recapitulates the dynamics of a common 484	
  

biological process: a two-phase transition from one steady state to a (potentially new) 485	
  

steady state through an intermediate state. Its parameters directly correspond to 486	
  

features of this trajectory: the ℎ parameters represent the initial, intermediate, and 487	
  

steady-state metabolite levels; the 𝜏 parameters represent the timing of the on and off 488	
  

transitions (accumulation and depletion driven by processes such as synthesis and 489	
  

degradation) in response to a perturbation; and the 𝛽 parameters represent how rapidly 490	
  

those transition processes occur. In contrast with the work done by Chechik et al., we 491	
  

allowed the 𝛽 parameters to vary independently to reflect the fact that the on and off 492	
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transitions can represent different biological processes (e.g., glucose uptake versus 493	
  

metabolism), which one would reasonably expect to exhibit distinct dynamics20. 494	
  

While potentially exhibiting undesirable behaviors with unrestricted parameter 495	
  

values, our parameter bounding strategies for avoiding broad local minima and overly 496	
  

sharp curves were effective at preventing these undesirable behaviors (Fig. 3B and 3C). 497	
  

Of particular note is that these parameters themselves typically exhibited broad local 498	
  

optima in performance (Fig. S4), meaning that the fitting method was not very sensitive 499	
  

to the specific values selected; additionally, the default parameters we selected for the 500	
  

E. coli model generalized well to a completely separate model, meaning that while they 501	
  

are technically adjustable parameters, they did not add significant risk of over-fitting to 502	
  

the parameter selection process.  503	
  

Using the Direct Fit Method for the E. coli model, the impulse function performed 504	
  

consistently better than other functions (see Table 2) across all metabolites except for 505	
  

two: metabolites 12 and 18. For these metabolites, the actual dynamic range of 506	
  

metabolite concentrations in the synthetic reference data was substantially less than the 507	
  

range of the random noise used to construct the noisy time courses (see Fig. 5). We 508	
  

cannot realistically expect to recover the underlying concentration in this case without 509	
  

either much more dense or much more accurate sampling. We suspect that the better 510	
  

performance of the polynomials was due in part to their tendency to swing upwards or 511	
  

downwards near the edges of the data, which captured the early time dynamics of each 512	
  

of these metabolites well; we note that the other high-performing fitting function, R22, did 513	
  

poorly on these metabolites as well. The Resampling Method substantially improved the 514	
  

Page 25 of 47 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



performance of R22 and slightly improved the performance of the impulse function on 515	
  

these metabolites (Fig. 4), leading to qualitative behavior where the derivative effectively 516	
  

fluctuated around zero. Given the lack of statistically significant change over the time 517	
  

course of these metabolites, we argue that this is the behavior we should not only 518	
  

expect, but actually be seeking given the essentially unidentifiable change in metabolite 519	
  

levels. 520	
  

 521	
  

The Resampling Method generally improves on Direct Fit Method results 522	
  

In general, the resampling method ranged from negligibly detrimental to highly 523	
  

beneficial. In a few cases, a very minor loss of performance was observed. 524	
  

Consistently, resampling provided no benefit to polynomials (Fig. 6A); this is to be 525	
  

expected, since the polynomial functions are already insensitive to small changes in the 526	
  

data. The R11 and R31 rational functions saw minor improvements in general, while the 527	
  

impulse function saw improvements in cases where it performed most poorly (Fig 5C). 528	
  

The Resampling Method had the biggest effect on R22; in the E. coli model, it moved 529	
  

from one of the worst performers to one of the overall best (Fig. 4, Table 4). Generally 530	
  

speaking, then, the Resampling Method seems to be an effective way to improve 531	
  

accuracy at only a mild computational cost. 532	
  

The Resampling Method appears to have an effect similar to parameter 533	
  

regularization by avoiding over-fitting due to noisy data26. However, we note that the 534	
  

Resampling Method returns a median of multiple fits, rather than a single parameter set. 535	
  

As a result, concentration and derivative values derived from this method need not 536	
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strictly adhere to the functional form of the smoothing function; this flexibility can allow 537	
  

better approximation of the underlying data in cases where the form of the particular 538	
  

function happens to be biased against the correct behavior.  539	
  

 540	
  

S. cerevisiae model results generally recapitulate E. coli model results 541	
  

The S. cerevisiae model generally recapitulated results from the E. coli model, 542	
  

demonstrating the potential generalizability of the Resampling Method and the impulse 543	
  

function (including the parameters used to restrict the fitting search space for the 544	
  

impulse function). For both the Direct Fit and Resampling Methods, the impulse function 545	
  

performed fairly well. One feature that distinguished the S. cerevisiae model from the E. 546	
  

coli model was the wider range of time scales present in the model’s dynamics. Several 547	
  

metabolites (1-4,8-10,18-20) reached steady-state in several minutes, while others 548	
  

(12,13,14) took tens of minutes, and as a result did not reach steady-state during the 549	
  

time interval of the data. As the impulse function assumes long-term steady-state 550	
  

behavior for the time course, it did not perform as strongly for the Direct Fit Method for 551	
  

these metabolites. However, the Resampling Method did provide some improvement for 552	
  

these metabolites. 553	
  

 554	
  

Selection of fitting functions should be driven by applications 555	
  

In this work we considered the problem of data smoothing specifically in the 556	
  

context of genome-scale metabolic modeling. Two key factors in this application have 557	
  

driven our assessment of function and method performance. First, we expect that we 558	
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may need to provide flux values at points other than those for which experimental 559	
  

measurements are available (for instance, if a genome-scale model entails something 560	
  

akin to a Runge-Kutta numerical integration). This means that function accuracy should 561	
  

be assessed not only at the sampled points, but in between them as well. Without the 562	
  

inclusion of such interpolated values, some differences can be seen in apparent 563	
  

effectiveness; for example, previous work indicated that polynomials were more 564	
  

frequently optimal for the S. cerevisiae model18, but in terms of practical applications 565	
  

they are usually inferior to R22 and the impulse function. Second, the main application of 566	
  

the metabolite concentration smoothing is for the estimation of metabolite fluxes; this 567	
  

means that while recapitulating the concentration profile is important, the more directly 568	
  

applicable metric is how accurate the derivative profile is. This distinction is most 569	
  

relevant for the S. cerevisiae model, where R22 more accurately recapitulates 570	
  

concentrations, but the impulse model more accurately recapitulates the derivatives that 571	
  

will be used in downstream analyses. 572	
  

 573	
  

Single functions and biologically-inspired functions can be effective fitting 574	
  

models 575	
  

While previous work selected the best-fitting of an essentially arbitrary set of 576	
  

functions for each individual metabolite based on the experimental data, we suggest 577	
  

that this may be a suboptimal approach. First, this increases the likelihood for over-578	
  

fitting; it is difficult to estimate the number of effective parameters that are introduced to 579	
  

the system by allowing for the variable selection of seven different models, but it suffices 580	
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to say that the number of effective parameters is likely greater than the number of 581	
  

explicit parameters in the highest-order polynomial. As such, restricting the fitting to one 582	
  

function may be desirable from an information content perspective; both the R22 and 583	
  

impulse functions seem like reasonable, viable candidates for universal fitting functions. 584	
  

In fact, once the assessment metrics are based on a criterion more reasonable for the 585	
  

application (i.e., inclusion of interpolated points), there are few if any cases where the 586	
  

polynomials would be a desirable option. Second, there is inherent value in using 587	
  

biologically-inspired fitting functions. These functions, by design, recapitulate behaviors 588	
  

previously observed in biological systems; biasing the fit towards these results 589	
  

integrates prior knowledge that may help ensure that the model is closer to the 590	
  

underlying biology. Even though there are more parameters in these functions than the 591	
  

polynomials, the space of characteristic curves that can be fit is more restrictive and 592	
  

more relevant to expected biology, partially mitigating concerns about over-fitting due to 593	
  

excess parameters. In this sense, the impulse function may be the most desirable 594	
  

choice; either way, applying the Resampling Method ensures that the smoothing and 595	
  

fitting is improved over previous approaches.  596	
  

 597	
  

Limitations 598	
  

There are a few limitations to our analyses that bear noting. First, the number of 599	
  

variable parameters in the impulse function places a lower limit on the number of 600	
  

samples needed to fit the function well, which could stretch the experimental feasibility 601	
  

of acquiring a sufficient number of samples. However, our analyses have been 602	
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consistent with previous work in terms of the number of samples used, and considering 603	
  

the possibility of using multiple biological replicates and multiple experiments to fit the 604	
  

same data, obtaining one or two dozen samples is often reasonable for a metabolomics 605	
  

experiment. Second, the impulse model assumes a steady state is reached at the end 606	
  

of the experiment, which may not be valid for all datasets. However, this concern is 607	
  

partially mitigated by the fact that many experiments would actually be continued until 608	
  

something more closely resembling a steady state is reached, minimizing the number of 609	
  

times significant non-zero derivatives were present at the end of the time range. There 610	
  

is also an obvious computational cost to fitting non-linearizable functions (as opposed to 611	
  

polynomials) and to applying the Resampling Method; however, since the data 612	
  

smoothing task is ultimately performed just once, not many times, we believe that the 613	
  

improvement in results is worth this computational cost, which is itself reasonable and 614	
  

does not require parallelization or even particularly long runtimes. Finally, we have not 615	
  

analyzed the ultimate downstream impacts in the genome-scale metabolic modeling 616	
  

application of the improvements we have made to assess their magnitude. Based on the 617	
  

tendency of functions like polynomials to have nonzero derivatives at the end of the time 618	
  

range and the importance of being able to capture a steady state in a metabolic model, 619	
  

we expect that these improvements may be important, but will be to some extent model-620	
  

specific and is thus beyond the scope of this work. Either way, it is often generally 621	
  

accepted that optimization of each intervening analysis or data processing step is 622	
  

desirable for complex modeling schema.  623	
  

 624	
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Conclusions 625	
  

In this work, we have demonstrated two improvements to standard approaches to 626	
  

smooth metabolite concentration data for application to genome-scale metabolic 627	
  

modeling, including a Resampling Method to minimize susceptibility to experimental 628	
  

noise and the establishment of a single, biologically-inspired fitting function that 629	
  

performs well in almost all cases. In the course of this work, we also identified additional 630	
  

constraints that should be applied to existing data smoothing fitting functions to increase 631	
  

their robustness and activity. Taken together, these contributions have provided 632	
  

consistent and substantial improvements in existing methods to smooth and fit 633	
  

metabolite data for downstream applications, whether via a new fitting function or 634	
  

improvements made to existing fitting functions. We have shown these results to be 635	
  

generalizable across multiple models of metabolism, suggesting the potential for 636	
  

general utility of these improved methods to improve the accuracy of flux distributions 637	
  

calculated from the derivatives of their time courses. 638	
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Table 1. Fitting functions evaluated in this work.  648	
  
 649	
  
Name	
   Formula	
  

P2  
 
𝐶 𝑡 =   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝! 
 

P2  
 
𝐶 𝑡 =   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝!   
 

P4  
 
𝐶 𝑡 =   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝!   
 

P5  
 
𝐶 𝑡 =   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝! 
 

R11  

 
𝐶 𝑡 =   

  𝑝! ∙ 𝑡 +   𝑝!
𝑡 +   𝑝!

 

 

R22  

 

𝐶 𝑡 =   
𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝!
𝑡! +   𝑝! ∙ 𝑡 +   𝑝!

 

 

R31  

 

𝐶 𝑡 =   
𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝!

𝑡 +   𝑝!
 

 
  
I  

  

𝐶 𝑡 =
1
ℎ!
∙ 𝑠 𝑡, 𝜏!, ℎ!,𝛽! ∙ 𝑠 𝑡, 𝜏!, ℎ!,𝛽!  

 

𝑠 𝑡, 𝜏, ℎ,𝛽 = ℎ +
(ℎ! − ℎ)

1+ 𝑒!!!(!!!)
 

 
  650	
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Fig. 1. Schematic of the Direct Fit Method. 651	
  
Synthetic gold standard data are generated by simulating a system of ODEs over the 652	
  
time interval of interest. From the synthetic data, noisy time courses are generated by 653	
  
adding Gaussian noise with a 15% coefficient of variation to the synthetic data, to 654	
  
simulate experimental sources of variation in measurements. Multiple such noisy time 655	
  
courses are generated. A smoothing function is fit directly to a noisy time course, and 656	
  
the resulting fit (or its derivative) is compared against the synthetic data to determine 657	
  
how closely they match. The performance of each function can then be compared 658	
  
based on their performance relative to the initial synthetic data. 659	
  
 660	
  

 661	
  
  662	
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Fig. 2. Schematic of the Resampling Method. 663	
  
As in the Direct Fit method, synthetic data and base noisy time courses are generated 664	
  
from a system of ODEs. In the Resampling Method, each base noisy time course is then 665	
  
used to generate a set of “Resampled” time courses, by using the same process used to 666	
  
generate the base noisy time courses from the synthetic data, only now with the base 667	
  
noisy time course as the input. The function of interest is fit to each of these resampled 668	
  
time courses, and the median of these functions (or their derivatives) is used to 669	
  
generate the resulting smoothed time course corresponding to the specific base noisy 670	
  
time course. As in the Direct Fit method, these median profiles can be assessed to 671	
  
determine accuracy and performance of the function.  672	
  
 673	
  

 674	
  
  675	
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Fig. 3. Performance of different fitting functions for fitting concentration trajectories.  676	
  
Thin, dotted black lines are the original synthetic data. Red crosses are the noisy time 677	
  
course data used to fit the functions. Solid blue lines are the function fitted to the data. 678	
  
A) Polynomial curves were consistent but typically not very accurate. B) The sigmoidal 679	
  
impulse function performed well but sometimes exhibited steep derivatives. C) 680	
  
Constraining the parameter space for the impulse function prevented this behavior. D) 681	
  
The rational function R22 can exhibit unphysical asymptotes in the time interval of the 682	
  
data due to a polynomial term in the denominator. E) Constraining the parameter space 683	
  
for R22 prevents such asymptotes. F) However, near-asymptote behavior can still occur 684	
  
in the rational functions, despite the parameter restrictions, when the value of the 685	
  
denominator polynomial becomes sufficiently small.  Note: A-E all use the same noisy 686	
  
data set. 687	
  
 688	
  

 689	
  
  690	
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Table 2. Average rank of function accuracy using the Direct Fit method on the E. coli 691	
  
model.  692	
  
 693	
  

Average Rank of Metric P2 P3 P4 P5 R11 R22 R31 I 
Concentration Accuracy 3.68 4.13 2.50 2.94 3.94 2.33 4.83 1.74 

Derivative Accuracy 3.18 3.45 2.48 3.08 3.58 2.61 3.77 2.18 
  694	
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Fig. 4. Quantitative assessment of function accuracy across metabolites in the E. coli 695	
  
model.  696	
  
The impulse function performs consistently well across most metabolites for both (A) 697	
  
concentration and (B) derivative accuracy.  The resampling method improves the 698	
  
performance of a number of functions for both (C) concentration and (D) derivative 699	
  
accuracy. Error metrics are normalized to average metabolite concentrations (see 700	
  
Methods) for easier visualization and are presented in log-transformed format.  701	
  
 702	
  

 703	
  
  704	
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Fig. 5. Comparison of the Impulse and P4 on Metabolite 12 (6-Phosphogluconate) over 705	
  
500 random noisy time courses. 706	
  
A) The P4 polynomial function intrinsically curves upwards or downwards at the ends of 707	
  
the interval, which helps match the early slope in the synthetic data. B) The impulse 708	
  
function exhibits greater variability across different noisy replicates due to the small 709	
  
dynamic concentration range in the synthetic data relative to the noise introduced. Solid 710	
  
black lines indicate the synthetic data. Dashed black lines indicate the 15% coefficient of 711	
  
variation envelope, used to generate the noisy time course data. Blue lines indicate the 712	
  
concentration trajectory of functional fits to individual noisy time courses. C) As a result, 713	
  
the P4 polynomial consistently fits the synthetic data concentration with lower error than 714	
  
the impulse. Blue dots indicate the error of each function in recapitulating the synthetic 715	
  
data when fit to a particular noisy time course. The red star indicates the average error 716	
  
of the blue dots. 717	
  
 718	
  

 719	
  
  720	
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Table 3. Average rank of function accuracy using the Resampling Method on the E. coli 721	
  
model. 722	
  
 723	
  

Average Rank of Metric P2 P3 P4 P5 R11 R22 R31 I 
Concentration Accuracy 4.02 4.16 2.44 3.11 4.22 1.83 5.32 1.90 

Derivative Accuracy 3.38 3.40 2.50 3.07 3.68 2.16 4.66 2.20 
  724	
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Fig. 6. The effect of the Resampling Method on the derivative accuracy of three 725	
  
representative functions. 726	
  
The error for fitted concentration profiles was determined for both the Direct Fit and 727	
  
Resampling Methods and directly compared. A) For polynomial functions the 728	
  
Resampling Method produces results nearly identical to the Direct Fit method. B) The 729	
  
R22 rational function can produce derivative errors several orders of magnitude greater 730	
  
using the Direct Fit method (not shown on these axes) than when using the Resampling 731	
  
Method, making the Resampling Method more accurate on average. C) The impulse 732	
  
function is generally consistent between the Direct Fit and Resampling Methods, but 733	
  
does show some variability. Other metabolites exhibit modest benefits from the 734	
  
Resampling Method relative to the Direct Fit Method. 735	
  
 736	
  

 737	
  
  738	
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Table 4. Average rank of function and method accuracy using the E.coli model. Results 739	
  
from both the Direct Fit (DF) and Resampling (RM) methods are all ranked together to 740	
  
facilitate direct comparison of their performance. 741	
  
 742	
  

 P2 P3 P4 P5 R11 R22 R31 I 

Average Rank of Metric DF RM DF RM DF RM DF RM DF RM DF RM DF RM DF RM 

Concentration Accuracy 6.62 6.70 7.36 7.35 3.76 3.94 5.34 5.35 7.17 6.62 3.48 2.55 8.77 10.17 2.60 2.88 

Derivative Accuracy 5.40 5.50 6.20 6.21 3.98 4.02 5.12 5.09 6.49 5.85 3.76 3.12 6.33 8.96 3.30 3.17 

  743	
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Table 5. Average rank of function accuracy using the S. cerevisiae model. Here, the 744	
  
Direct Fit and Resampling Methods are ranked and averaged separately. 745	
  
 746	
  

 Direct Fit Method Resampling Method 

Average Rank of Metric P2 P3 P4 P5 R11 R22 R31 I P2 P3 P4 P5 R11 R22 R31 I 

Concentration Accuracy 4.28 4.00 3.83 3.22 4.81 1.34 4.45 2.07 4.48 4.15 3.90 3.33 4.82 1.24 4.79 2.10 

Derivative Accuracy 3.99 3.65 3.55 2.77 4.80 1.95 4.44 1.66 4.39 4.00 3.81 2.92 4.81 1.61 5.06 1.64 

  747	
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Table 6. Average rank of function and method accuracy using the S. cerevisiae model. 748	
  
Results from both the Direct Fit (DF) and Resampling (RM) methods are all ranked 749	
  
together to facilitate direct comparison of their performance. 750	
  
 751	
  

 P2 P3 P4 P5 R11 R22 R31 I 

Average Rank of Metric DF RM DF RM DF RM DF RM DF RM DF RM DF RM DF RM 

Concentration Accuracy 7.37 7.82 7.05 7.55 7.14 7.17 5.86 6.02 7.92 7.98 1.85 1.65 7.85 8.98 3.59 3.22 

Derivative Accuracy 7.52 7.41 7.16 6.75 6.64 6.74 4.79 4.85 8.23 8.10 2.95 2.14 8.34 9.43 2.72 2.15 

  752	
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Fig. 7. Quantitative assessment of function accuracy across metabolites in the S. 753	
  
cerevisiae model. 754	
  
Results by metric are presented for the Direct Fit Method for (A) concentration accuracy 755	
  
and (B) derivative accuracy, and for the Resampling Method for (C) concentration 756	
  
accuracy and (D) derivative accuracy. Error metrics are normalized to average 757	
  
metabolite concentrations (see Methods) for easier visualization and are presented in 758	
  
log-transformed format. 759	
  
 760	
  

 761	
  
  762	
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