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Abstract

We characterize different cell states, related to cancer and ageing phe-
notypes, by a measure of entropy of network ensembles, integrating gene
expression profiling values and protein interaction network topology. In
our case studies, network entropy, that by definition estimates the num-
ber of possible network instances satisfying the given constraints, can be
interpreted as a measure of the “parameter space” available to the cell.
Network entropy was able to characterize specific pathological conditions:
normal versus cancer cells, primary tumours that developed metastasis
or relapsed, and extreme longevity samples. Moreover, this approach has
been applied at different scales, from whole network to specific subnet-
works (biological pathways defined on a priori biological knowledge) and
single nodes (genes), allowing a deeper understanding of the cell processes
involved.

1 Introduction

Biological systems can be seen as complex systems that translate genomic in-
formation into phenotypes [1, 2]. A useful approach is to describe these systems
as networks, with the system elements (e.g. genes, proteins) as nodes, and the
relationships between them (e.g. transcription or protein-protein interaction)
as edges [3, 4]. An important class of biological networks comprises the protein-
protein interaction networks (PPI [5, 6, 7]): edges in these networks describe
interactions between proteins that are part of the same physical complex or
post-translational modifications mediating signal transduction flows. Networks
of interacting proteins can be thought as characterizing the cell phenotypes
given their genetic and transcriptomic profile.

These and other interactions are also encoded into functional pathways, such
as signalling and metabolic pathways, as are mapped for example in KEGG
database (Kyoto Encyclopaedia of Genes and Genomes, www.genome.jp/KEGG).
In our study we are interested in the integration between the transcriptomic
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and the interactomic data, thus the statistical properties of integrated PPI-
signalling-mRNA expression networks seem to be good observables to investi-
gate systemic pathologies such as cancer and ageing [8, 9]. This approach can
be more informative than analyzing gene expression data on its own. Indeed,
integrative PPI-mRNA expression studies have helped to tease out relevant pat-
terns of expression variation in the contextual framework of signalling pathways
and protein complexes [1, 10, 11].

Following the recent developments in statistical mechanics of complex net-
works, we have the chance to build up a thorough biological network model.
Thanks to some suitable constraints encoding the most relevant network fea-
tures, we can evaluate the information content of biological structures, and
moreover, we can apply the same approach to time-dependent and time-independent
data [12, 13].
As explained in the following, our approach relies on the theory of network
ensembles with given topology (encoded in the degree sequence) and metrics
(represented by distance between values assigned to the nodes). In our case,
the information on PPI-signalling structure is embedded in the network topol-
ogy, and is mapped onto our model by imposing a constraint on the degree
sequence of the networks belonging to the ensemble. Moreover, mRNA expres-
sion profiles for each sample are introduced in the model as values on the nodes
of the network (corresponding to genes) and the distance between gene values,
corresponding to links in the PPI network, are collected in a distribution. Our
model considers as a constraint for the calculation of network entropy the num-
ber of links per bin bsed on such distance distribution. For further details on
the method, see Figure (1) and Supplementary Material Section, in which we
show the results of this approach applied to a clear toy model, and the compar-
ison with the results obtained with a similar approach previously appeared in
literature [8, 10].

We studied two biological phenomena that encode different landscapes of
cellular perturbation, namely cancer and ageing in humans, and whose datasets
were characterized by a different experimental design (case-control studies and
a time series built on samples of different age). Network entropy approach offers
a new perspective to the study of such phenomena, highlighting a more systemic
behavior of the cell beyond single-element analysis, but nonetheless it can be
applied at several scales, from a whole-cell point of view (the full network) to
single biological pathways characterizing the main cell processes like metabolism
and signaling (subnetworks defined by a priori biological knowledge), up to single
nodes (genes/proteins in the network).

2 Methods

2.1 PPI-signalling network

In order to define a network in which the nodes (namely proteins, measured
by their mRNA transcription profile) could be adequately annotated both in
terms of their biological function and their potential interactions, we considered
only the genes that were annotated both in KEGG database and in Pathway-
Commons (www.pathwaycommons.org) PPI network.

We started considering the protein-protein interaction network extracted
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from the Pathway Commons database regarding Homo Sapiens proteins. The
initial PPI network contained 11604 nodes and 420601 links: after self-interaction
and redundant annotation removal we obtained a giant component of 11394
nodes and 420516 links. Since we used different gene expression datasets on dif-
ferent microarray platforms, we considered the intersection of the PPI protein
IDs with the gene annotations of each microarray platform, considering only the
genes that had also a known annotation in the KEGG database. In this way,
each network could be further divided considering nodes annotated into each
single KEGG pathway (see Supplementary Table 1). This procedure produced
different networks for each considered platform, with a number of nodes ranging
from 2000 to 3000.

2.2 Cancer datasets

The analysis has been performed onto four datasets by downloading the
normalized data from GEO Omnibus (www.ncbi.nlm.nih.gov/geo). The first
dataset (referred to as “Colon", GEO accession number GSE4183 [14]) is com-
posed by 8 normal colon biopsies and 15 colorectal cancer samples. The second
dataset is related to Ewing’s sarcoma (“Ewing" dataset, GEO accession num-
ber GSE12102 [15]), consisting of 30 primary tumour samples and 7 metastatic
samples.

Other two datasets refer to breast cancer samples: in the first we have
primary tumour specimens that developed metastasis or not (97 and 28 samples
respectively, referred to as “Met", GEO accession number GSE2990 [16, 17]),
while in the second there are primary tumour biopsies that relapsed or not
(107 and 179 samples respectively, referred to as “Rel", GEO accession number
GSE2034 [18]).

Colon and Ewing datasets are both profiled on the Affymetrix U133 plus 2
microarray platform, and the intersection with the PPI network and the KEGG
database resulted in a network with 2835 nodes. Rel and Met datasets are both
profiled with the Affymetrix U133 A microarray platform, and the intersection
with the PPI network and the KEGG database resulted in a network of 2618
nodes.

In each dataset, a restricted gene list (and a corresponding induced subnet-
work) was obtained by performing a Student’s T test for uncoupled samples
over the two groups in which each dataset is divided into, in order to evaluate
the behaviour of the network entropy measure for a subset of nodes that sig-
nificantly behave differently in the two groups, as compared to the full set of
available nodes in the network.

For the Colon dataset we applied a P < 0.05 significance threshold plus
Benjamini-Hochberg post-hoc correction, obtaining a subnetwork of 312 nodes.
For the Ewing, Rel and Met datasets we only applied a P < 0.05 significance
threshold, obtaining a network with 136 nodes for Ewing, 151 and 313 nodes for
Met and Rel datasets respectively, since almost no genes would have passed the
post-hoc correction. This is probably due to the fact that in these datasets the
differences between groups are less pronounced than in a normal-cancer com-
parison, as described in the related papers from which the data were collected.

Since we can calculate the network entropy value for each sample, we obtain
23 entropy values for Colon, 37 for Ewing, 125 for Met and 286 for Rel datasets,
both for the full network (that will be used for single-node entropy calculation,
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as described below) and the 5% significance gene selection.
Since the null distribution of network entropy values is not known in advance
for arbitrary networks, we performed nonparametric Wilcoxon rank sum tests
between the entropy values for each group.

2.3 Ageing dataset

We considered a cross-sectional study (time series) of 25 whole-genome ex-
pression profiles of T lymphocytes extracted from healthy males of ages spanning
typical adult human lifespan (from 25 to 97 years, see [19] for further details).
This dataset could be divided into 5 age groups with about 10 y between each
group: A) 25-34 y (mean = 29.6 y); B) 43-46 y (mean = 44 y); C) 55-62 y
(mean = 58.2 y); D) 70-79 y (mean = 74.2 y); E) 92-97 y (mean = 94.4 y).
The gene expression dataset (obtained through a custom array, see [19]) after
processing is composed by 13103 probes x 25 age samples. The intersection
with the giant component of Pathway Commons data and the KEGG database
results in a PPI network of 1976 nodes, used for single-node entropy analysis.
A restricted gene list was obtained by performing a 1-way Anova over the age
groups, in order to look for genes significantly changing expression profile in
time. With a P < 0.05 significance threshold plus Benjamini-Hochberg post-
hoc correction we obtained a subnetwork of 217 nodes. We applied the same
significance threshold considered in the original paper in order to compare the
results obtained by gene expression analysis and the results obtained by this
network entropy approach.

We obtained 25 network entropy values (one for each sample) both for the
whole network and for the 5% significance gene selection. Also in this case we
applied nonparametric test for network entropy comparisons, namely Kruskal-
Wallis test over the 5 age groups to define a subgroup of genes significantly
changing expression profile over the whole time series, and Wilcoxon rank sum
test for comparison between any two groups.

2.4 Entropy of network ensembles

In this paper, based on the formalism developed in [20], we apply the concept
of Entropy of network ensembles to a real biological situation, extending in more
detail the necessary formalism and implementing the algorithm to calculate
the Entropy values and all the related variables. An extended example on a
particular network model is shown in the Supplementary Materials Section. The
concept of “ensemble" is inherited from statistical mechanics, where it indicates
a large number of copies of a system, representing the possible “microstates" in
which the real system might be, given a specified “macrostate".

A macrostate is characterized by a specific set of observables: for example,
in an ideal gas we can calculate (by the entropy function) the number of atomic
configurations (microstates) corresponding to the macroscopic system at a spe-
cific temperature (the macrostate). What statistical mechanics tells us is that,
given the constraint of fixed temperature, the distribution of the possible mi-
crostates that maximizes entropy is a gaussian distribution for the velocities.
This is thus the most likely situation (in terms of probability) that can happen
in a real instance of an ideal gas with fixed temperature. In a similar way, a real
network (with specific links and weights) can be seen as a specific instance of
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Figure 1: Description of the Network Entropy method. From left to right: given
a real network (with specific number of nodes, links and weights), we consider
it as an instance of a larger ensemble of networks sharing common features. For
our study, we characterized as an ensemble all the networks with the same degree
sequence and link distribution than the original network (the considered canon-
ical ensemble satisfies these constraints on average). By calculating maximum
entropy of the ensemble satisfying given constraints, we can count the number
of networks belonging to the ensemble, thus estimate its extension in the space
of all the possible networks. We remark that given the pij obtained by entropy
maximization, we can generate any network belonging to this ensemble. In the
right panel we show two networks generated from the same ensemble, similar
but not identical to the original one (in terms of the defined constraints).

a larger set of networks (an ensemble) with similar features, such as a number
of links, or degree sequence (i.e. the number of interactions of each node) that
constitute the ”macroscopic observables” characterizing our system, analogous
to temperature for the ideal gas (see Fig. 1 for a pictorial description).

In our case, the system is a network of N nodes, described by an adjacency
matrix A (aij , i, j = 1, . . . , N) with weights dij , and the macrostate is specified
by two sets of observables, thus a more complex situation than tipically stud-
ied in Statistical Mechanics (as compared to the single constraint introduced
by fixing system temperature). The first set of observables is related to the
network topological structure, and is given by the degree sequence of the PPI
network, namely the N -dimensional vector of the connectivity degree of each
node: {ki}, i = 1, . . . , N , with ki =

∑

j aij . Since we consider a network (and
calculate an entropy value) for each sample, this set of topological constraints
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is equal for all the samples1. The second set of observables is related to the
weights of the network, expressing metric relations between nodes: assigning to
the nodes of each sample the values of mRNA expression of the corresponding
genes in the selected microarray gai (with index i ranging over all the nodes and
index a ranging over all the samples of the dataset), we define the weights daij
as the euclidean distance of the gene expression values:

daij =
√

(gai − gaj )
2 = |gai − gaj | (1)

We collect all these values into an histogram with Nb bins, with a number of bins
equal to the square root of the number of nodes in the network i.e., Nb =

√
N .

In our analysis Nb has range 15 − 20 and the results appear robust against
variations of ±5 bins. For each couple of genes we have a particular distance
value but not necessarily a link in the PPI network. The second set of network
observables (i.e. constraints for entropy maximization) refers to the number of
the PPI links whose distance values fall in a given bin. For each distance bin, we
count the number of PPI links falling inside its boundaries, and impose that the
network ensemble has the same average value of links per bin. We remark that
this set of observables, based on expression profile, is specific for each sample,
and so will be for the corresponding entropy values.

We define the entropy of a network ensemble as

S = −
∑

i<j

pij log pij −
∑

i<j

(1− pij) log(1− pij) (2)

in analogy with the definition of entropy for a canonical ensemble, in which the
constraints are not satisfied exactly but only on average by the members of the
ensemble. The marginals pij represent the probability of having a link between
node i and node j. In a generic graph of this ensemble, a link aij is present
with probability pij , otherwise absent with probability (1− pij).
We define the spatial ensemble as an ensemble of network obtained by imposing
the constraints on the degree sequence {ki} and on the number Bl of PPI links
belonging to each distance bin, dij ∈ Il, described by the following equations:

ki =

N
∑

j

pij ; i = 1, ..., N (3)

Bl =

N
∑

i<j

χl(dij)pij ; l = 1, ..., Nb (4)

where N is the number of nodes in the network, Nb is the number of bins
considered for the empirical distribution of distances, and χl is the characteristic
function of each bin of width (∆d)l: χl(x) = 1 if x ∈ [dl, dl + (∆d)l], χl(x) = 0
otherwise.

The probability matrix {pij} is obtained by the constrained maximization
of the entropy function, as described in the following equation:

∂

∂pij







S +

N
∑

i

λi



ki −

∑

j

pij



 +

Nb
∑

l

gl



Bl −

N
∑

i<j

χl(dij)pij











= 0

1Measured on the same microarray platform.
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where λi and gl are the the Lagrangian multipliers related to our constraints.
For each (i, j) the resulting marginal probability is

pij =

Nb
∑

l

χl(dij)
e−(λi+λj+gl)

1 + e−(λi+λj+gl)
=

Nb
∑

l

χl(dij)
zizjWl

1 + zizjWl

(5)

in which zi = e−λi , Wl = e−gl are functions of the Lagrangian multipliers λi

and gl.
If we consider only the constraint on the degree sequence stated in Eq. (3)

we obtain the entropy for the so called configuration ensemble. The number of
constraints for the configuration ensemble is N , while for the spatial ensemble it
is N+Nb. We remark that a significant difference between the network entropy
calculated in the spatial and configuration ensembles reflects the relevance of
the information encoded in the gene expression data integrated on the network,
as will be the case for all of our analyses.

The canonical ensemble deriving from a real instance gives an entropy value
that estimates the logarithm of the number of “typical” networks in this ensem-
ble, i.e. those network that satisfy on average the given constraints.

Considering the link probabilities pij obtained for the full PPI network, it
is also possible to define a single-node entropy measure for the i-th node. This
single-node entropy takes exactly the form of a Shannon entropy for a string,
thus it can be interpreted in the same framework of Information Theory. Since
the probability values are all positive, and since we know that

∑

j pij = ki, the
connectivity degree of the i-th node, we can define the single-node entropy Si

as follows:
Si = −

∑

j

p′ij log p
′

ij p′ij =
pij

ki
(6)

Given the single node entropy values {Si} for each sample, we checked by a
nonparametric Wilcoxon rank sum test for significant differences at a single
node level between the groups of our datasets. Since we know the KEGG an-
notation for each gene of our network, we also performed a functional analysis
of specific biochemical pathways, based on enrichment analysis of pathways by
genes significantly changing their single-node entropy value Si. In this way the
entropy analysis could be scaled from the full PPI network to single-node and
single-pathway level.

Taking advantage of the a priori biological knowledge available from the
KEGG database, we remark that it is indeed possible to obtain several subnet-
works of the initial PPI network: at a first level, the genes annotated in the PPI
can be divided into 6 functional groups, that can be further subdivided into 42
metapathways, and again into 191 KEGG biological pathways (see Supplemen-
tary Tables 1 and 2). We decided to apply our analysis at the pathway level,
in order to gain more information on the single known biological mechanisms
described into the KEGG database.

For the calculation of the entropy values, of the link probabilities pij and
of the Lagrangian multipliers, we developed an iterative algorithm (see Supple-
mentary Materials Section for an extended description of the implementation
and its performance): given a random starting guess for the value of the la-
grangian multipliers {zi} and {Wl}, the pij values are calculated according to
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Table 1: Cancer datasets: median values of the network entropy groups S1

and S2 as pictured in Fig. 2. With pW we consider the p-value given by the
Wilcoxon rank sum test.

S1 S2 Size pW

Colon 13.0349 13.0680 312 4.35 ·10
−4

Ewing 8.8057 8.7569 136 0.0023
Met 9.9483 9.9159 151 4.12 ·10

−4

Rel 15.4700 15.4664 313 0.0197

Table 2: Ageing dataset: in the upper part of the table we show the median
values for the five network entropy age groups as pictured in Fig. 3. With pK we
consider the p-value given by the Kruskal-Wallis test over the five age groups.
In the lower table we show the results for the Wilcoxon rank sum test for each
pair of groups.

S1 S2 S3 S4 S5 pK

11.4249 11.4331 11.4497 11.4495 11.3972 0.0028

pW group 1 group 2 group 3 group 4 group 5

group 1 0.5476 0.0952 0.0079 0.0079
group 2 0.4206 0.1508 0.0079
group 3 1 0.0079
group 4 0.0079

Eq. (5). These values are then substituted in the constraint equations (3) and
(4) for the next calculation of the lagrangian multipliers, and the process is
repeated upon convergence. We checked by random sampling that the applica-
tion of the iterative algorithm for different initial guesses leads to the same final
entropy values (since under these constraints it is a convex function that admits
an unique maximum). In our analyses, the algorithm convergence threshold
was set to 10−5, and we remark that every significant change in entropy values
was at least two orders of magnitude higher, thus the chosen precision is not
affecting our results. This algorithm is available in Matlab and Python code
(availabe as Supplementary Material).

3 Results

3.1 Cancer datasets

The first analysis consisted in comparing the entropy values for the samples
belonging to the different classes (see Figure 2). For the Colon dataset (Fig.
2, Panel a) we see a significant increase of network entropy S between normal
and cancer samples (P = 0.00043) when considering the selection of genes which
expression profile differed between normal and cancer samples. At a full-network
level, the same trend is observed, but the result is weakly non significant (P =
0.057). We interpret this result as an increase in cell deregulation when passing
from normal to cancer cell, reflected in a higher “phenotypic space” available,
since many regulation mechanisms (e.g. related to cell cycle, apoptosis or DNA
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Table 3: Pathway analysis: number of significant genes and pathways based
on the single node entropy variations. For the genes we applied a Wilcoxon
rank sum test in the usual case-control setup. For the pathways we performed
an enrichment analysis, highlighting those paths enriched by genes significantly
changing their single-node entropy value.

Significant genes Significant pathways

Colon 665 25
Ewing 142 35
Met 342 48
Rel 331 23
Ageing 290 16

tween primary and metastatic samples, involved in many pathways, most related
to lipid metabolism. A significance analysis at KEGG pathway level produces 35
significantly enriched pathways, such as “Glycolysis/Gluconeogenesis”, “Pentose
phosphate”, “Galactose metabolism”, “Glycosphingolipid biosynthesis”, involved
in energy metabolism, and also “Cell communication”, “Focal adhesion” and
“ECM-receptor interaction” that might be involved in metastatic processes such
as cell migration. In the MET dataset, 342 genes have a significant difference
in single-node entropy. Even if the cell type is different (primary breast cancer)
many pathways are the same as for the Ewing dataset, in particular related
to the lipid metabolism. Functional analysis highlights 48 enriched pathways,
among which “Glycolysis/Gluconeogenesis”, “Galactose metabolism”, “Glycosph-
ingolipid biosynthesis” as for Ewing dataset, and also pathways such as “Cell
adhesion molecules” that can be again related to metastatic progression. For
the REL dataset, 331 genes had a significant difference in single-node entropy,
and 23 pathways were functionally enriched with a P < 0.05. Among these
pathways, some of them are related to metabolism (“Ether lipid biosynthe-
sis”, “Biosynthesis of steroids”, “Pyrimidine metabolism”), but also to specific
functions such as “RNA polymerase”, “DNA polymerase”, “Proteasome”, “Cell
adhesion molecules” and “Metabolism of xenobiotics by cytochrome P450”.

A comparison between significant pathways, obtained by enrichment anal-
ysis of genes significantly different on single-node entropy values or on gene
expression values, are shown in Supplementary Table 3.

3.2 Ageing dataset

For the Ageing dataset, we exploited the time series design by applying a
Kruskal-Wallis test over the age groups, in order to evaluate significant changes
in network entropy over the whole life span. The trend for the five groups
was significantly different (P=0.0028, see Fig. 3). In particular, among the 5
age groups, Wilcoxon testing revealed that only the oldest age group showed a
significantly different behaviour, with a lower Network Entropy than the other
age groups (see Table 2). The last age group is related to successfully ageing
people, since their age is larger than average life expectancy, thus it represents
a very selected group from an epidemiologic point of view. Its different value in
network entropy could be explained in two ways, that our data do not allow to
distinguish: first, the successfully ageing group represents a selection, in terms
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of phenotype, over the human population. Thus the reduced entropy highlights
their peculiar expression profile. As a second hypothesis, the oldest group shows
a smaller plasticity in terms of the possible phenotypic profiles that the cells can
assume. This aspect can be related to the “frail” phenotype [26, 27], for which
old people are less capable of adaptation, both from a physiological and physical
point of view. For the single-node entropy and functional enrichment analysis
we considered a comparison between the youngest (“A”) and the oldest (“E”) age
group, representing the two extremes of our time series: Wilcoxon test found
290 (over 1976) genes with a significant difference in Si (P < 0.05). The KEGG
pathways mostly enriched by significant genes are in part related to the spe-
cific cell type, i.e. lymphocytes (“T cell receptor signalling”, “B cell receptor
signalling”, “hematopoietic cell lineage”), metabolic pathways (“Androgen and
estrogen metabolism”, “Biotin metabolism”, “Histidine metabolism”), and path-
ways involved in cellular degradation/production machinery (“Proteasome”), in
particular at the nucleolar level, such as “Ribosome” and “DNA polymerase”
that are known to be altered during ageing [28, 29]. We remark that the path-
ways involved in a change in entropy, as shown above, are very different from the
pathways obtained by an identical functional analysis performed on changes in
gene expression, reflecting the different information encoded in network entropy
at whole-cell and single-node level.

All the tables, with P values for single nodes and for KEGG pathways, are
included as supplementary material (see Supplementary Table 2 and Supple-
mentary Table 3). Moreover, the relations between significant pathways have
been displayed as networks, with significant pathways linked by shared signifi-
cant genes (shown in Supplementary File).

4 Conclusion

We introduce a measure of network entropy, based on a rigorous statistical
mechanics definition, that integrates the topological information encoded in the
protein interaction network with gene expression profiling. This measure is
introduced to characterize different levels of cellular perturbation, namely the
comparison between healthy and cancer samples, primary and metastatic cancer
samples, and a time series of healthy samples with different ages across the whole
human lifespan. This measure estimates the number of networks that satisfy
given constraints, based on PPI network and gene expression profiles, and can
be interpreted as the extent of the “parameter space" allowed to the cell in a
given state in terms of gene expression plasticity, or also in terms of different
cell phenotypes (e.g. cell clonality for the case of cancer).

Different case studies help to clarify this interpretation. Regarding the com-
parison between healthy and cancer cells, we observe an increase of network
entropy, possibly due to a larger deregulation of the biological mechanisms and
functions involved, and to an increase in cell phenotypical diversity. On the con-
trary, when we consider primary vs. metastatic (or relapsing) samples, network
entropy shows a significant decrease, reflecting the canalization or the evolution
(in terms of clonal extent or gene expression profile) necessary to achieve this
specific state. In a time series of ageing people, we see a sharp decrease of net-
work entropy for the successful ageing group (with an age larger than typical life
expectancy) that could also in this case represent a sort of selection of specific
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ageing phenotypes.
The formalism allows to define a measure of entropy at different scales, from

single gene to biological pathways (as obtained from KEGG database), that
highlight how the changes in entropy are specific for the biological function and
the experimental design considered.

This method provides a different perspective on the analysis of gene ex-
pression data, integrating single-gene expression measurements and functional
relationships between genes due to biological functions inside the cell. The en-
tropy measure S seems sensitive enough to evaluate the effect of physiological
perturbations, such as those occurring during the cellular ageing process, and
also the differences between cancer subtypes before the progression to metastatic
and relapsing phenotypes. The statistical significance of S resulted independent
on network properties, such as the number of nodes, and increased when a se-
lected subset was considered, thus reflecting the biological relevance of the data
used.

Finally, we remark that this approach can be generalized to other systems as
well, considering 1) different networks for the topological constraints, like tran-
scription or metabolic networks, 2) different high-throughput measurements,
for example methylation states or metabolite concentrations, and 3) different
metrics to define the weights of the network, like correlation or mutual informa-
tion, allowing to adapt this formalism to the specific experimental design and
biological context.
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