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Improving Gene Regulatory Network Inference Using
Network Topology Information†

Ajay Nair,∗abc Madhu Chetty,d and Pramod P Wangikarbe f

Inferring the gene regulatory network (GRN) structure from data is an important problem in com-
putational biology. However, it is a computationally complex problem and approximate methods
such as heuristic search techniques, restriction of the maximum-number-of-parents (maxP) for a
gene, or an optimal search under special conditions, are required. The limitations of a heuristic
search are well known but literature on the detailed analysis of the widely used maxP technique
is lacking. The optimal search methods require large computational time. We report the theo-
retical analysis and experimental results of the strengths and limitations of the maxP technique.
Further, using an optimal search method, we combine the strengths of maxP technique and the
known GRN topology to propose two novel algorithms. These algorithms are implemented in a
Bayesian network framework and tested on biological, realistic, and in silico networks of different
sizes and topologies. They overcome the limitations of the maxP technique and show superior
computational speed when compared to the current optimal search algorithms.

1 Introduction

Inferring the gene regulatory network (GRN) structure from data
is also known as GRN inference, top-down approach of GRN re-
construction, or reverse engineering of GRN. With the availability
of high through-put DNA microarray data, many methods have
been developed to infer the GRN1–5. Co-expression based meth-
ods6 are simple, have low computational complexity, and are
suited for large-scale networks; but they cannot infer causal in-
teractions or model system dynamics. Models based on differ-
ential equations7 are well established and can represent system
dynamics accurately. However, they require detailed parameters
from experiments, have high computational complexity, and have
been mostly used for small-scale networks. Probabilistic graphi-
cal models such as Bayesian networks (BN) and dynamic Bayesian
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networks (DBN) fall in between the above methods in complexity
and scale. They are based on the solid foundations of probability
and statistics and are very popular since they can learn causal-
ity from data, integrate prior knowledge in modelling, be robust
to noise in experimental data, and have an intuitive representa-
tion8–11. DBN can also model feedback loops using time series
data.

Inferring graphical models from data is however computation-
ally complex, since searching for the optimal graph from all the
possible graphs is NP-hard with respect to the number of genes
in the network12,13. Two common alternatives are using heuris-
tic search techniques14,15 or restricting the maximum-number-of-
parents (maxP technique) for a gene during the search16,17. The
drawbacks of the heuristic search methods are well known; they
do not guarantee a global optima or the best network. In the case
of maxP technique, the maximum number of transcription factors
or regulators that can regulate a gene (denoted here by the name
‘maxPval’) is arbitrarily fixed. By using a small maxPval, compu-
tational complexity can be greatly reduced. However, from the
knowledge of GRN topology and combinatorial regulation, it is
well known that some genes are controlled by a large number
of regulators18,19. Thus, using an arbitrary maxPval can prevent
the representation of many regulatory interactions and affect the
quality of inference. Further, the effect of maxP technique on
GRN inference is not widely studied or reported, even though the
method is widely used16,17 and has also been suggested as an in-
formative prior20. Although different methods of prior input20

can reduce the computational complexity, the maxP technique is
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a generic method that does not require biological knowledge of
the specific network or the organism being studied. It can also be
combined with other methods, if required, to further improve the
performance. Thus, this work focuses on the maxP technique.

Recently, optimal DBN structure learning algorithms for GRN
inference have been proposed, namely BNFinder21 and glob-
alMIT22. They take advantage of the decomposable scoring func-
tions and other mild assumptions valid for a GRN, in order to
overcome the computational complexity of simple optimal search
methods. Further, by being optimal in search, they overcome
the uncertainties of heuristic search methods. These algorithms
are currently suitable only for small networks since they need to
search for all combinations of regulators for a gene. However, it
may be possible to overcome this limitation if we can effectively
use the knowledge that most genes in a GRN have very few regu-
lators18,19.

This paper has two main contributions. a) The theoretical and
experimental analysis of the heuristic maxP technique to under-
stand its strengths and limitations. The computational complexity
of the maxP technique is compared with other inference tech-
niques. This technique is also studied with different network
topologies and parameters, and its theoretical complexity is com-
pared with the actual inference time. b) The development of two
novel algorithms that employ an optimal search method, but are
based on the strengths of the maxP technique and are designed
to take advantage of the known properties of the GRN topology.
The hypothesis is that these steps help to reduce the exponential
number of network searches required to find an optimal network
in a GRN inference. The studies are carried out on 15 networks of
varying sizes and data samples. The rest of the paper is organised
as follows: section 2 develops the underlying theory; the experi-
mental details are in section 3; the results and discussions are in
section 4; and section 5 concludes the paper.

2 Theory

2.1 GRN topology

It is known a priori that the GRN structure has an exponential de-
crease in the indegree for both prokaryotes and eukaryotes18,19.
Thus, most genes have only a few regulators and only a few genes
have a large number of regulators. Our observations from the
experimentally available GRNs of Escherichia coli23, Mycobacte-
ria24, and Bacillus subtilis25 also confirm this. Their median val-
ues of the indegree are 2, 1, and 1 respectively, while the maxi-
mum values of the indegree are 17, 11, and 16 respectively. Ta-
ble 1 shows the percentage of genes that have an indegree of 1,
2, 3, and ≤3 (cumulative) in each of these organisms. It shows
that 79% or more genes have ≤ 3 regulators in well known GRNs.
Though our knowledge of the GRNs is not presently complete, it
is known that many naturally occurring networks also show the
property of exponential decrease in the indegree.

2.2 Computational complexity of GRN inference

The major challenge of GRN structure inference from data is the
exponential search space of all possible graph structures. The
complexity of the commonly used graph types for GRN inference

Table 1 Percentage of genes with the corresponding number of
indegree in a few well studied organisms

indegree
% of genes

E. coli B. subtilis Mycobacteria
1 35 52 81
2 28 28 15
3 16 11 3

Cumulative 79 91 99

Fig. 1 Number of graphs to search for different number nodes in
different types of networks

is discussed here. Note that, in graphical models the genes are
known as nodes, the regulators of a gene are called its parents,
the interaction between a regulator and a gene is represented by
a directed edge from the regulator to its target gene in the graph.
Thus, a GRN is represented as a directed graph.

For a directed graph representation, 2n2
networks are possible

for an n-node network (i.e., a network with n number of genes
or nodes). The computational complexity of graph search in this
case is super exponential in the number of nodes. Normal struc-
ture inference of a network using BN requires the inferred net-
work to be acyclic which does not allow feedback loops in the
network. However, when using networks with partial ordering
of variables or a DBN algorithm, the acyclicity of a graph is not
checked. Thus, a decomposable scoring function can be used,
where a node and its parents can be independently inferred from
rest of the nodes26. Thus, while using a decomposable scoring
function on a directed graph with n-nodes, the number of network
configurations required to be checked are n2n. The computational
complexity in this case is exponential. Further, for cases where
the number of parents are restricted to a constant k (maxPval= k)
for each node, the search space for an n-node graph has polyno-
mial complexity of O(nk), for k� n. These three results are well
known in the graph theory domain but since their references are
not easily available, their proofs are provided in ESI†, Theorems
S1, S2, and S3.

Figure 1 shows the number of graphs to search for a varying
number of nodes, for the three different conditions: a) directed
graph, b) directed graph with a decomposable scoring function,
and c) directed graph with a decomposable scoring function and
maxPval= k limitation. It can be seen that the number of graphs
to search reduces from a directed graph to a directed graph with
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decomposable scoring function and maxPval limitation. The di-
rected graph and the decomposable scoring graph show a linear
curve on a semi-log scale plot. This means that their complexity
of search is exponential which makes a scale-up to large networks
inefficient. The maxPval= k methods have saturation curves due
to the polynomial complexity and are efficient to scale-up. For ex-
ample, it is not feasible computationally to search for all the net-
works for a directed graph when the number of nodes is > 5. The
computational feasibility of searching for all the possible graphs
when using decomposable scoring functions are limited to 20–30
node networks27. The reason for these limitations can be ex-
plained as follows. Assuming one graph can be proposed and
scored in one second, it will take a year to analyse 3.15E + 07
graphs. This is the approximate number of graphs possible with a
5-node directed network and a 20-node network with decompos-
able scoring (see figure 1). In contrast, all the possible graphs of
a 100-node network with maxPval= 2 can be analysed in a day;
from figure 1, a 100-node network with maxPval= 2 has 1.0E+04
possible graphs, while 8.64E+04 graphs can be searched in a day.

2.3 Optimal GRN inference algorithms

Reported optimal GRN inference algorithms such as globalMIT
use decomposable scoring. However, they apply statistical tech-
niques and mild assumptions valid for a GRN to bypass the ex-
ponential search spaces discussed above. For example, globalMIT
assumes that all the genes have equal number of discrete gene
expression states to reduce the computational complexity. It com-
putes the statistical independence of nodes using the chi-squared
test at user defined confidence level α, to penalise complex net-
works and prevent over-fitting. Readers interested in further de-
tails and derivations may refer to the original results22,28. By pe-
nalising complex networks, the algorithm keeps an upper bound
on the number of parents a gene can have (the statistically sig-
nificant number of parents), represented as p∗, depending on the
available data samples22. For example, with larger data samples,
the p∗ is also higher, since with larger data more interactions can
be learned.

Thus, even though the algorithm is optimal, the whole search
space of n2n possible graphs corresponding to the decomposable
scoring functions need not be searched if the data samples are
limited. This fact must be considered when comparing theoretical
and experimental results.

2.4 maxP technique and improvement analysis

The computational complexity for a search with decomposable
scoring is n2n, which is a computationally difficult exponential
complexity. However, in a search based on the maxP technique,
the GRN inference is carried out by limiting the maximum num-
ber of parents for each gene to k (maxPval= k). The computa-
tional complexity here is nk, which is a computationally efficient
polynomial complexity.

The improvement of the maxP technique over the decompos-
able scoring method for the searched graph space is the ratio:
nk

n2n = nk−12−n. This ratio is the computational complexity im-
provement or the theoretical time performance improvement.

Table 2 Computational complexity improvement of the maxP technique
over the normal decomposable scoring method for different values of
maxPval= k and n-gene networks

n k = 1 k = 2 k = 3
5 0.031 0.156 0.781
10 0.001 0.01 0.098
20 9.30E-007 1.90E-005 3.80E-004

The improvement for the various values of k and the number of
genes in a network is given in Table 2. Note that for n = 10, only
0.1% of the original graph space is required to be searched by the
maxP technique for k = 1. This reduction of the effective search
space increases with larger n, which explains the popularity of the
maxP technique. However, the limitation of this technique is that
the number of regulators of a gene cannot be greater than a fixed
value k and assigning a large value to k reduces the computational
efficiency.

2.5 maxPiter algorithm and improvement analysis
The limitation of the maxP technique can be overcome by an iter-
ative approach where, in the first iteration, all genes are inferred
with maxPval=k. In the second iteration, genes that have exactly
k regulators are selected (since these genes can potentially have
more than k regulators) and the inference is repeated without any
restriction on the number of regulators. We call this algorithm
‘maxPiter’ and the steps are shown in Algorithm 1. The maxPiter
overcomes the disadvantage of maxP technique, which is the ar-
bitrary limiting of the number of regulators of a gene, with the
second iteration. Further, it retains the maxP technique’s strength
of reducing the search space, using the first iteration. Intuitively,
maxPiter will be efficient for networks where most of the genes
have a small number of regulators (since they will not be consid-
ered for the second iteration) and a few genes have large number
of regulators, which is the characteristic of a GRN topology (dis-
cussed in section 2.1).

Algorithm 1 maxPiter

1: Infer network structure with maxPval = k
2: selectNodes← (set of nodes with # of parents = maxPval, in

the inferred network)
3: Infer network structure for selectNodes with maxPval ≤ p∗ &

update network with all nodes
4: Print the inferred network

Theorem 1. The computational complexity of the maxPiter algo-
rithm for an n-gene network with x-fraction of genes selected for the
second iteration is nk + xn2n.

Proof. The first iteration of the maxPiter algorithm is performed
with maxPval= k for all the n-genes. The computational complex-
ity for this step is nk, for k � n. In the second iteration, only
the genes with a number of parents= k (for instance, x-fraction
of genes or xn-genes) are selected for the inference, while their
parents can still be from any of the initial n-genes. Now there is
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Table 3 Computational complexity improvement of the maxPiter over the
normal decomposable scoring method for different values of
maxPval= k and n-gene networks assuming an E. coli like GRN

n k = 1 k = 2 k = 3
5 0.83 0.55 0.88
10 0.8 0.41 0.2
20 0.8 0.4 0.1

also no limitation on the number of parents for a gene. Thus, the
number of possible parent combinations for a single gene is given
by,

n

∑
i=k+1

(
n
i

)
=

n

∑
i=0

(
n
i

)
−

k

∑
i=0

(
n
i

)

= 2n−
k

∑
i=0

(
n
i

)

Since k� n in the first iteration,

2n−
k

∑
i=0

(
n
i

)
= O(2n)

For xn-genes the number of possible parent combinations are
O(xn2n) and the computational complexity of the second itera-
tion becomes xn2n. Thus, the overall computational complexity
of maxPiter for the first and second iteration is nk + xn2n.

The fraction of the graph space that maxPiter needs to search
when compared to the decomposable scoring method is given by
the ratio: nk+xn2n

n2n . This ratio is also the computational complexity
improvement or the theoretical time performance improvement
of maxPiter. For the E. coli GRN given in Table 1, the approx-
imate values of x for k = {1,2,3} are {0.8,0.4,0.1} respectively.
Table 3 shows the computational complexity improvement for se-
lected values of n and k for these values of x.

2.6 maxPincrement algorithm and improvement analysis
The disadvantage of maxPiter is that we first start with a
maxPval= k and since k should not be too large or too small, this
choice seems critical to the improvement in time performance.
Further, in the second iteration, once the nodes that have k par-
ents are selected, inference is done for the full value of p∗ though
all of those nodes may not have a large number of parents due to
the exponentially decreasing topology of the GRN. Thus, rather
than limit the inference to only two-iterations, we can generalise
the algorithm to have a maximum of p∗-iterations and in each
iteration the maxPval is incremented by 1. We call this algorithm
the ‘maxPincrement’ and the steps are shown in Algorithm 2.

Theorem 2. The computational complexity of the maxPincrement
algorithm for an n-gene network with xi−1 fraction of genes being
selected for the ith iteration is n1 + x1n2 + ..+ xp−1np.

Proof. For cases where the number of parents are restricted to a
constant k for each node, the number of graphs that needs to be

Algorithm 2 maxPincrement

1: Infer network structure with maxPval= 1
2: selectNodes← (set of nodes with # of parents = maxPval, in

the inferred network)
3: while (selectNodes 6= /0) and (maxPval≤ p∗) do
4: maxPval:=maxPval+1
5: Infer network structure for selectNodes with current max-

Pval & update network
6: selectNodes← (set of nodes with # of parents = maxPval,

in the inferred network)
7: Print the inferred network

searched for an n-gene network is given by O(nk), for k� n. Thus,
for the first iteration, when the maxPval=1 and all the n-genes are
inferred, the computational complexity is n1.

When only x fraction of genes (xn-genes) are required to be
inferred but the original n-genes need to be searched for k possible
parents, then the number of graphs G to be searched is given by

G = O(xn ·nk)

= O(x ·nk+1)

= O(xnk)

Thus, in general, the computational complexity of inference for
x fraction of genes with k possible parents in an n-gene network
is xnk. Then, for the second iteration when x1 fraction of genes
are selected and number of possible parents are 2, the complexity
is x1n2. Similarly, for ith iteration the complexity becomes xi−1ni.
Thus, the computational complexity of the maxPincrement algo-
rithm is: n1+x1n2+ ..+xp−1np, where xi−1 is the fraction of nodes
that have i number of parents in the ith-iteration and p is the final
iteration number.

The computational complexity improvement or the theoretical
time performance improvement of maxPincrement over a decom-

posable score method is the ratio: n1+x1n2+..+xp−1np

n2n . The compari-
son of the maxPincrement algorithm to the decomposable scoring
method is given in Table 4. The calculations are done by assum-
ing an E. coli like GRN shown in Table 1, in which approximately
80%, 40%, and 10% of the total genes need to be checked for more
than 1, 2, and 3 regulators respectively. When compared with
Table 3, it can be seen that maxPincrement gives better computa-
tional complexity improvement than maxPiter. Thus, by inferring
with only the required number of regulators for each gene, this
algorithm uses the knowledge of GRN topology more efficiently
than maxPiter. Further, since the indegree of a GRN decreases ex-
ponentially, xi should also decrease exponentially as i increases.
Thus, for a typical GRN very few genes will be inferred with a
larger value of maxPval, which will result in improvement of the
computational time.
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Table 4 Computational complexity improvement given by
maxPincrement over the normal decomposable scoring method for
maxPval=1 and n-gene networks assuming an E. coli like GRN

n maxPval=1
5 0.862
10 0.146
20 0.0009

3 Experiment
3.1 Software and firmware details
GRN inference is carried out using the modified code of an op-
timal DBN learning algorithm — the globalMIT. There are two
optimal inference algorithms available in the public domain - BN-
Finder and globalMIT. Both of them are based on the theoreti-
cal foundations developed by26, use decomposable scoring, give
similar inference results, and differ only in their scoring metrics.
The algorithms implemented here require only a decomposable
scoring method and are independent of the scoring metrics. We
selected globalMIT since it has source codes in both MATLAB and
C++, which allows flexibility in algorithm development. Since
in this study we compare the performance of novel algorithms to
the original algorithm, the results given are independent of the
software platforms and hardware used.

All the simulations are carried out on Intel Core i7-
3770@3.4GHz 8-core CPU with 12GB RAM and 32-bit software.

3.2 Algorithms
Four types of GRN inference algorithms are implemented.

1. Normal: The GRN inference is carried out using an existing
optimal GRN inference algorithm, the globalMIT, which has
a decomposable scoring function. The results of this infer-
ence are used as the benchmark for the time performance
and the quality of inference, to compare the maxP, maxPiter,
and maxPincrement algorithms.

2. maxP: The maxP technique for maxPval= k is implemented
by limiting the number of regulators for each gene to the
user-input k. By default globalMIT checks for the statisti-
cally significant number of regulators p∗, depending on the
amount of input data available (for details see section 2.3).
The code is modified such that maxPval= min(k, p∗).

3. maxPiter: The first iteration is performed with the maxP al-
gorithm for the user-input of maxPval= k, developed above.
Another modified code of globalMIT is used for the second
iteration, where the inference is performed only on the genes
with k regulators from the first iteration. Here, there is no
maxPval limitation and the regulators of the selected genes
are chosen from all the genes available in the original input
data.

4. maxPincrement: The first iteration is performed with the
maxP algorithm for maxPval= 1. In subsequent iterations,
a modified code of globalMIT which is capable of accepting

maxPval increments and an updated list of genes in each it-
eration are implemented. The inference is carried out only
on the updated list of genes; the regulators for each gene are
selected from all the genes in the original input data; and the
maximum number of regulators for each gene is limited to
the value of maxPval.

3.3 Networks

Inference studies are carried out on 15 different networks of sizes
ranging from 5 to 20 genes and having different topologies. Net-
works of more than 20 genes are not considered since it is com-
putationally infeasible to perform the ‘normal’ inference run (as
discussed in section 2.2) and get the benchmark data. Three types
of networks are considered here: a) biological networks - these
are the real regulatory networks with actual experimental gene
expression data, b) realistic networks - these are real regulatory
networks with realistically simulated gene expression data, and c)
in silico networks - these are computationally generated networks
with simulated gene expression data.

The ultimate objective of any GRN inference technique is to
study biological networks. Thus, the techniques should be as-
sessed by their ability to reconstruct biological networks. How-
ever, there are many limitations for these networks29,30 such as
all the interactions may not be known, which makes it difficult
to compute the accuracy of inference; the data will be limited
compared to the number of genes being studied and thus, the in-
ference problem is undetermined; and the data will also be noisy
due to experimental measurement errors that also affect the ac-
curacy of inference. These problems can be fixed with the real-
istic networks because their true structure is known, they have
the topology of a GRN, and the quality as well as quantity of the
data can also be controlled. The realistic networks in this study
use subnetworks of known regulatory interactions in E. coli or
yeast29 and thus, have the topology of a real GRN. The dynam-
ics of these networks are simulated with a detailed kinetic model
of gene regulation using a system of ordinary differential equa-
tions and a standard thermodynamic approach30. These realistic
kinetic models are used to generate the gene expression data cor-
responding to the different biological experiments.

The in silico networks are computationally generated networks.
Since the biological and realistic networks have similar network
topologies, because they are part of the real GRN, the in silico net-
works are used to obtain networks of varying topologies. For ex-
ample, linear networks (sparsely connected networks), interme-
diate dense networks, and densely interconnected networks are
constructed in silico. Of these the linear and highly dense topolo-
gies are not typically found in GRN. The details of the networks
along with their abbreviations are given below, where for exam-
ple, n5e6 indicates that the network has 5 genes and 6 edges.

3.3.1 Biological networks.

IRMA network—(n5e6)11 and E. coli SOS network—(n8e7)31

are the two well studied and widely used biological networks
with experimental data. These networks are shown in figure 2.
IRMA network is a 5-gene in-vivo synthetic network constructed
in yeast Saccharomyces cerevisiae, as a gold standard biological
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Fig. 2 Biological networks used in the study

network for assessing the GRN inference techniques. We used
the two available time series gene expression data: a) ‘switch-on’
data corresponding to the shift of the organism from glucose to
galactose-raffinose medium and b) ‘switch off’ data correspond-
ing to a shift from galactose-raffinose to glucose medium. There
are 5 experiments with ‘switch-on’ data and 4 experiments with
‘switch-off’ data with a total of 142 samples.

The E. coli SOS network is the other well studied biological
network widely used to assess GRN inference techniques. How-
ever, compared to the IRMA network this is not a gold standard
network which means all the possible interactions need not be
known. Thus, classifying false-positives and true-negatives during
inference need not be accurate but following the general practice,
we proceed with the known network as the gold standard. The E.
coli SOS network used here is based on the 8-gene network stud-
ied by Ronen et al.31. It contains 4 experiments on UV radiations
with 50 time series measurements for each experiment.

3.3.2 Realistic networks.

We have used 6 realistic networks along with their time-series
data. These networks are shown in figure 3. Of these, 2 net-
works are the widely used gold standard DREAM3 E. coli net-
works of 10-genes29,30,32 which are referred here as DMn10e11
and DMn10e15. The time-series data for these networks corre-
sponded to the normalised noisy measurements of mRNA expres-
sion levels and consists of 4 experiments with 21 time points each.

Since 20-gene gold standard networks are not available
in DREAM or other sources, four 20-node realistic networks
(referred here as GNWn20e50, GNWn20e33, GNWn20e31,
and GNWn20e19) are generated using GeneNetWeaver-v3.1.1
Beta29,33. This software is used for generating realistic networks
and their data for the DREAM competitions. These GNW net-
works are 20-node subnetworks of the original E. coli GRN that
contains 1565 genes and 3758 edges, extracted using default
parameters. After the extraction of the subnetworks, the gene
names are anonymised, kinetic model is generated, and datasets
are generated using default parameters. For the study, only the
time-series data with 10 experiments and 21 time points each are
used.

3.3.3 In-silico networks.

Both real biological networks and realistic networks have the typ-
ical GRN topology since they are subnetworks of the actual GRN.
For analysing different types of network topologies, the in sil-
ico networks are constructed. They are of two sizes, 10-nodes
(namely n10e9, n10e26, and n10e45, shown in figure 4) and 20-
nodes (namely n20e19, n20e36, and n20e150, shown in figure 5)
in order to make the comparison easier with the realistic networks
of similar sizes. Unlike the biological or realistic networks used,
these networks are designed to have three general topologies of
sparse (having a linear topology; n10e9 and n20e19), interme-
diate dense (n10e26 and n20e36), and highly dense networks
(n10e45 and n20e150). The time-series data for these networks
are generated using forward sampling in the BNT toolbox34 with
the network parameters generated by random sampling from a
uniform distribution. Data of 1000 and 2000 samples were gen-
erated for the 10 and 20-node networks respectively.

YUn20e9 is constructed with GeneSim35 which is another pop-
ular gene regulatory network simulator that produces the gene
expression levels at discrete time steps for an input network. The
simulator uses a linear dynamical system of equations and re-
quires the strength of gene-gene regulations in the input network.
YUn20e9 network and data is provided with the globalMIT. The
topology of this network is shown in figure 5.

3.3.4 Data used for the study.

The 15 networks and their number of data samples are given in
Table 5. The real biological networks, DREAM3 networks, and
GNW networks are inferred with all the available samples. For
the in silico networks, the number of samples used are limited
to sample size of DREAM3 experiments so that time performance
and quality of inference can be compared across different net-
works. Only for specific studies on the effect of large samples
(n10e9LS, n10e26LS, and n10e45LS), are all the available sam-
ples considered. Large sample studies are not performed on 20-
gene networks due to their prohibitive computational complexity
for ‘normal’ inference.

3.3.5 Indegree distribution.

Figure 6 shows the box plot of indegree of genes in all the 15
networks. In the vertical axis the in silico networks are at the top
half, below are the realistic networks, and the two biological net-
works are at the bottom. It can be seen that the biological and
realistic networks have a median indegree of 1 or 2, which is the
characteristic of the GRN topology (see section 2.1). Moreover,
the indegree distribution of the biological and realistic networks
are not uniform. Some networks such as GNWn20e50 have the
same value for the first quartile and the median, while other net-
works such as DMn10e15 have their third quartile value equal
to the median. This is expected since the GRN is known to have
an exponentially decreasing indegree distribution rather than a
uniform distribution. However, the dense and intermediate dense
in silico networks such as n20e150, n10e45, and n10e26 show a
more uniform distribution of indegree and a larger median value
of indegree. Further, sparse networks such as n10e9 and n20e19
do not show any variation in the indegree distribution. Thus,
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overall the different networks selected show a range of variations
in the topologies and indegree distribution, as required for the
study.

0 2 4 6 8 10 12
IRMA
SOS
DMn10e11
DMn10e15
GNWn20e19
GNWn20e31
GNWn20e33
GNWn20e50
n10e9
n10e26
n10e45
n20e19
n20e36
n20e150
YUn20e9

Indegree

Fig. 6 The indegree distribution of genes in the different networks

3.4 Procedure
3.4.1 Performance measures.

The accuracy of inference or the inference performance is calcu-
lated using AUC-ROC (area under the ROC curve) and AUC-PR
(area under the Precision-Recall curve) values using the results
from different values of α, the variable for confidence level of
network inference in globalMIT. The inference performance im-
provement or the ‘fraction of normal inference measures’ is the
ratio of the inference performance of a particular algorithm to
the inference performance for the benchmark condition.

The time performance is measured as the time taken for the al-
gorithm to perform an inference at α = 0.999, the recommended
value for the best inference performance28. The time perfor-
mance improvement or the ‘fraction of normal time’ is the ratio
of time taken by a particular algorithm for inference to the time
taken for inference in the benchmark condition.

3.4.2 Normal inference.

The normal method of inference is carried out with glob-
alMIT for 13 different values of its confidence parameter α =

[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.95,0.99,0.999]. From
these results, the time and inference performance measures are
calculated and used as a benchmark for other algorithms. The to-
tal number of inferences carried out are 13(α s)∗ 15(networks) =
195 inference runs.

3.4.3 maxP.

In this method, the number of regulators of each gene are lim-
ited by a fixed maxPval. The method is repeated for maxPval=
{1,2,3,4}. maxPval> 4 is not considered since globalMIT’s p∗ is
less than 5 for the majority of the networks (see figure 7). For
each maxPval, the inference is carried out for all 13 different
values of α. Again, the inference and time performance mea-
sures, and their performance improvements to the benchmark

Fig. 7 Number of genes and the median number of parent limit (p∗) for
all the genes in each network for normal inference

are calculated. The total number of inferences carried out are
4(maxPvals)∗13(α s)∗15(networks) = 780 inference runs.

3.4.4 maxPiter.

The inference procedure for the novel maxPiter algorithm is sim-
ilar to maxP but the inference is performed twice corresponding
to the two iterations. Thus, the total number of inferences carried
out are 4(maxPvals) ∗ 13(α s) ∗ 15(networks) ∗ 2(iterations) = 1560
inference runs.

3.4.5 maxPincrement.

In the novel maxPincrement algorithm, maxPval= 1 is set ini-
tially and the number of iterations are determined by the algo-
rithm itself. Thus, the total inference runs can vary but assuming
two iterations for each network, there are 13(α s)∗15(networks)∗
2(iterations) = 390 inference runs

4 Results and discussion
4.1 Results for normal inference
Normal inference to obtain the benchmark values is carried out
with the default values. Figure 7 shows the median p∗ value for
all the genes in each network (see section 2.3 for details on p∗).
For networks in which larger data samples are available, the p∗
is also higher. It can be seen that only the IRMA network has p∗
close to the number of genes, due to the large number of samples
available compared to the network size. Thus, as discussed in
section 2.3, the experimental results of only the IRMA network
are expected to match the theoretical calculations.

4.2 Results with maxP
The maxP technique is a popular method of overcoming the com-
putational complexity of the GRN structure inference. The objec-
tive of this study is to find the improvement in time performance
and the quality of inference of this technique when compared to
the normal algorithm. Further, the experimental results are com-
pared with the theoretical calculations.
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Table 6 Comparison of the theoretical and experimental time
performance improvement for the 5-gene IRMA network with maxP

maxPval Theoretical Experimental
1 0.031 0.031
2 0.156 0.140
3 0.781 0.838

4.2.1 Time performance improvement.

Table 6 shows the comparison of the experimental time perfor-
mance improvement of the 5-gene IRMA network to the theoreti-
cal calculations of a 5-gene network (given in Table 2). It can be
seen that the theoretical calculations are correlated to the experi-
mental results. Further, the theory (see section 2.4) also suggests
that time performance is dependent only on the number of genes
and the maxPval, and not on the connectivity of the original net-
work (assuming that the effect of the sample size is negligible,
for example, by keeping the sample size constant for networks
of the same sizes). The experimental results of the time perfor-
mance improvement analysis for the different networks shown in
figure 8, validate this theory. It can be seen that for the networks
with an equal number of genes and similar sample sizes (such as
n10e9 and n10e45, YUn20e9 and n20e150), the time improve-
ment is same even when the number of edges are very different.

It is also clear from figure 8 that the improvement is present
only for cases where maxPval< p∗, as expected. For example, in
10-gene networks with lower samples where p∗ = 3 (see fig 7),
the time performance is good only till maxPval= 2 and for higher
maxPvals, the time performance is same as the normal run. Fur-
ther, for maxPval< p∗ the fraction of normal time is almost always
less than 20%, and in some cases negligible. Thus, the time per-
formance improvement is very large for all the networks.

Figure 8 also shows the averaged improvement for the differ-
ent types of networks: biological networks — AVG_BioNets (con-
sisting of the IRMA and SOS networks); 10-gene networks —
AVG_10 (consisting of DMn10e11, DMn10e15, n10e9, n10e26,
and n10e45); 10-gene large-sample networks — AVG_10LS
(n10e9LS, n10e26LS, and n10e45LS); 20-gene networks —
AVG_20 (YUn20e9, n20e19, n20e36, n20e150, GNWn20e19,
GNWn20e31, GNWn20e33, and GNWn20e50); and all the net-
works combined — AVG_all. It can be seen that AVG_10LS shows
the best improvement since maxPval< p∗ throughout.

4.2.2 Inference performance improvement.

The inference performance improvement for all the networks at
different maxPvals is shown in figure 9 for AUC-ROC and AUC-
PR. The networks within the histogram representation are or-
dered by decreasing performance. It can be seen that at maxP-
vals of 3 and 4, most of the networks show the same performance
as the benchmark method since maxPval≥ p∗. For maxPval= 1,
more than 50% of the networks and for maxPval= 2 nearly half
of the networks have inferior performance compared to normal
inference since ‘fraction of normal AUC-ROC/AUC-PR’ < 1. These
inferior performances are caused by the many missed regulator to
gene interactions due to the low value of maxPval. However, non-

intuitively, very few networks also show better performance at
lower maxPvals. This is because some of the false-edges learned
in normal method are now being discarded due to the maxPval
restriction. This observation has also been reported previously36.

Importantly, as seen in figure 9, there are three networks that
show inferior performances for both AUC-ROC and AUC-PR: a)
n20e150, b) n10e26LS, and c) n10e45LS. The reasons for their
poor performance are:

• n20e150 has one of the highest average indegree value of
7.5 among all the networks considered here. Thus, by re-
stricting the number of regulators to maxPval=1, 2, or 3,
we artificially reduce the number of regulators that can be
learned, which affects the inference performance.

• n10e26LS and n10e45LS have a large number of data sam-
ples to perform inference (see Table 5) and thus, can effi-
ciently learn more complex networks. Again, by restricting
the maxPval, we artificially reduce the number of edges be-
ing learned. This causes the inferior inference performance.

When the averaged performances in figure 9 are considered,
even though the overall average, the AVG_all, is quite good, the
AVG_10LS and the three networks discussed above consistently
show inferior performance.

4.2.3 Discussion.

The theoretically expected improvement in time performance of
the maxP technique is correlated to the actual experiments. Fur-
ther, the time performance improvement, as suggested by the the-
ory, is seen to be dependent only on the number of genes and
maxPval, and not on the connectivity of the original network.
The main advantage of the maxP technique is that it takes only
a very small fraction of the normal inference run-time for low
maxPval. Thereby, it achieves a large reduction in the computa-
tional time. However, the drawback is that the networks that have
high connectivity or large data samples show inferior inference
performance. This inferior performance is caused by the missed
regulator-gene interactions, which is due to the low value of max-
Pval required to obtain the time performance improvement.

4.3 Results with maxPiter

The maxPiter is a novel algorithm proposed here. It performs
an iterative inference and thus, keeps the strength of the maxP
technique in reducing the computational time and overcomes the
limitation of restricted maxPval.

4.3.1 Time performance improvement.

The comparison of the theoretical time performance improve-
ment and the experimental run-time improvement for the 5-gene
IRMA network is given in Table 7, for two different values of α.
The column ‘genesIter’ shows the number of genes that are se-
lected for the second iteration. It can be seen from the table that
the experimental run-time improvements correlate well with the
theoretical calculations.

The ‘fraction of normal time’ or the time performance improve-
ment for all the networks and for different maxPvals is shown in
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figure 10. The histograms are ordered by the increasing number
of nodes in the networks. Within the networks of same number
of nodes the biological, realistic, and in silico networks are sepa-
rately clustered. The figure also shows the averaged fraction of
time taken for the different network types. At maxPval=2 the
AVG_all is 0.29 which means that the network inference can be
completed in 29% of the normal inference time, on an average
for all the different types of networks. Note also that the time im-
provement for maxPval=1 for most networks is inferior to max-
Pval=2. However, contrary to other networks, the improvement
of AVG_20 for maxPval=2 is inferior to maxPval=3. These facts
show that there is some optimum value for the maxPval that is
specific to the different types of networks. This is because, values
lower than optimum cause more genes to be selected for the sec-
ond iteration and higher values cause many genes to be unneces-
sarily checked for a large number of parents in the first iteration.
Both these situations increase the inference computation time.

4.3.2 Inference performance improvement.

The inference performance improvement of the maxPiter algo-
rithm for the performance measures of AUC-ROC and AUC-PR, is
shown in figure 11. It shows the inference performance improve-
ment for individual networks and the averaged values of different
network types. It can be seen that all the maxPvals show an in-
ference performance very close or equal to the normal inference
algorithm.

4.3.3 Discussion.

It is seen that the inference performance of maxPiter is almost
the same as that of the normal inference algorithm, irrespective
of the maxPval chosen. Thus, this algorithm overcomes the draw-
back of the maxP technique’s inferior inference performance for
highly connected networks or network inference with large data
samples.

The experimental time performance improvement matches the
theoretical prediction. It is also seen that the time performance of
maxPiter varies with different maxPvals. The maxPval is chosen
by the user for an inference. At maxPval=2, the network infer-
ence can be completed in 29% of the normal inference time on an
average for all the different types of networks. Further, it is also
seen that different types of networks can have different optimum
values of the maxPval to improve the computational speed. Thus,
the computational speed improvement is also dependent on the
user’s judgement of the optimum value of maxPval.

4.4 Results with maxPincrement

The maxPincrement is the second novel algorithm proposed here,
which is designed to overcome the sensitivity of the maxPiter al-
gorithm to the value of maxPval.

4.4.1 Time performance improvement.

The theoretical and actual time performance improvement for the
5-gene IRMA network is given in Table 8 for two different values
of α. The column ‘genesIter’ shows the number of genes that are
selected for the first, second, and subsequent iterations. It can
be seen that the theoretical and experimental values correlate. It

Table 8 Comparison of theoretical and actual time performance
improvement of 5-gene IRMA network.

α genesIter theoretical experimental
0.95 5, 3, 2 0.437 0.556
0.999 5, 3 0.125 0.27

should be noted that the theoretical calculations do not consider
the computational overhead of iterative function calls which will
be reflected in the experimental values.

The time performance improvement for each individual net-
work and their averaged values for different types of networks
are shown in figure 12. Most networks are inferred in less than
40% of the normal time. On an average, all the different net-
works (AVG_all) are inferred at 22% of the normal time. Larger
networks take lesser time than average, which makes this method
better at scaling. Theory also shows (see Table 4) that improve-
ments are bigger for larger networks.

4.4.2 Inference performance improvement.

The inference performance improvements in the form of AUC-
ROC and AUC-PR, are shown in figure 13. It can be seen that
both the performance measures match very closely or equal the
normal inference.

4.4.3 Discussion.

The maxPincrement algorithm is proposed as an alternative to
maxPiter algorithm’s dependence on the user-defined parameter
of maxPval. The experimental improvements correlate well with
the theoretical calculations. The maxPincrement shows a reduc-
tion of 7% in the inference run time when compared to the max-
Piter algorithm and takes only 22% of the time for normal infer-
ence, on an average. The inference performance is same as that
of the maxPiter algorithm and the normal inference. Further, the
maxPincrement is also found to be better at scaling to larger net-
works.

5 Conclusion
The optimal inference of GRN structure using Bayesian networks
is known to be NP-hard. One of the popular methods of reduc-
ing computational complexity is the restriction of the indegree of
each gene — the maxP technique. However, detailed studies of
this method have not been reported. Here we report the theoreti-
cal analysis and the detailed experimental studies of this method.
The results show that the improvement of experimental run-times
match the theoretically predicted improvements. Further, expo-
nential improvements in run-times are achieved for lower max-
Pvals and the time performance improvement also does not de-
pend on the network connectivity. However, the limitation of this
method is that the quality of network inference deteriorates for
densely connected networks and for networks with larger input
data.

We proposed and developed two algorithms called ‘maxPiter’
and ‘maxPincrement’ based on the optimal GRN inference tech-
nique. They combine, a) the strength of maxP technique to re-
duce the computational time of inference and b) the knowledge
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of GRN topology of the exponential decrease in indegree, to re-
duce the effective graph search space in inference. Thus, they
have lower computational time than the existing optimal GRN in-
ference methods. Further, the quality of the inferred network is
equivalent to the existing inference technique for both these algo-
rithms. For maxPiter at maxPval=2, the network inference can be
performed at 29% of the original time on an average, for different
types of networks. It may be noted that the time performance im-
provement of this algorithm is sensitive to the user-input value of
maxPval for the different types of networks. The maxPincrement,
which does not have such a drawback, is an improved alternative
to maxPiter. On an average, it takes only 22% of the normal in-
ference time and this improvement is higher for larger networks.

Scalability to larger networks is always difficult with optimal
GRN inference methods due to the exponential increase in search
space of all possible networks. However, the topological informa-
tion of a typical GRN shows that most genes have only a small
number of regulators and only a few genes have a large number
of regulators. The algorithms proposed here take advantage of
this and avoid checking for all possible parents for all the genes.
Thus, the network search space is reduced. Note that the algo-
rithms do not assume or require the networks to have a GRN
topology. Results from the in silico networks show that the algo-
rithms perform well on non-GRN network topologies also. An-
other advantage of these algorithms is that they do not need spe-
cific biological knowledge of the networks or the organism under
study. If biological knowledge is available, other standard meth-
ods exist, which can be used along with the methods proposed
here to further improve the performance.
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Fig. 3 The six realistic networks used in the study
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Fig. 5 The four 20-gene in silico networks used in the study
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Table 5 The networks and the number of data samples used in the study.

Net Samples Experiments Total samples Samples used Remarks
IRMA - 9 142 142 Biological
SOS 50 4 200 200 Biological
DMn10e11 21 4 84 84 Realistic
DMn10e15 21 4 84 84 Realistic
GNWn20e50 21 10 210 210 Realistic
GNWn20e33 21 10 210 210 Realistic
GNWn20e31 21 10 210 210 Realistic
GNWn20e19 21 10 210 210 Realistic
n10e9 1000 1 1000 100 In silico
n10e26 1000 1 1000 100 In silico
n10e45 1000 1 1000 100 In silico
n10e9LS 1000 1 1000 1000 In silico
n10e26LS 1000 1 1000 1000 In silico
n10e45LS 1000 1 1000 1000 In silico
YUn20e9 2000 1 2000 200 In silico
n20e19 2000 1 2000 200 In silico
n20e36 2000 1 2000 200 In silico
n20e150 2000 1 2000 200 In silico

Fig. 8 The time performance improvement with maxP for all networks and their averages for different network types

Table 7 Comparison of theoretical and practical time performance improvement in the maxPiter algorithm for the IRMA network

maxPval
α=0.999 α=0.95

genesIter theoretical experimental genesIter theoretical experimental
1 3 0.631 0.568 3 0.631 0.628
2 0 0.156 0.135 3 0.756 0.702
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Fig. 9 The inference performance improvement for AUC-ROC and AUC-PR of all networks and their averages for different network types, with maxP

Fig. 10 The time performance improvement with maxPiter algorithm of all networks and their averages for different types of networks
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Fig. 11 The inference performance improvement for AUC-ROC and AUC-PR of all networks and their averages for different types of networks, with
maxPiter algorithm

Fig. 12 The time performance improvement with maxPincrement algorithm of all networks and their averages for different types of networks
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Fig. 13 The inference performance improvement for AUC-ROC and AUC-PR of all networks and their averages for different types of networks, with
maxPincrement
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