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Metabolism studies are an essential integral part of ADMET profiling of drug candidates to evaluate their 
safety and efficacy. Cytochrome P-450 (CYP) metabolizes a wide variety of xenobiotics/drugs. Binding 
modes of these compounds with CYP and their intrinsic reactivities decide the metabolic products. We 10 

report here a novel computational protocol, which comprises docking of ligands to heme-containing 
CYPs and prediction of binding energies through a newly developed scoring function, followed by  
analyses of the docked structures and molecular orbitals of the ligand molecules, for predicting the sites 
of metabolism (SOM) of ligands. The calculated binding free energies of 121 heme-containing protein-
ligand docked complexes yielded a correlation coefficient of 0.84 against experiment. Molecular orbital 15 

analyses of the resultant top three unique poses of the docked complexes achieved a success rate of 87% 
in identifying the experimentally known sites of metabolism of the xenobiotics. The SOM prediction 
methodology is freely accessible at www.scfbio-iitd.res.in/software/drugdesign/som.jsp. 

Introduction 

The success of a drug’s journey through the body is measured in 20 

terms of its absorption, distribution, metabolism, excretion and 
toxicity (ADMET) properties.1 An ideal oral drug should be 
rapidly and completely absorbed from the alimentary canal 
(digestive tract) and find its way directly and specifically to its 
site of action. Absorption can be predicted by the Lipinski's rule 25 

of five2-3 which sets limits on molecular weight, number of 
hydrogen bond donors and acceptors and logarithm of partition 
coefficient. Drug metabolism plays a crucial role in 
bioavailability of the drug molecule and its side effects. 
Understanding metabolism in terms of metabolic sites and 30 

products (metabolites) is a central aspect in the drug discovery 
process.4-6 Knowledge of the sites of metabolism (SOM) of a 
molecule and its biotransformation products can help not only in 
optimizing the lead molecule with favorable metabolic profile but 
also in reducing toxicity and enhancing bioavailability and 35 

bioactivity.6-8 Most of the drugs undergo metabolic 
transformations in the human liver, which is the key source of a 
variety of metabolizing enzymes.7 Cytochrome P450s (CYPs), a 
superfamily of heme-containing enzymes, are the major enzymes 
involved in drug metabolism. Important oxidative and reductive 40 

reactions which are catalyzed by different isoforms of CYPs are 
summarized in Table 1. 
Finding the sites of metabolism (SOM) and the biotransformation 
products of a molecule through experiment is an expensive 
process. Hence, there is a need for reliable computational 45 

approaches to predict the metabolic fate of a molecule. Numerous 
in silico tools have been developed for the prediction of the 
metabolic fate of a molecule.9-10,17-44 

Table 1: Summary of some important oxidative and reductive reactions 
catalyzed by different isoforms of CYPs. 50 

Reaction Example 

Substrate Metabolites 

Aromatic C-
hydroxylation 

Phenytoin9 4'-Hydroxyphenytoin 

Aliphatic C-
hydroxylation 

Valproic acid9 5-Hydroxy valproic acid 

N-hydroxylation Dapsone9 Dapsone-hydroxylamine 

Olefinic centre 
epoxidation 

Carbamazepine10 trans-10,11-Dihydroxy 
carbamazepine 

Aromatic center 
epoxidation 

Benzo(a)pyrene11 Benzo(a)pyrene-7,8-
dihydro-diol 

Dehydrogenation Nifedipine12 Dehydronifedipine 

N-dealkylation Amiodarone9 Desethylamiodarone 

O-dealkylation Codeine9 Morphine 

N-oxidation Quinoline13 Quinoline 1-oxide 

S-oxidation Zaltoprofen9 S-oxide-zaltoprofen 

Oxidative Desulfuration Parathion14 Paraoxon 

Oxidative Deamination Amphetamine15 Phenylacetone 

Oxidative 
dehalogenation 

Halothane16 Trifluoroacetyl chloride 

Reductive 
Dehalogenation 

Halothane16 2-Chloro-1,1,1-
trifluoroethane (CTE) 

and 2-Chloro-1,1-
difluoroethylene (CDE) 

These techniques, adopt either reactivity-based approaches, 
fingerprint-based data mining approaches, shape-focused 
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techniques, protein−ligand docking, and combined methods.37 In 
reactivity based approach, hydrogen atom abstraction energy is 
calculated by AM1 or DFT level of theory to predict the 
likelihood of a metabolic reaction. QMBO,41 CypScore42 tools 
adopt this methodology to predict reactivity of a molecule toward 5 

CYPs. In fingerprint-based data mining approach, search for a 
query atom having defined atom environment is carried out with 
a large known biotransformation database. SYBYL atom types 
are used to encode the atom environment. MetaPrint2D27 
software (http://www-metaprint2d.ch.cam.ac.uk/) uses this 10 

methodology to predict the site of biotransformation of any 
organic molecule. Shape matching methodology is adopted by 
ROCS software (http://www.eyesopen.com/rocs). The prediction 
of SOM of a molecule is based on the shape focused alignment of 
any molecule of interest to a known substrate of CYP.  ROCS36 15 

software uses flurbiprofen as a representative molecule for a large 
number of CYP2C9 substrates. The most powerful technique of 
prediction of SOM of a molecule is a combined approach. In this 
approach, a combination of regular docking experiments or 
solvent accessible surface area (SASA) and pharmacophoric 20 

descriptor calculations or topological and  quantum chemical 
atom-specific descriptor calculations and various types of 
quantum calculations such as, reactivity calculations of any 
atomic center, DFT activation energy, molecular orbital 
calculations is carried out. MLite10 software uses docking 25 

followed by quantum chemistry derived reactivity to predict the 
SOM of a molecule. SMARTCyp,18 2D-SMARTCyp9 software 
uses precalculated DFT based activation energies in combination 
with topological accessibility descriptors to predict the SOM of a 
molecule. Metasite4 software first calculates the accessibility of 30 

an atom which is directed towards Fe atom of heme based on the 
3D structure of any CYP protein, and GRID derived molecular 
interaction fields of the protein and ligand. In the next step, 
calculation of activation energy to produce the reactive radical 
intermediate (reactivity) is carried out. Finally, predicted SOM of 35 

a molecule is the site which possesses a significant score of 
accessibility and reactivity component compared to other atomic 
centers of the molecule. However it is not necessary that 
metabolic reactions always take place at the highly reactive centre 
of a molecule. Also, a molecule can have multiple sites of 40 

metabolism with the same CYPs or different CYPs. For instance, 
N-methyl-benzodioxolyl-butanamine (MBDB) has two major 
sites of metabolism with the same isoforms of CYP (CYP1A2),45 
while Carvedilol has two major sites of metabolism for two 
different isoforms of CYPs namely CYP1A2 and CYP2C9.46 45 

Combination approaches based on docking and reactivity are 
likely to fail in such cases. Most of the reactivity based 
approaches calculate AM1 level hydrogen atom abstraction 
energies. AM1 level calculations may not always predict the 
correct reactivity order of atomic centers in a molecule which has 50 

more than one SOM. Also, majority of the methodologies cite 
above are trained on a particular class of Cytochrome P450s 
(CYPs).   
Present work is divided into two parts. The first part is related to 
the development of a scoring function which can consider the 55 

heme containing protein for predicting binding free energy of a 
ligand which is then integrated with the in-house docking 
software, ParDOCK.47 Next part is a new methodology based on 

a combination of docking followed by molecular orbital (MO) 
calculations and knowledge based methods to predict the 60 

potential metabolic sites of a molecule.  

Dataset description 

About 121 heme containing protein-ligand complexes are 
downloaded from RCSB48 with known x-ray structures and 
experimental binding free energies. These 121 complexes contain 65 

25 unique heme-containing protein targets (Table 2). 

Table 2: A list of the 25 unique heme-containing protein targets in the 121 
complex dataset considered in this study. 

Sl. 
No. 

Protein Number 

1 Cytochrome c peroxidase 28 

2 Cytochrome P450-cam 6 

3 Nitric oxide synthase 44 

4 Cytochrome P450 2C5 4 

5 Cytochrome P450 51 6 

6 Respiratory nitrate reductase  2 

7 Cytochrome P450 2A6  6 

8 Cytochrome P450 cyp158A1 2 

9 Cytochrome bc1 2 

10 Prostacyclin synthase(cyp 450) 1 

11 Prostaglandin i2 synthase(cytochrome P450 8A1) 1 

12 Cytochrome P450 102 1 

13 Cytochrome P450 cyp125 1 

14 Cytochrome P450 2B6 1 

15 Cytochrome P450 3A4 1 

16 Bifunctional P-450:nadph-p450 reductase 1 

17 Inducible nitric oxide synthase 2 

18 Respiratory nitrate reductase  2 

19 Cytochrome P450 158A2 2 

20 Cytochrome P450 1A2 1 

21 Cytochrome P450 121 1 

22 Cytochrome P450 2C8 1 

23 Cytochrome P450 46A1 2 

24 Putative cytochrome P450 130 2 

25 Cytochrome P450(bm-3) 1 

A description of the 121 heme-containing protein-ligand 
complexes with the observed ranges of the various physico-70 

chemical properties is provided in Table 3 which shows the 
heterogeneous nature of the present dataset with respect to the 
ligands and complexes. 
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Table 3: A description of the 121 heme-containing protein-ligand 
complexes in terms of the observed ranges of various physico-chemical 
properties. 

Sl. No. Descriptor/  Physicochemical Property Limits 
Ligand 

1 Size Index (Wiener Index) 9 − 5240 
2 Hydrogen Bond Donors 0 – 12 
3 Hydrogen Bond Acceptors 0 – 10 
4 Ligand Net Charge (-)3  − 1 
5 C log P (-)5.0 − 8.0 
6 Molecular Weight 68 − 652 
 Complex  
7 Number of Unique Proteins in these 

121 complexes 
25 

8 Experimental Binding Energy 
(kcal/mol) 

(-)14.4 − (-)2.9 

As case studies, 4 isoforms of CYPs namely CYP1A2, CYP2C9, 
CYP2C19 and CYP3A4 are considered. About 213 substrate 5 

molecules for these target CYPs are obtained from various public 
databases, such as Pubchem49 and Drugbank50-53 and ZINC 
database.54 Information about the experimental SOM for all the 
substrates molecules is available in the literature.9,10 

Methodology 10 

Development of a scoring function to estimate the binding 
free energies of ligands in the heme containing proteins.  

The molecular assemblies of heme-containing protein-ligand 
complexes formed by non-covalent interactions mainly comprise 
three types of non-bonded contributions viz.  (i) electrostatic, (ii) 15 

van der Waals, (iii) hydrophobic and (iv) entropy. Entropy 
contribution here refers to a loss in conformational entropy of the 
protein side chains upon ligand binding. Scoring functions55-56 

generally used to calculate binding energies in molecular docking 
protocols47,57-58 capture the above four contributions as a 20 

combination of the following mathematical functions (eq. 1). In 
order to predict the binding free energy accurately, it is required 
to multiply each of the energy terms in eq. 1 with a suitable scale 
factor. 

 25 

Where, 

 

 
Here, ETel  and ETvdw  are the total electrostatic and van der Waals 
contributions to the free energy ∆G of ligand binding with heme-30 

containing protein. Total electrostatic (ETel ) and total van der 
Waals (ETvdw) energies in eq. 1 are expressed as the sum of all 
pair wise atomic interactions in the protein-ligand systems 
including heme. The electrostatic interaction is computed via 
Coulomb's law with a sigmoidal dielectric function, while a (12, 35 

6) Lennard-Jones potential function is used for calculating the 
van der Waals interactions. The hydrophobic contributions are 
computed via the Gurney parameter approach, a computationally 
simple approach for treating desolvation effects. Entropy 
contribution is calculated by an empirical rule. Details of each 40 

term are reported previously.59-63 
Hydrophobic contribution is calculated in terms of the net loss in 
surface area of an atom type A (∆ALSA) multiplied by σA, the 

atomic desolvation parameter for the atom type A.55 During the 
calculation of the ∆ALSA, it is observed that some of the atom 45 

types (halogen, phosphorus, sp hybridized atom) mentioned in the 
literature55-56 are not very commonly observed in the ligand 
molecules. Therefore some modifications are made in defining 
the atom types. All carbon, nitrogen and oxygen atoms are 
divided into two categories. One is a planar system (all atoms 50 

having sp2 and sp hybridization) and the other is a non planar 
system (sp3 hybridization). Planar systems for carbons and 
nitrogens are further divided into two categories. One is aliphatic 
and the other is aromatic. All hydrogens are divided into three 
categories: first is the hydrogen attached to aliphatic carbons, 55 

second is the hydrogen attached to aromatic carbons and the third 
is the hydrogen attached to a heteroatom other than carbons. 
Apart from this, halogen, sulfur and phosphorus atoms are 
combined into a single atom type (as these are not abundant) and 
iron is treated as a separate atom type. Thus there are a total 13 60 

different atom types whose net loss in the surface area has to be 
calculated. ∆ALSA of each of the atom types is calculated as 
reported earlier.55  
Since ligand is bound to the active site of the protein at the cost of 
entropy, the loss in conformational entropy (∆SCR) is an 65 

important contributor to the energetics of protein-ligand binding. 
In order to calculate the loss in conformational entropy, relative 
accessibility of the protein side chain (RAbinding) is calculated. 
RAbinding is defined as the ratio of the accessible surface area of 
the side chain in the bound form to the accessible surface area of 70 

the side chain in the unbound form. Before calculating the 
RAbinding, relative accessibility of the folding (RAfolding) is also 
calculated. RAfolding is defined as the ratio of the accessible 
surface area of the side chain in the folded state to the accessible 
surface area of the side chain in the unfolded state. Protein side 75 

chains with RAfolding >60% and RAbinding <30% are considered to 
have a loss of conformational entropy. The procedures for 
calculating RAbinding and RAfolding are reported earlier.55 
Using the aforementioned approach, eq. 1 can be represented as 
follows. 80 

 
α, β, σA, γ and δ are regression coefficients. Their values are 
obtained via a partial least square fit method using experimental 
binding free energies. Table 4 gives the values of the regression 
coefficients. 85 
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Table 4: Regression coefficients for electrostatic, van der Waals, 
desolvation and entropy terms.  

Sl. 
No. Description Parameters 

1 Electrostatic 0.0115± 0.0277 

2 van der Waals 0.0050±0.0266 

3 sp3 Carbon 0.1866± 0.1173 

4 sp2 aliphatic Carbon 0.0465±0.0252 

5 sp2 aromatic Carbon -0.0056± 0.0168 

6 Hydrogen bonded to aliphatic carbon 0.0077±0.0020 

7 Hydrogen bonded to aromatic carbon 0.0086±0.0075 

8 
Hydrogen bonded to heteroatom other 

than carbon -0.0143±0.0142 

9 sp3 Nitrogen 0.0551±0.0213 

10 sp2 aliphatic Nitrogen 0.0300±0.0093 

11 sp2 aromatic Nitrogen 0.0326±0.0198 

12 sp3 Oxygen 0.0216±0.0164 

13 sp2 Oxygen -0.0026±0.0080 

14 Phosphorus, Sulphur, Halogen 0.0137±0.0026 

15 Iron -0.7354±4.5862 

16 Entropy 0.5312±0.1791 

17 Constant (Intercept) -2.0326±0.1791 

Steps involved for estimating the binding free energies of 
heme containing protein-ligand complexes 

Step1: Derivation of partial atomic charges of the complex  5 

In all the heme-containing protein-ligand complexes, one 
coordination site of iron is coordinately bound with either sulfur 
atom of cysteine (CYS) or nitrogen atom of histidine (HIS) and 
another coordination site is occupied by the ligand atom in a 
noncovalent bonding interaction. Low-spin (singlet) ferrous heme 10 

iron is assumed for the heme-CYS / HIS groups based on 
previous experimental findings.64-65 Crystallographic water 
molecules are removed from the structures of the complex. 
Cysteine residue in the protein which is covalently linked to iron 
(< 3 Å) in the heme is identified. S atom of cysteine which is 15 

covalently bound to iron is deprotonated. To the remaining amino 
acid residues, ligand and porphyrin group, hydrogen atoms are 
added. Assignment of partial atomic charges for the protein atoms 
is done using AMBER force field.66-67 AM1-BCC68-69 partial 
atomic charges are assigned to the ligand atoms. In the present 20 

study, all the heme-containing protein-ligand complexes are 
divided into two categories where iron of heme is covalently 
bound with sulfur atom of cystine or iron is covalently attached to 
nitrogen atom of histidine. QM calculations are performed using 
Gaussian 09 software.70 Knowledge of spin state and formal 25 

charge of iron atom in heme group is required during the 
quantum mechanical calculations. In the first step, x-ray 
coordinates of heme with its covalently linked amino acid 
(cysteine or histidine) are taken. In the next step, side chain of the 
amino acid which is covalently linked to iron in heme is 30 

converted to –CH3 group. QM optimization is performed on the 
x-ray geometry with HF level of theory. 6-31G* basis set is 

employed for all non-metallic elements and SDD with frozen 
core electrons for iron. In the next step, Mulliken charges71 for 
iron and porphyrin are extracted from the Gaussian output file 35 

and used for heme moiety. We have also carried our DFT 
optimization by using the B3LYP/6-31G*-SDD and B3LYP/6-
31+G*-SDD level of theory. However, there is a very little effect 
on the overall results. 
Step 2: Assignment of the force field parameters  40 

Force field parameters for the protein, porphyrin and ligand 
atoms are adopted from the AMBER ff99SB72 and GAFF73 force 
fields. van der Waals parameters for iron atom are taken from 
literature.74  
Step 3: Energy minimization of the complex  45 

The heme-containing protein-ligand complexes are energy 
minimized in explicit solvent with AMBER 10.75 Position of the 
heme and the covalently bound protein residue (cysteine or 
histidine) is fixed during energy minimization. Truncated 
octahedron type solvate box with 12.0 Å cutoff is used during 50 

minimization. In the first step, explicit water minimization by 
keeping complex molecule fixed, is performed with 500 steps of 
steepest descent and 500 steps of conjugate gradient methods.  
This step is necessary in order to allow rearrangement of water 
molecules around the solute. After solvent minimization, an all 55 

atom minimization with 1000 steps of steepest descent and 1500 
steps of conjugate gradient methods is carried out.  
 

Molecular orbital calculations 

All calculations are carried out using Gaussian-09 suite of 60 

programs. The geometries of all the ligands are optimized at the 
B3LYP level of theory using 6-31G** basis set for C, H, N, O, P, 
S, F. Cl. Br atoms and SDD basis set with frozen core electrons 
for I atom. Molecular orbital calculations are carried out with 
B3LYP and BP86 functional using aforementioned basis set in 65 

implicit water. Frontier orbital plots are made using the 
Chemcraft software (www.chemcraftprog.com). During geometry 
optimization and molecular orbital calculations of a molecule, 
protonation state of that molecule is taken care of. All 
carboxylate and amine containing functional groups are 70 

converted to neutral carboxylic acid and cationic ammonium 
ions. Since lone pairs of carboxylate anion and amine functional 
groups are relatively more reactive (electronic reactivity) than 
other neutral functional groups (lone pairs of oxygen atom other 
than carboxylate anion, S, F, Cl, Br, I, π-bond, σ bond and triple 75 

bond), these functional groups are converted to less reactive 
states by adding protons to them. However, amine group which is 
directed to iron atom of heme moiety (docked pose) is not 
protonated during QM calculations, since lone pair of this 
functional group is knocked off during CYP oxidation. 80 

Detection of SOM of a molecule against a particular isoform 

of CYP 

In the first step, a ligand molecule of interest is docked and a  
minimization run is performed with a particular isoform of CYP. 
The purpose of minimization is to remove clashes of the ligand 85 

with the heme and protein atoms and also to get a proper 
orientation of the substrate with respect to the heme. ParDOCK 
docking software provides the user with eight energetically 
preferred best poses of a ligand molecule in the vicinity of the 
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protein (heme-containing active site). Binding free energies of 
each pose are estimated using the scoring function described 
previously. Top ranked pose based on binding free energies is 
likely to be the experimental pose. However, in some cases two 
or more docked poses among the final eight docked structures 5 

may be similar where the same atomic center / functional group is 
directed to the iron atom of the heme moiety. In such cases, 
unique poses are considered and ranked based on predicted 
binding energies. The most likely site of metabolism of a 
molecule can be predicted based on the distance as well as the 10 

angle of the atom in the ligand to the iron center in the heme. In 
the present study, a maximum distance of 7.5 Å as a cutoff and an 
angle cutoff (S(CYS) / N(HIS)-Fe-ligand atom) of 150° to the 
iron center of the heme as an oxidizable site of the ligand are 
considered. If the atoms in a molecule are part of the HOMO and 15 

also satisfy the distance plus angle criteria specified, then the 
closest atom from the catalytic centre (iron atom of the heme 
moiety) is considered as the real SOM of a molecule. If the 
distances are nearly indistinguishable, then the reactivity of the 
atomic centre is considered for identifying the SOM. Also, the 20 

criterion adopted for SOM detection is that the minimum HOMO 
density around an atom has to be greater than or equal to 1% of 
the total contribution. It is not mandatory that the site of the 
ligand atom directed to the iron is the real oxidizable site. 
Oxidation means loss of electrons from the system. Electrons can 25 

be lost from the highest occupied molecular orbital (HOMO).  
However, if the energies of other deep lying molecular orbitals 
(HOMO-1, HOMO-2, etc.) are very close to that of HOMO, then 
there may be a possibility of electron loss from other deep lying 
orbitals. In these cases, extra energy is required to remove the 30 

electron from the deep lying molecular orbitals which may be 
compensated by the formation of energetically favorable 
transition state (TS)76-77 structure by the heme, ligand and other 
side chain residues of the protein. Several other factors such as, 
stability of the radical species, product stability, etc. may also be 35 

decisive. Docking and scoring give estimates of the energetics of 
different TS structures. Therefore for the present study, if the 
energy gap between deep lying MOs with respect to that of 
HOMO is less than or equal to that of predicted binding free 
energy of the pose of interest, then only those deep lying MOs are 40 

considered. Thus by combining docking and QM calculations one 
can predict the site of metabolism of the ligand molecule. For the 
present work, major reactions involved in drug metabolism with 
different isoforms of CYPs, such as N-dealkylation, O-
dealkylation, aliphatic hydroxylation, aromatic hydroxylation, N-45 

oxidation, S-oxidation, and phosphothionate oxidation are 
considered. A computational flow chart for SOM prediction of 
any molecule against any isoform of CYP is depicted in Fig. 1. 

 
Figure 1: Computational flow chart for SOM prediction for any molecule 50 

against any isoform of   CYP. 

Results  

For the prediction of binding free energies, all the 121 complexes 
are divided into a training set of 58 complexes and a test set of 63 
complexes. The data set (Table 3) is diverse  in molecular size, 55 

physicochemical features, and binding energies. In the first step, 
electrostatic and van der Waals, hydrophobic and entropic 
contributions are calculated. Partial least squares fit on the 58 
complexes in the training set against experimentally observed 
binding free energies generated the values of regression 60 

coefficients as mentioned in eq. 2. In the next step, binding free 
energies are predicted for the test of 63 complexes.  

Model validation 

Next step of model development protocol is to validate the model 
by various statistical techniques. Model validation establishes the 65 

predictive power of the model. For the present model, the 
following statistical tests are performed. 

 

 

 70 

 
All the above terms are explained in detail in the Supplementary 
(Supplementary Table 1).  
The model passes all the validation tests (Table 5) indicating its 
strength and that of its parameters obtained for predicting the 75 

binding energies of heme-containing protein–ligand complexes. 
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Table 5: Statistical tests and their respective values for the training set. 

Experiment Value 

q2 0.725 

R2 0.725 

(R2-R0
2)/R2 -0.379 

(R2-R0
'2)/R2 -0.373 

K 1.000 

K' 0.983 

R0
2-R'2

0 0.005 

SPRESS (kcal/mol) 1.191 

RMS Error (kcal/mol) 1.002 

 

Y-randomization, Bootstrapping and External Validation 

Y-randomization and Bootstrapping on training sets and 
statistical tests on external test set are performed to establish the 5 

statistical significance, robustness and predictive ability of the 
present model.78-83 The Y-randomization test consists of unique 
and repetitive randomization of the dependent variable Y (here Y 
is the experimental binding energy), followed by generation of a 
new QSAR equation and estimation of statistical parameter R2 in 10 

each step using original independent parameters.78-79 The highest 
correlation coefficient obtained when running 100 y-
randomization trials is 0.488 (mean = 0.45), which is significantly 
lower than R2 = 0.72. Bootstrapping analysis (100 runs) is 
performed to further validate the robustness of the model. 15 

Bootstrapping technique consists of generation of new data sets 
by repeatedly and randomly choosing samples (rows) from the 
original data (here original data is experimental and predicted 
binding free energies) followed by calculation of statistical 
parameter R2 in each run. These new data sets (bootstrap 20 

samplings) must be of the same size as that of original data set. 
The average value of R2 after 100 bootstraps experiment is 0.72. 
Apart from this, statistical tests on test dataset are also done in 
order to establish the predictive ability of the model.78-79 The 
external validation set also has to satisfy the conditions 25 

mentioned above. The model passes all the statistical tests (Table 
6) performed indicating its predictive strength.  

Table 6: Statistical tests and their respective values for the test set. 

Experiment Value 

q2 0.656 

R2 0.701 

(R2-R0
2)/R2 -0.412 

(R2-R0
'2)/R2 -0.426 

K 0.972 

K' 1.004 

R0
2-R'2

0 -0.010 

SPRESS (kcal/mol) 1.277 

RMS Error (kcal/mol) 1.091 

 

As mentioned, the 121 complexes are divided into a training set 30 

of 58 complexes, the rest constituting the test set (Supplementary 
Tables 2 and 3). A correlation coefficient of 0.85 (Fig. 2) and an 
rms error of ±1.00 kcal/mol in relation to experimental binding 
energies is obtained with the training dataset. A graphical 
analysis (Supplementary Fig. 1) of the residual errors of the 58 35 

complexes of the training set is also performed. In this graph, 
points are almost equally uniformly distributed above and below 
the base line.  

 
Figure 2: A correlation between experimental and predicted binding 40 

energies (kcal/mol) for the training set (58 complexes). 

Finally, validation is performed on the external test set of 63 
complexes. A correlation coefficient of r=0.84 (Fig. 3) and an 
rms error of ±1.1 kcal/mol against the experimental binding 
energy are obtained for the test set. In the Figure 3 a single but 45 

significant outlier is observed. This corresponds to the CYP3A4-
Bromoergocryptine complex. This is due to very low atom 
efficiency (binding energy/no. of atoms) of the 
bromoergocryptine molecule (-0.107 kcal/mol/atom) as compared 
to that of the average atom efficiency of all the 121 ligand 50 

molecules (-0.241 kcal/mol/atom).   
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Figure 3: A correlation between experimental and predicted binding 

energies (kcal/mol) for the the test set (63 complexes). 

A comparative study of SOM prediction by the present 
methodology and other popular methodologies 5 

To evaluate the ability of predicting correct SOM by the present 
model, a comparative study with other popular techniques like 
MetaSite version 3.0, 2D SMARTCyp, StarDrop 5.0, MLite is 
carried out. For the present study, a total 213 substrates for 4 
isoforms of CYPs namely, CYP1A2, CYP2C9, CYP2C19 and 10 

CYP3A4 are taken, and the accuracy of the present methodology 
is compared with those of other SOM prediction methodologies. 
Experimentally verified SOMs of all these substrates are obtained 
from literature.9, 10 
SOM Prediction for CYP1A2-Catalyzed Reactions 15 

CYP1A2 is one of the important metabolizing enzymes which 
metabolizes 5% of the FDA approved drug molecules. For the 
present study, 60 substrates are taken whose experimental SOMs 
are reported in literature. Performance of other methodologies 
such as 2D SMARTCyp and MetaSite version 3.0, against these 20 

60 substrates for CYP1A2 are also given in the literature.9 
Among these 60 substrates, 39 molecules show N-
dealkylation/O-dealkylation reactions and other 21 molecules 
show either aromatic or aliphatic hydroxylation reactions. Present 
docking based protocol followed by MO calculations is able to 25 

capture experimentally verified SOMs for 55 substrates (92% 
accuracy) within top 3 unique docking poses. Reactivity based 
2D SMARTCyp protocol gave 87% accuracy in predicting 
correct experimental SOM while MetaSite server reported 85% 
accuracy for the same. Information about pose rank which 30 

showed experimentally verified SOM with the present 
methodology and energy gap between deep lying MO to HOMO 
(where available) for each of these 60 substrates is given in 
Supplementary Table 4.  
SOM Prediction for CYP2C9, 2C19-Catalyzed Reactions 35 

CYP2C9 and CYP2C19 play a vital role in the clearance of 
xenobiotics. They metabolize about 15% of marketed drugs. For 
the present study 70 substrates for 2C9 and 36 substrates for 
2C19 are taken. Experimental SOMs of these substrates against 
CYP2C9 and 2C19 are reported in literature.9 Accuracies of 40 

experimentally observed SOM prediction of 2D SMARTCyp, and 
StarDrop 5.0 methodologies for the 70 substrates against 
CYP2C9 are also reported in the literature.9 Prediction ability of 
2D SMARTCyp methodology on 36 substrates against CYP2C19 
is also obtained from the literature.9 Among these 106 substrates 45 

for CYP2C9 and 2C19, 40 molecules show N-dealkylation / O-

dealkylation reactions, 9 molecules show S-oxidation reactions, 2 
molecules show N-oxidation and rest show aromatic or aliphatic 
hydroxylation reactions. Present methodology successfully 
predicts experimentally verified SOMs within top three unique 50 

docking poses for 60 out of 70 CYP2C9 substrates (86% success 
rate). Accuracies for 2D SMARTCyp and StarDrop 5.0 are 87% 
and 77% respectively against the same data set. Zaretzki et al.84 
reported SOM detection methodology based on neural networks 
with a data set of 631 complexes and an accuracy of 87%. 55 

However, results with artificial intelligence techniques in general, 
are not easily amenable to mechanistic interpretations.      
Information about pose rank which showed experimentally 
verified SOM and energy gap between deep lying MO to HOMO 
where available, for the substrates against 2C9 and 2C19 are 60 

given in Supplementary Tables 5 and 6.  

    
SOM Prediction for CYP3A4-Catalyzed Reactions 

CYP3A4 is the most important enzyme among all the isoforms of 
CYPs. It metabolizes 50% of the FDA approved drug molecules. 65 

47 substrates for CYP3A4 are chosen. Experimentally verified 
SOMs and accuracy of prediction of SOMs on this dataset by 
MLite methodology, a combined approach based on docking and 
activation energy prediction, is also available in literature.10 
Among these 47 substrates, 34 molecules show N-70 

dealkylation/O-dealkylation reactions and the rest show either 
aromatic or aliphatic hydroxylation reactions. In 81% cases, the 
present methodology is able to predict successfully the 
experimentally verified SOM within the top three unique docking 
poses, while MLite methodology achieved an accuracy of 78% 75 

within top two sites. Information about pose rank which showed 
correct SOM and energy gap between deep lying MO to HOMO 
(where available) for each of the 47 substrates is given in 
Supplementary Table 7. 
In short, overall accuracy of the present methodology is ~ 87% 80 

for the 213 substrates considered against the four different 
isoforms of CYPs. The major advantage of the present approach 
however is its transferability, i.e. one can dock the substrate by 
using any docking software and carry out molecular orbital 
population analysis by any quantum mechanical software, to 85 

predict the SOM of a molecule against any isoform of CYP. 

Discussion 

Based on only docking and scoring studies, it is not always 
possible to confirm the SOM of a molecule. MO calculations help 
here. For instance in Nicotine (Fig. 4), real site of oxidation, the -90 

CH2 group next to the nitrogen of pyrrolidine ring, comes in the 
3rd pose after docking and scoring, while in the first two poses, –
CH2 group at the 4th position of the pyrrolidine ring is directed to 
the iron atom of the heme (Fig. 4a). The MO calculation shows 
that HOMO is composed of a lone pair from the nitrogen atom 95 

and –CH2 group attached to the nitrogen atom of the pyrrolidine 
ring. No contribution of –CH2 group which is directed in pose 1 
and pose 2 in the docking and scoring studies, is shown in the 
HOMO (Fig. 4b).  
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Figure 4: (a) Structure of Nicotine and its accessible sites after docking as 

indicated by arrows; (b) HOMO of Nicotine. 

Therefore based on MO calculation, poses 1 and 2 are eliminated, 
and pose 3 decides the real site of oxidation. 5 

Aflatoxin B1 is metabolized by CYP1A2 at C16 position to form 
Aflatoxin M1 (Fig. 5). Docking pose having 8th rank (after 
scoring) shows desired orientation of the molecule towards iron 
atom of the heme. However docking poses for top seven poses 
are closely similar. Top three poses predict SOM as the C5 center 10 

of the molecule, while according to the next four poses double 
bond between C18-C19 is the most probable SOM of the molecule 
(Fig. 5). 

 
Figure 5: Structure of Aflatoxin B1 and its metabolites Aflatoxin M1. 15 

Accessible sites after docking are indicated by arrows. 

MO calculations confirm that there is no contribution of C5 
atomic center of Aflatoxin B1 in the HOMO, while double bond 
between C18 and C19 atoms of the molecule shows up in HOMO 
(Fig. 6). This result clearly indicates that C5 center of the 20 

molecule is not an oxidizable center. However, C18=C19 double 
bond of the molecule is definitely affected by the same enzyme or 
different isoform of CYPs. Therefore based on the MO 
observations, poses 1 to 3 can be excluded. Real site of oxidation 
of the molecule is C16 atom which is converted from C-H to C-25 

OH functional group (Fig. 5) via first hemolytic cleavage of the 
C16-H bond followed by insertion of –OH functional group to C16 
atom. At 8th ranked pose the distance between C16 to iron atom is 
4.33 Å while C15 to iron atom distance is 4.16 Å. Therefore C15 
would be the more probable SOM of the molecule as per distance 30 

criterion. Since relative stability of the free radical species at C16 
position (allylic type) is more than that of C15 analogue (alkyl 
type), in spite of the closer distance of C15 to iron atom, C16 
atomic center is the likely SOM.  
Apart from correct orientation, another prerequisite is the 35 

presence of contribution of HOMO to the atomic center of 
interest. MO calculations at the B3LYP and 6-31G** level in 
implicit solvent medium confirm that there is no contribution of 
HOMO at the C16 atom (sigma bond overlap between C16-H 
bond). However a close lying HOMO-1 molecular orbital (an 40 

energy gap of -9.0 kcal/mol with respect to HOMO) shows sigma 
overlap between C16-H bond (Fig. 6). 

 
Figure 6: Molecular orbital diagram of Aflatoxin B1; (a) HOMO, and (b) 

HOMO-1. 45 

The predicted binding free energy of 8th pose is -9.2 kcal/mol. As 
per experimental finding, the loss of electron takes place from 
C16-H sigma bond (HOMO-1) rather than from C18=C19 double 
bond (HOMO). This may be due to the formation of a favorable 
TS through C16 atomic center which is also reflected by the more 50 

negative binding free energy value than that of the energy gap 
between HOMO-1 and HOMO. 
p-Isopropyloxyacetanilide is metabolized by CYP1A2 at the 
methyl of acetamide group. HOMO of the molecule (B3LYP/6-
31G** as well as BP86/6-31G** level of theory and implicit 55 

solvent treatment) is composed of amide bond of acetamide 
group as well as phenyl ring and oxygen of isopropyloxy group 
(Fig. 7). 

 
Figure 7: (a) SOM of p-Isopropyloxyacetanilide; (b) HOMO of p-60 

Isopropyloxyacetanilide. 

No contribution of methyl group of acetamide is found. HOMO-1 
has the contribution of methyl group of acetamide. The energy 
gap between HOMO to HOMO-1 is more than 20 kcal/mol, 
which is much greater in magnitude than the predicted binding 65 

free energy of the ligand (-6.7 kcal/mol). Since the mechanism of 
hydroxylation of alkyl group of acetamide is not well understood, 
the contribution of acetamide as a whole is considered for the 
present study, in which case HOMO can offer a plausible 
explanation for the observed metabolic reaction. 70 

Similarly, in the case of benzylic hydroxylation, contribution of 
HOMO is analyzed not only on the alkyl group but also on the 
aromatic center to which the alkyl group is attached. MO analysis 
predicts alkyl hydroxylation of t-butyl group to a single t-
butylhydroxy metabolite which is not necessarily facile. In this 75 

type of reactions steric factors rather than electronic factors may 
play an important role. 
Carvedilol is metabolized by CYP2C9 to form O-desmethyl-
carvedilol. 3rd pose of the docking and scoring studies showed the 
desired orientation, i.e. -OCH3 group of the molecule is directed 80 

towards iron atom of the heme (Fig. 8). 
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Figure 8: Reactions of Carvedilol by CYP2C9 and CYP1A2 give two 

different metabolites. 

MO calculation at B3LYP level of theory and 6-31G** basis set 
in implicit solvent medium shows that instead of HOMO, 5 

HOMO-2 has contributions of –CH3 group and a lone pair of the 
oxygen atom (Fig. 9). 

 
Figure 9: Molecular orbital diagram of Carvedilol; (a) HOMO, and (b) 

HOMO-2. 10 

Energy gap between HOMO-2 to HOMO is -12.2 kcal/mol, while 
the predicted binding free energy of 2nd pose is -9.6 kcal/mol. 
However MO calculation at BP86 level of theory and 6-31G** 
basis set in implicit solvent medium gave an energy gap of -9.0 
kcal/mol which is less in magnitude than the predicted binding 15 

free energy. 
Carvedilol is also metabolized by CYP1A2 at C8 position to form 
8-hydroxycarvedilol. HOMO of this molecule shows contribution 
of carbazol ring (Fig. 8). Docking pose ranked 2nd gives an 
orientation where C8 position of carbazol ring is closer to iron of 20 

the heme moiety. The distance between C8 to iron is 4.21 Å. 
However the C7 position of the molecule is the closest atom to 
that of iron center and the distance is 3.78 Å. The mechanism of 
hydroxylation of aromatic ring is the formation of aromatic 
epoxide followed by its cleavage to form hydroxylated product 25 

(Fig. 10). 

 
Figure10: Mechanism of aromatic hydroxylation of Carvedilol by CYP. 

Therefore as per epoxidation mechanism both C7 and C8 centers 
could be considered and depending on the stability of the 30 

intermediate carbocation, cleavage of the epoxide ring would take 
place to give the observed metabolite. Similarly, in case of N and 
O-dealkylation reactions both alkyl groups attached to N and O 
atoms and lone pairs of N and O atoms have to be considered. 
In summary, the rule of finding SOM of a molecule against any 35 

isoform of CYPs is as follows. Atomic center/functional group 
which is directed towards the iron atom of the heme moiety 
should be part of HOMO or other deep lying MOs. In the latter 
case, extra energy required for removing the electron from MO 
other than HOMO of the molecule during CYP oxidation should 40 

be less than the binding energy value of the ligand with the 
particular isoform of CYP. If the atomic center is already in the 
highest oxidation state, then that center is metabolically inactive 
for oxidation as for instance the nitro group, carbonyl group (-
C=O), phosphate and sulfate. Allylic/benzylic centers of 45 

oxidation are preferred over olefinic/aromatic/aliphatic centers 
because of the stability of the radical generated through 
oxidation. For olefinic/aromatic bond, epoxidation is preferred. 
Oxidation of halogen containing functional groups is not very 
common owing to their high value of electronegativity. A web-50 

server for predicting the site of metabolism is created and made 
freely accessible at http://www.scfbio-
iitd.res.in/software/drugdesign/som.jsp. 

Conclusion 

Metabolism studies are an essential part of ADMET profiling of 55 

drug candidates to evaluate their safety and efficacy. The aim of 
the present study is to develop a computational protocol to predict 
the site of metabolism of any xenobiotic compound. To this end, 
an empirical free energy function is proposed, which gives a 
correlation of 0.84 against experimental binding free energies on 60 

121 heme-containing protein-ligand complexes. Present scoring 
protocol is combined with an in-house developed docking 
methodology, ParDOCK to suggest the metabolizing atomic 
center of a molecule. However electronic reactivity of the 
accessible center is carried out by a visualization of atomic center 65 
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of interest in the HOMO of the system. Other deep lying 
molecular orbitals are also considered only when HOMO does 
not show any contribution of the accessible center, and energy 
gap between other deep lying orbitals to HOMO of a molecule 
does not cross the predicted binding free energy value of the 5 

ligand with the particular isoform of CYP. A few rules based on 
experimental observations and our theoretical analyses for 
identifying SOMs are proposed.  
Combining analyses of MOs and knowledge based approaches 
with docking and scoring can fine tune the identification of 10 

potential sites of metabolism for any molecule. Out of 213 known 
substrates against 4 different isoforms of CYPs, present 
combination method gives 87% success rate in determining their 
experimentally verified SOMs within the top three unique poses 
of docking. The main feature of the present methodology is the 15 

relatively quick estimation of MOs instead of the compute 
intensive TS or activation energy calculations of any molecule to 
verify the real SOM. Present methodology of SOM prediction 
could help drug designers at the stage of lead optimization.  
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Appendix A. Supplementary data   25 

The supplementary includes PDB IDs, and the experimental and 
predicted binding free energies of the training and test data sets, 
formulas of statistical tests performed for the validation of the 
empirical scoring function, information about pose rank which 
showed experimentally verified SOM and energy gap between 30 

deep lying MO to HOMO (where available) for each of the 213 
substrates, a graphical analysis of the standard error of training 
set, 2D representations of 60, 70, 36 and 47 substrates for 
CYP1A2, CYP2C9, CYP2C19 and CYP3A4 respectively and 
their experimentally verified sites of metabolism.  35 
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