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Insight box:

We discuss different types of biological uncertainty that plague the predictable design of
gene circuits. We classify these uncertainties into three categories: incomplete
characterization of biological parts, unintended interactions between components and
the host, and stochastic dynamics. We suggest different methods and review their
effectiveness at minimizing each type of uncertainty. Our unique perspective on this
topic can help guide novel circuit design. Contextualizing different problems that can
cause circuit failure will expedite their efficient identification. Moreover, providing
potential strategies can reduce time and resources used to optimize circuits, which could
help speed up scientific discovery.
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Abstract

Synthetic biology has grown tremendously over the past fifteen years. It represents a
new strategy to develop biological understanding and holds great promise for diverse practical
applications. Engineering of a gene circuit typically involves computational design of the circuit,
selection of circuit components, and test and optimization of circuit functions. A fundamental
challenge in this process is the predictable control of circuit function due to multiple layers of
biological uncertainties. These uncertainties can arise from different sources. We categorize
these uncertainties into incomplete quantification of parts, interactions between heterologous
components and the host, or stochastic dynamics of chemical reactions and outline potential

design strategies to minimize or exploit them.

Introduction
Synthetic biology has shown great promise in contributing to our basic understanding of
biology [1] and creating novel systems with practical applications [2, 3]. While there are many

facets to synthetic biology, we focus on the engineering of genetic circuits. From the
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development of gene networks as biosensors [4] to the incorporation of complex regulatory
modules in model organisms [5], synthetic circuits have the potential for applications in
biological research [6-9]. Despite past successes, the predictable design and implementation of
these circuits remains a fundamental challenge. This limitation can be attributed to the many

layers of uncertainty that emerge throughout the engineering process.

Engineering genetic circuits has often been compared to programming [10], where the
cell is the computer and the gene circuits are introduced software programs. From this
perspective, building a gene circuit is like inserting a small script into an operating system
without full understanding of the context. Despite knowing the programming language, an
incomplete understanding of the operating system provides a layer of uncertainty similar to
introducing a gene circuit. The program must be written without syntax errors, must not hinder
underlying operations that maintain the system, and must have variables that do not overlap
with those that already exist. Ideally, a gene circuit must use the correct parts, must not inhibit
the growth of the host, and must be orthogonal to native processes. However, these conditions
are difficult to realize due to multiple layers of uncertainties, which are often challenging to
anticipate. Here, we discuss some common uncertainties that confound predictable engineering
of gene circuits in living cells as well as strategies to alleviate or take advantage of the impact of

such uncertainties.

Sources of uncertainty
1. Incomplete characterization or quantification of biological components

In typical engineering disciplines, the building blocks are often well defined. For
example, in electrical engineering the basic parameters associated with various components are
well-documented [11]. In comparison, synthetic biology lacks the systematic quantification of

parts fundamental to other engineering fields (Figure 1A). Even for model organisms such as
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Escherichia coli, which has been a workhorse for microbiology, biotechnology, and gene circuit
engineering, the kinetic properties of many biological components are poorly characterized
(Figure 1B). For example, when constructing OR gates, Tamsir et. al. found that the
unexpected transcriptional interference between two promoters caused one design to only
respond to a single input [12]. The challenge increases drastically in higher organisms where
precise genetic control is constrained by their greater complexity and a lack of well-quantified

biological components [13-15].

2. Unintended interactions between circuit components and the chassis

A challenge in providing a comprehensive characterization of parts is their context
dependence. In electronic circuit design, engineers achieve modularity of parts through the
spatial segregation of components — for example, two transistors will never interact or share
signals without direct connection by wires. In synthetic biology, however, a circuit component
well characterized in one species or strain can behave unpredictably when introduced into
another due to unintended interactions with native parts [16] (Figure 1C). For example,
expression of an algal nucleotide transporter for the uptake of unnatural nucleotides caused
growth inhibition of E. coli, which the authors attributed to toxic effects of expressing

heterologous membrane proteins [17].

Synthetic gene circuits rely on endogenous host machinery and resources such as
ribosomes, polymerases, and other enzymes to carry out their designed function (Figure 1D).
Since the host relies on the same pool of resources to maintain native processes, synthetic
networks draw from this limited pool. Often referred to as the metabolic burden, this titration of
resources can interfere with both the cell and the circuit. Indeed, heterologous gene expression
can drastically inhibit growth in bacteria depending on specific genes and their expression levels

[18-20]. Similarly, Karim et. al. observed that growth of Saccharomyces cerevisiae decreased
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up to 25% when expressing different selection markers on plasmids depending on the origin of
replication, the promoter, and the yeast strain [21]. Moreover, cellular growth and gene

expression are intertwined by resource allocation constraints resulting in growth reduction [22].

Certain components or functions may be toxic to the host, which can occur when burden
is too high or new genes are introduced from a different kihngdom or species. For example,
expression products of more than 15,000 genes from 393 microbial genomes inhibited growth of
E. coli [23]. Forming the basis of antimicrobial development, toxic compounds have been found
in organisms from plants [24] to fungi [25]. While these compounds can display inhibitory effects
in some species, they can have limited effects in other organisms. The restriction
endoribonuclease RegB, which is highly toxic to E. coli, exhibits no detectable toxicity in S.
cerevisiae [26]. In some situations, gene mutations can have various host-dependent effects.
The R436-S mutant form of the GyrB protein promotes temperature-sensitivity in Salmonella
enterica but is lethal to E. coli [27]. In other cases, insertion of a foreign gene into the
chromosome can result in unexpected cellular toxicity [28]. These interactions can impose
selection pressure that causes genetic instability -- the loss of circuit function after prolonged

circuit activation [29-31].

3. Stochastic dynamics

Even with precise measurements of the component parameters, predictable engineering
of circuit dynamics is confounded by the randomness (noise) associated with cellular processes
[32]. Ultimately, this noise results from the stochastic nature of reactions between small
numbers of molecules (Figure 1E). In a bacterial cell, for example, many proteins are present in
tens or hundreds of molecules. Gene expression noise from transcriptional bursting in Bacillus
subtilis resulted in 30-250 GFP molecules per cell depending on the strength of the promoters

[33]. At such small numbers, the relative magnitudes of fluctuations are large: it approximately
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scales with the inverse of the square root of the average molecular number [34]. Thus, a protein
with 100 copies per cell experiences at least a 10% fluctuation in protein concentration unless
this fluctuation is suppressed by specific regulatory mechanisms. This is often referred to as
“‘intrinsic” noise, as it reflects the baseline noise even if all the rate constants are unchanging. In
addition, the rate constants themselves may fluctuate, as they are determined by available
resources or other (often global) processes like transcription and translation (Figure 1F). This is
typically referred to as “extrinsic” noise [35] and can be the dominant source of variability for
highly expressed genes or in eukaryotes [36]. Extrinsic and intrinsic noise can be distinguished

through various mathematical and experimental methods [36-38].

Regardless of its sources, cell-to-cell variability imposes a fundamental constraint on the
performance of many gene circuits. For instance, a pioneering synthetic oscillator, the
repressilator, exhibits highly variable oscillatory dynamics in growing cells: fewer than half of the
cells exhibited oscillations, which were largely asynchronous between cell lineages [39]. The
authors hypothesized that the lack of coherent oscillations was in part due to stochastic gene
expression. Indeed, a recent study shows that cell-size control can lead to slow fluctuations and
even transient oscillations in gene expression, in the absence of additional feedback regulation

[40]. Overcoming this limitation has become a focus of subsequent oscillator designs.

Addressing uncertainty in gene circuit engineering
1. Documenting and characterizing parts

Circuit design relies on choosing optimal components to generate desired function. Part
varieties has improved recently with the quantification of synthetic and natural terminators [41]
and synthetic libraries of promoters in different host contexts [42-48]. Likewise, in mammalian
cells, promoter libraries [49] and RNAi libraries for gene knockouts [50] have expanded the

repertoire of potential components that can be incorporated into synthetic circuits. Ideally, a
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complete catalog for biological parts would minimize uncertainty by providing a quantitative
understanding of circuit components in different host contexts [51]. This would be a useful tool
to design complex systems consisting of multiple gene circuits [16]. For example, one can
imagine using a consortium of microorganisms for sophisticated sensing and processing

functionality.

The ability to rapidly quantify the large number of biological parts is constrained by a
dependence on living organisms as a chassis for gene circuits. This dependence has spurred
research into engineering cell-free systems. Cell free systems utilize enzymes or metabolites
isolated from microorganisms to simulate cellular reactions [52, 53]. They also serve as the
foundation for efforts to develop minimal cells — encapsulated cell-free gene expression
systems. In a minimal cell, the host contains the minimal number of genes necessary to survive,
decreasing the opportunities for cross-interactions [54-56]. The former has been used for paper-
based biosensors [4], while the latter has been explored for their potential as bioreactors [57].
Cell-free systems provide a more controlled environment and are easy to use [58], which can
provide a foundation for rapid quantification of biological parts (Figure 2A). Libraries of parts
can be contained on DNA and characterized using simple inducible systems expressing a
reporter. With a standardized protocol, this strategy could present a consistent, high-throughput
technique for systematic quantification of circuit components. Still, we note that these
measurements only provide initial guidance on circuit design, especially for those implemented

in living cells.

2. Quantifying effects of parts on the chassis
2.1 Computational models
Modeling can evaluate the impact of uncertainty on circuit function and the robustness of

a circuit against these uncertainties. Typically, synthetic gene circuits are modeled
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deterministically or stochastically [59, 60] to describe the temporal or spatial dynamics of circuit
components or cells. Sensitivity or bifurcation analysis of models can allow one to estimate the
parameter space that results in a desired function, such as varying input levels or promoter
characteristics [44]. A large parameter space indicates that a circuit is less sensitive to
perturbations, resulting in predictable and reliable function. In such models, the impact of
metabolic burden or potential crosstalk can be evaluated [61] (Figure 2B), which provides

another test for circuit performance.

Typical models can only describe metabolic burden or crosstalk in a lumped manner. In
contrast, one can potentially gain insights into these uncertainties by using whole-cell models,
which attempt to more comprehensively describe the known components and pathways. For
example, Purcell et. al. used a whole-cell model of Mycoplasma genitalium to examine the
burden of introducing heterologous circuits like the Goodwin oscillator [62]. However, increases
in predictive power from whole-cell models come at the cost of being more computationally
intensive. Moreover, it can introduce details that obscure the underlying mechanisms behind

biological uncertainty, complicating further analysis [63].

In such cases, minimal models that account for allocation of limited resources can be
used to evaluate the impact of metabolic burden. This creates a trade-off, where a resource
committed to one process reduces its availability for other processes [63-65]. In one example, a
model by Scott et. al. accounted for resources allotted to ribosome synthesis, defined as the
RNA/protein ratio [22]. Empirical correlations between growth rates and RNA/protein ratio could
predict the effect of cell proliferation on gene expression and vice versa [22]. Another model,
which treated overall promoter activity as a fixed resource, showed that gene expression and
growth rate are inherently correlated due to resource constraints [66]. While the previous

models accounted for allocation of a single resource, these can be extended to include multiple
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trade-offs. For example, WeiBe et. al. constructed a model that comprised three-tradeoffs:
limited levels of cellular energy, finite ribosome levels, and a maximum cell mass [63]. Their
model could predict trade-offs generated by introducing synthetic circuits among the circuit’s
function, its induction level, and the host’s growth rates [63]. These models provide the ability to

link mechanistic changes to phenotypic alterations without the complexity of whole-cell models.

2.2 Real-time quantification of burden

Real-time sensors that detect specific analytes would enable a more precise
quantification of burden. To this end, Ceroni et. al. evaluated strong titration effects by tracking
the production capacity in E. coli using a ‘capacity monitor’ [67]. This real-time sensor measures
the capacity for GFP expression, which is used to assay burden (decreased growth rate)
caused by circuit activation. The authors analyzed a library of synthetic constructs using this
sensor and determined that increasing strength of the ribosome binding site (RBS) increased
burden and the rate of mutations [67]. This is due to the titration of ribosomes, which can reduce
available translational machinery for other processes like cell division. In contrast, circuits with
weaker RBSs, which do not titrate ribosomes as strongly, maintained cell growth rates [67].
Real-time sensors integrated with downstream regulatory mechanisms could potentially be used
to dynamically modulate uncertainty. Dahl et. al. designed such a system using stress-response
promoters sensitive to accumulation of farnesyl pyrophosphate (FPP) and HMG-COA to control
production of these intermediates in isoprenoid biosynthesis [68]. This strategy improved

product yields, reduced intermediate accumulation, and increased cell growth.

2.3 Exploiting effects due to uncertainty
In some cases, interactions between hosts and gene circuits can result in unexpected
phenotypes. In E. coli, growth inhibition by a simple positive feedback circuit using non-

cooperative T7 polymerase resulted in bistable gene expression [20]. Another example is the
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sharing of transcription factors among different promoter binding sites. While this may
negatively affect native pathways, this biological uncertainty can be exploited to generate novel
dynamics. For instance, titration of repressors by strongly competing binding sites generated an
ultrasensitive response of a reporter (YFP) to increasing repressor concentrations [69]. As the
number of repressors exceeds the number of competitive binding sites, the repressor becomes
available to regulate the reporter. This creates a Hill-like “threshold response” such that a
sufficiently high concentration of the repressor is required to bind the promoter and inhibit
transcription. This transition becomes sharper with increasing strengths of competing binding
sites, analogous to increasing Hill cooperativity [69]. This presents a potential strategy for
controlling gene expression by tuning competitive binding sites to modulate transcriptional

activity of heterologous circuits.

3. Optimized engineered parts

In some cases, the desired components have yet to be discovered, and those readily
available cannot be used in a predictable manner. By tuning their parameters, one can engineer
parts to exhibit desired functions. Strategies for this include using components from other
organisms (Figure 2C) [70-73], directed evolution [26, 44, 74-77], rational design [78-81], and
constructing de novo enzymes through computer-aided design [82-86]. For example, multiple
studies have designed genetic devices to maintain modularity in synthetic circuits utilizing the
fast reaction rates of phosphotransfers [87, 88]. One such device increased the capability for
dynamic responses of a transcriptional cascade to temporal inputs in the presence of a titration
effect [87]. In another example, Segall-Shapiro et. al. minimize toxicity of phage RNA
polymerases by dividing the enzyme into four fragments [89]. These are co-expressed
according to a resource allocator that sets the maximal transcriptional capacity available based
on concentrations of a specific fragment [89]. These techniques share the common goal of

generating components with optimal parameters.
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Recent advances in genome editing techniques such as CRISPR facilitate the design
and implementation of gene circuits [90-93]. For example, CRISPR has been used for targeted
DNA degradation to prevent transfer of engineered DNA [94]. This function can be exploited to
maintain genetic stability of gene circuits where plasmids with specific mutations are targeted for
degradation [95]. CRISPR has also been used to construct gene circuits including Boolean-logic
gates. Using dCas9 and guide RNAs, Nielsen et. al. designed a set of NOT gates with high on-
target repression and minimal off-target interactions [96]. The authors combined these gates
into complex circuits and coupled them to a native E. coli regulatory network to control sugar
utilization, chemotaxis, and phage resistance. Finally, CRISPR-mediated cleavage can provide
reliable regulation of multi-gene operons [97]. In this manner, promoters, RBSs, cis-regulatory
elements, and riboregulators can also be combined into new operons with programmable gene
expression [97]. RNA processing via CRISPR presents an innovative strategy for both

improvement of existing gene circuits and bottom-up construction of new circuits.

4. Designs to account for stochastic dynamics
4.1 Coping with noise

Specific network motifs can resist effects of noise on circuit function (Figure 2D). For
example, negative feedback with minimal time delay has been shown to reduce noise in gene
expression [98, 99]. Specifically, negative feedback shifts noise towards higher frequencies then
acts as a low-pass filter to prevent this noise from generating an output [100]. However, noise
reduction is most effective for intermediate strengths of repression; above this, external noise
from larger fluctuations in plasmid concentrations increases the variance of expression levels
[101]. In contrast, positive feedback can either intensify or diminish the impact of noise
depending on circuit parameters. Specifically, noise near an ultrasensitive transition can result

in an abrupt shift between states, intensifying effects of noise [102]. In contrast, in a system with

10
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hysteresis, the output is buffered against noisy inputs, which could otherwise cause spurious

transitions between states [103].

Feedforward loops, which incorporate both positive and negative regulation, also have
the capability to attenuate noise. Incoherent feedforward loops (IFFL) can filter out noise as a
band-pass filter [104] and output gene expression is robust against varying copy numbers of the
plasmid encoding the circuit [105]. Coherent feedforward loops (FFL) reject transient inputs and
respond only to persistent stimuli [106]. However, additional control loops show diminishing
returns, and adding a particular regulatory mechanism does not guarantee noise reduction
[107]. Reaction rates constrain the ability for these motifs to attenuate noise, which at most
decreases by a quartic root of the number of signal birth events [107]. Modulating parameters of
these networks like gene copy number can also minimize intrinsic noise. This has been shown
in E. coli, where having a high transcription rate coupled with a low translation rate is more likely

to reduce noise than having a low transcription rate coupled with a high translation rate. [108].

Noise-resistant oscillators appear prevalent in natural systems despite constant extrinsic
and intrinsic fluctuations. Design principles learned from circadian oscillations [109] and
ultradian oscillations [110] have been used to minimize the impact of noise in synthetic circuits.
A critical requirement for generating oscillations is negative feedback with sufficient time delay.
Intertwining negative with positive feedback can enhance the tenability and noise resistance of
these oscillations. Since the repressilator, several new oscillators have been engineered to
generate more robust oscillations at the single cell level by incorporating these design principles

[111, 112].

Aside from intracellular regulatory motifs, cell-cell communication represents another

mechanism for noise reduction [113] or coordination of dynamics between single cells. In

11
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multicellular organisms, intercellular coupling can be used to maintain synchronized oscillations,
such as in periodic somite segmentation in vertebrate embryos [114]. Similarly, synthetic
oscillators in bacteria using population-based strategies, such as quorum sensing, have

exhibited robust, synchronous oscillations [31, 115-117].

4.2 Exploiting noise

Despite the stochastic nature of noise, this uncertainty can be utilized in the
development of circuits with complex functions [118]. For example, noisy expression of
transcription factors can be exploited to generate bistable gene expression without the need for
cooperative binding [119]. At the population level, noise can be utilized to produce
heterogeneous expression with a single circuit design. While undesirable for predictable circuit

functions, this stochasticity is crucial for adaptation to changing environments [120, 121].

In addition, noise can be used to generate a wide dynamic range of stimulation, allowing
for high-throughput characterization of circuit dynamics [122]. For example, noisy gene
expression mediated by viral vectors revealed biphasic signaling dynamics of transcription
factor E2F1 in mammalian cells [123]. This large variability coupled with single-cell analysis
provided high-throughput quantification of the impact of Myc, another transcription factor, on
E2F1. In addition, stochastic fluctuations associated with a particular genetic circuit can be used
to estimate its kinetic parameters [124]. Population distributions from cell-to-cell variability can
be used to distinguishing between different cancer types [125] and generate fingerprints to
identify various network parameters [126]. Similarly, Slack et. al. demonstrate a method to

characterize cellular phenotypes using their heterogeneous responses to perturbations [127].

Conclusion
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Synthetic biology aims to create tunable systems that display predictable functions
through the use of genetic circuits. However, unexpected failures plague circuit design, as even
the best-characterized organisms remain far from being fully characterized. These failures have
been attributed to biological uncertainty, which broadly encompasses any cellular process that

cannot be predicted nor controlled directly.

While not all uncertainty can be removed, engineering strategies to confront potential
pitfalls are desirable to advance the field. To this end, contextualizing different uncertainties is
necessary towards establishing guiding principles for circuit design. Innovations in the field have
provided design constraints and methods to limit the effect of uncertainty. We attempt to
organize these strategies into different types and review their effectiveness in improving circuit
function. Our categorization of biological uncertainty and its solutions is a first step in developing

a general methodology for minimizing uncertainty in gene circuits.
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Figure 1. Sources of uncertainty that can lead to circuit failure. (A) Unknown parts. Many
components are not known for the construction of circuits. (B) Incorrect kinetic parameters.
With few components characterized, incorrect kinetic parameters can result in circuit failure or

unintended circuit function.

(C) Crosstalk. The lack of physical separation results in

interactions with the potential to disrupt circuit function through crosstalk. (D) Metabolic
burden. Exogenous synthetic circuits rely on the limited pool of endogenous cellular machinery
to function, which can result in metabolic burden.(E) Intrinsic noise. Intrinsic noise can be
attributed to stochastic chemical kinetics and the small size of cells, resulting in fluctuating
metabolite concentrations. (F) Extrinsic noise. Extrinsic noise can be due to external
perturbations such as the cell signaling molecules, light, pH, nutrients, or heat.
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Figure 2. Strategies to address to biological uncertainty. (A) Comprehensive
quantification of parts. The documentation of parts can alleviate the lack of components for
circuit implementation. (B) Quantifying effects of parts on chassis. Understanding how
different components impact the host can provide a method for reducing the genetic instability
that results for parts that induce a high level of burden. (C) Optimization of parts. The use of
orthogonal parts from different organisms can reduce the chances of cross-interactions with
endogenous host machinery. (D) Coping with and exploiting noise. Specific network motifs
have been shown to decrease the impact of noise on circuits. (i) Negative feedback (ii) Positive
feedback (iii) Incoherent feedforward loop.
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