Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

Sea cucumber (*Codonopsis pilosula*) oligopeptides: Immunomodulatory effects based on stimulating Th cells, cytokines secretion and antibody production

Li-Xia He, Zhao-Feng Zhang, Bin Sun, Qi-He Chen, Rui Liu, Jin-Wei Ren, Jun-Bo Wang and Yong Li*

Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China; E-mails: <u>helixiapku@163.com</u> (L.-X. H.); <u>zhangzhaofeng@126.com</u> (Z.-F. Z); <u>berseraphim@sina.com</u> (B. S.); <u>qiheyuntian@163.com</u> (Q.-H. C.); <u>lrui0101@163.com</u> (R. L.); <u>ren_jinwei@126.com</u> (J.-W. R.); <u>bmuwjbxy@bjmu.edu.cn</u> (J.-B. W.); <u>liyongbmu@163.com</u> (Y. L.)

 * Authors to whom correspondence should be addressed; E-Mail: <u>liyongbmu@163.com</u> (Y. L.); Tel.: +86-10-8287-1177; Fax: +86-10-8287-1177.

1	Abstract: This study was aimed to investigate the immunomodulating activity of small
2	molecule oligopeptides from sea cucumber (Codonopsis pilosula) (SOP) in mice. Seven
3	assays were performed to determine immonomodulatory effects which included splenic
4	lymphocyte proliferation and delayed-type hypersensitivity assays (cell-mediated immunity),
5	IgM antibody response of spleen to sheep red blood cells (SRBC) and serum hemolysin level
6	assays (humoral immunity), the carbon clearance assay and phagocytic capacity of peritoneal
7	cavity phagocytes assay (macrophage phagocytosis) and NK cell activity assay. Spleen T
8	lymphocyte subpopulations, multiplex sandwich immunoassays of serum cytokine and
9	immunoglobulin levels and enzyme-linked imunosorbent assay for small intestinal secretory
10	immunoglobulin were determined to study the mechanism of SOP affecting immune system.
11	We found that SOP could improve immune functions in mice, which may be due to the
12	enhancement of the functions of cell-mediated immunity, humoral immunity, macrophage
13	phagocytosis and NK cell activity. From the cellular and molecular assays, we postulated that
14	the immunomodulatory effects most likely attributed to the stimulation of Th cells, cytokines
15	secretion and antibody production.
16	Keywords: Sea cucumber oligopeptides; adaptive immune; innate immune; T cell

18

17

19 **1. Introduction**

20 Continued exposure to stress and environmental extremes has been linked to worsened 21 immune system function, leaving a person more liable to infection. Nutritional interventions 22 have become an effective and widely-applied approach to enhance immune responses, innate

subpopulation; cytokine; immunoglobulin subtype; multiplex sandwich immunoassays

23	and adaptive immune responses, and to resist to disease. As specific protein fragments that in
24	addition to acting as sources of nitrogen and amino acids, food-derived bioactive peptides,
25	which have low molecular weight, and easily absorbable and digestible features, are have
26	numerous potential physiological functions, including antimicrobial, cholesterol-lowering,
27	antioxidant, cyto- or immunomodulatory activities ^{1, 2} . Moreover, some peptides exhibit
28	multifunctional properties ³ . Therefore, many food-derived bioactive peptides are receiving
29	increasing attention in the fields of therapeutics and nutritional interventions.
30	Sea cucumber, Codonopsis pilosula, traditionally used as a restorative medicine, has been
31	the most widely used in Chinese communities for thousands of years, just as that the detailed
32	medical applications of sea cucumber were officially recorded in the "Compendium of
33	Materia Medica (Bencao Gangmu)" in 1758, in which it was held in high esteem as ginseng".
34	Expect China, sea cucumber is widely consumed as a putative functional food in other
35	countries, particularly Singapore, Korea and Norway. The dried body wall of sea cucumber
36	contains many biologically active substances and nutrients, such as, about 90% of protein
37	(polypeptides), 6% of polysaccharides (oligosaccharide), and 4% of lipids in organics ⁴ ,
38	vitamin A, vitamin B ₁ (thiamine), vitamin B ₂ (riboflavin), vitamin B ₃ (niacin), and minerals,
39	especially calcium, magnesium, iron and zinc ⁵ , which make it have many biological activities
40	including anticancer, antioxidant, anti-inflammatory, antithrombotic, antitumor, antimicrobial,
41	immunoregulatory activity and wound healing ^{5, 6} . Although there are some functionality
42	studies about sea cucumber, most of them used the whole body, while few studies have
43	reported the immunoregulatory activity of oligopeptides from sea cucumber.
44	In the present study, we used deionized water and whey protein as controls, and

45	intragastically administered small molecule oligopeptides from sea cucumber (Codonopsis
46	pilosula) to BALB/c mice. The aim was to investigate the immunomodulatory effects of SOP,
47	and to further clarify the mechanism.
48	2. Experimental Section
49	2.1 Treatment of mice with SOP
50	SOP were derived from the root of Jilin sea cucumber (Codonopsis pilosula) by enzymatic
51	hydrolysis and donated by Jilin Taigu Biological Engineering Co., Ltd. (Jilin, China).
52	Oligopeptides sample was purified by high performance liquid chromatography (HPLC,
53	Water Corp., Milford, MA, USA) using a Phenomenex C18 column (10 mm×250 mm), and
54	the molecular weight distribution of the oligopeptides sample was determined by LDI-1700
55	matrix-assisted laser desorption ionisation time-of-flight mass spectrometry
56	(MALDI-TOF-MS) (Linear Scientific Inc., Reno, NV, USA). Then the amino acid
57	composition was analysed with an automatic amino acid analyser (H835-50, Hitachi, Tokyo,
58	Japan), and the amount of free amino acids was measured by the HPLC. After HPLC purity
59	and MALDI-TOF-MS analysis, we found that the content of relative molecular mass more
60	than 2 000 was 2%, between 1 000 and 2 000 was 8.56%, less than 1 000 (small molecule
61	oligopeptides) in SOP was 89.44%, and the contents of free amino acids were 7.496%.
62	Female BALB/c mice (Qualified certificate No., SCXK (JING) 2011-0012) aged eight
63	weeks with the weight of 18-22 g were obtained from the Animal Service of Health Science
64	Center, Peking University. The mice were randomly divided into five groups, i.e., vehicle
65	control group, whey protein control group, SOP 0.15, 0.30 and 0.60 g/kg body weight (g/kg
66	BW) groups. SOP was intragastrically administered to the mice in SOP groups, 0.30 g/kg BW

67	whey protein was intragastically administered to the mice in whey protein control group, and
68	the vehicle control mice were given vehicle only. All of mice were administered of 1 mL/100
69	g BW.
70	The mice were group-housed (five mice per cage) under constant conditions (temperature:
71	23±1 °C, humidity: 40-60%, light and dark cycle:12 h), were fed the AIN-93 diet and allowed
72	free access to deionized water. The mice and food intake were weighed every week. All
73	animals were performed according to the National Institutes of Health guideless for Care and
74	Use of Laboratory Animal (NIH publication No. 85-23, revised 1996) and the protocols were
75	approved by the Institutional Animal Care and Use Committee of Peking University.
76	After 30 days, blood samples of the mice were collected from ophthalmic venous plexus
77	and sacrificed by cervical dislocation. The spleen and thymus were removed and weighed.
78	Spleen and thymus indices were calculated as the ratio of immune organ weight to body
79	weight.
80	2.2 Spleen cell suspension preparation
81	The spleens of the mice (n=10/group) sacrificed under the aseptic condition were washed
82	with Hank's balanced salt solution (HBSS), and crushed gently to isolate the splenocytes, then
83	the splenocytes were passed through a 200-mesh stainless steel sieve. The harvested single
84	cell suspension was washed twice with HBSS and with centrifugation at $180 \times g$ for 10 min.
85	The recovered splenocytes were resuspended in red blood cell lysis buffer (7 g/L NH_4Cl and
85 86	
	The recovered splenocytes were resuspended in red blood cell lysis buffer (7 g/L NH_4Cl and

89 with a hemocytometer using trypan blue dye exclusion method.

90 2.3 Lymphocyte proliferation assay

91	The splenocyte suspension was adjusted to a concentration of 5×10^6 cells/mL, and seeded
92	in 24-well plates (1 mL/well) with/without (control wells) 75 μ L/well Con A as a T cell
93	stimulant. After 68 h incubation at 37 °C under humidified 5% CO_2 –95% air condition, 0.7
94	mL of supernatant per well was removed, then 0.7 mL of RPMI-1640 without FBS and 50 μL
95	of MTT (5 mg/mL) were added into each well, and each tested well was triplicated. Following
96	4 h incubation at 37 °C under humidified 5% CO_2 –95% air condition, 1 mL of 3% (w/w) SDS
97	solution per well was added to the insoluble purple formazan product into a colored solution,
98	and the absorbance at 570 nm was measured using an ELISA reader (Bio-Rad, Hercules, CA).
99	The difference of the absorbance with/without Con A was used to represent the proliferation
100	capacity.
100 101	capacity. 2.4 NK cell activity assay
101	2.4 NK cell activity assay
101 102	2.4 NK cell activity assaySplenic NK cell activity was tested using the lactic acid dehydrogenase (LDH) release
101 102 103	 2.4 NK cell activity assay Splenic NK cell activity was tested using the lactic acid dehydrogenase (LDH) release method[25]. Briefly, mouse splenocytes were used as effector cells at 2×10⁶ cells/mL, and
101 102 103 104	2.4 NK cell activity assay Splenic NK cell activity was tested using the lactic acid dehydrogenase (LDH) release method[25]. Briefly, mouse splenocytes were used as effector cells at 2×10^6 cells/mL, and YAC-1 cells were used as target cells at 4×10^4 cells/mL resulting in an effector/target cell
101 102 103 104 105	2.4 NK cell activity assay Splenic NK cell activity was tested using the lactic acid dehydrogenase (LDH) release method[25]. Briefly, mouse splenocytes were used as effector cells at 2×10^6 cells/mL, and YAC-1 cells were used as target cells at 4×10^4 cells/mL resulting in an effector/target cell ratio of 50:1. After 4 h incubation and 5 min centrifugation at $400 \times g$, LDH substrate mixture

109 2.5 DTH assay, IgM-PFC assay and serum hemolysin level measurement

110 Defibrinated SRBCs were collected from a normal sheep, then washed three times with

111	sterile saline. BALB/c mice (n=10/group) were immunized with 0.2 mL of 2% (v/v) SRBCs
112	(about 1×10^8 cells) per mouse by intraperitoneal injection on day 26.
113	On day 30, the thicknesses of the left rear footpads of mice were determined with a Vernier
114	caliper, then the left rear footpads of these mice were injected with 20 μL of 20% (v/v)
115	SRBCs (about 1×10^8 cells) by subcutaneous injection. After 24 h, the thicknesses of the left
116	rear footpads were measured again. Each measurement was taken three times and the mean
117	calculated. Swelling degree was expressed as the difference in footpad thickness.
118	On day 31, the mice were sacrificed, the spleen cell suspension was prepared for IgM-PFC
119	assay performed by a modified Jerne's method[26]. In brief, twenty microliters of splenocyte
120	suspension in RPMI-1640 complete medium, 50 μL of 10% (v/v) SRBC and 500 μL of agar
121	solution (0.5 g/mL in HBSS, pH 7.2) were mixed, then poured onto slides covered with 0.5%
122	agarose layer. Following incubation at 37 °C, 5% $\rm CO_2$ and adequate reaction with guinea pig
123	complement, the number of plaque production was counted, and the results were expressed as
124	the number of PFC per 10^6 viable splenocytes.
125	Blood samples were collected to measure serum hemolysin level. Half a milliliter of 10%
126	(v/v) SRBC and 1 mL of diluted guinea pig complement (1:10 diluted with buffer solution)
127	were successively added to sample tubes with/without (control) 1 mL of diluted mouse serum
128	(1:200 diluted with SA buffer solution). After 30 min at 37 °C water bath, ice bath terminated
129	the reaction, then centrifugated to collect 1 mL of supernatant, and added into 3 mL of
130	Drabkin's reagent (1.0 g NaHCO ₃ , 0.2 g K ₃ Fe(CN) ₆ and 0.05 g KCN, solved in 1 000 mL
131	stilled water). The positive control was set with 0.25 mL of 10% (v/v) SRBC and 3.75 mL of
132	Drabkin's reagent. Following 10 min reaction, the absorbance at 540 nm was determined, and

133	the serum half hemolysis	value (HC ₅₀) was calcu	alated. HC ₅₀ =(OD _{sam}	ple/OD _{positive control})×200.
-----	--------------------------	-------------------------------------	--	---

134 2.6 Macrophage phagocytosis capacity assay

135	Carbon clearance assay. On day 31, BALB/c mice (n=10/group) were intravenously
136	injected 0.1 mL/10 g BW pre-warmed carbon solution (India ink diluted by four times with
137	sterile saline) via the tail vein. After 2 and 10 min, 20 μ L of blood samples were collected
138	from ophthalmic venous plexus into 2 mL of 0.1% (w/v) Na_2CO_3 solution, then the
139	absorbance at 600 nm was measured. At the same time, these mice were sacrificed, then the
140	spleen and liver were removed and weighed, and the carbon clearance capacity was expressed
141	as carbon clearance index (α , Δ OD/time). α =Body weight× ³ $\sqrt{k/(liver weight+spleen weight)}$.
142	$k = (lgOD_1 - lgOD_2)/(t_2 - t_1).$
143	CRBCs phagocytosis capacity assay. On day 31, BALB/c mice (n=10/group) were
144	intraperitoneally immunized with 1 mL of 20% (v/v) CRBCs obtained from White Leghorn
145	cocks. After 30 min, the mice were sacrificed and peritoneal cells were harvested by
146	peritoneal lavage with 2 mL of saline, then 1 mL of cell-rich lavage fluid was pipetted and
147	smeared on glass slides. Following 30 min incubation at 37 °C, non-adherent cells were
148	washed off with saline, and the macrophages were fixed with acetone:methanol (1:1, v/v),
149	then stained with 4% (v/v) Giemsa-PBS solution. The percentages of pahgocytes
150	phagocytosed CRBCs per 100 macrophages were expressed as the phagocytic rate, and the
151	number of phagocytosed CRBCs per 100 macrophages was counted and expressed as the
152	phagocytic index.
153	2.7 Splenic T lymphocyte subpopulations assay by flow cytometry

154 The splenocyte suspension was adjusted to a concentration of 1×10^6 cells/mL for splenic T

155	lymphocyte subpopulations assay. The splenocyte surface markers were stained with
156	PerCP-Cy5.5-conjugated anti-mouse CD3 (BioLegend, San Diego, CA, USA) to determine T
157	lymphocyte frequency in spleen, and stained with FITC-conjugated anti-mouse CD4,
158	APC-conjugated anti-mouse CD8a and PE-conjugated anti-mouse CD25 (BioLegend, San
159	Diego, CA, USA) to determine the frequencies of helper T (Th, CD4 ⁺), cytotoxic T (Tc, CD8 ⁺)
160	and regulatory T lymphocytes (Treg, CD25 ⁺). After blocking Fc receptors, the splenocytes
161	were labeled fluorescein-conjugated antibodies or isotype controls for 30 min, followed by
162	two washed with cell staining buffer (BioLegend), then the labelled cells were resuspended in
163	cell staining buffer. FACSCanto instrument settings were adjusted using the control cells
164	stained with isotype-matched antibodies. The fluorescence activated cell sorting (FACS) was
165	performed using a FACSCanto [™] flow cytometer (BD Biosciences), and the data were
166	analyzed using FACSDiva and CellQuest software (BD Biosciences).
166 167	analyzed using FACSDiva and CellQuest software (BD Biosciences).2.8 Multiplex sandwich immunoassays of cytokine and immunoglobulin
167	2.8 Multiplex sandwich immunoassays of cytokine and immunoglobulin
167 168	2.8 Multiplex sandwich immunoassays of cytokine and immunoglobulin Blood samples were centrifuged at 2 000 r/min for 10 min to collect the serum. Serum
167 168 169	 2.8 Multiplex sandwich immunoassays of cytokine and immunoglobulin Blood samples were centrifuged at 2 000 r/min for 10 min to collect the serum. Serum samples were stored at -80 °C until cytokine and immunoglobulin analysis using the
167 168 169 170	 2.8 Multiplex sandwich immunoassays of cytokine and immunoglobulin Blood samples were centrifuged at 2 000 r/min for 10 min to collect the serum. Serum samples were stored at -80 °C until cytokine and immunoglobulin analysis using the Luminex xMAP® platform.
167 168 169 170 171	 2.8 Multiplex sandwich immunoassays of cytokine and immunoglobulin Blood samples were centrifuged at 2 000 r/min for 10 min to collect the serum. Serum samples were stored at -80 °C until cytokine and immunoglobulin analysis using the Luminex xMAP® platform. Cytokine and immunoglobulin levels were determined from the serum samples using the
167 168 169 170 171 172	 2.8 Multiplex sandwich immunoassays of cytokine and immunoglobulin Blood samples were centrifuged at 2 000 r/min for 10 min to collect the serum. Serum samples were stored at -80 °C until cytokine and immunoglobulin analysis using the Luminex xMAP® platform. Cytokine and immunoglobulin levels were determined from the serum samples using the multiplex sandwich immunoassays with the Milliplex Mouse 11 Cytokine/ 5 Immunoglobulin
 167 168 169 170 171 172 173 	 2.8 Multiplex sandwich immunoassays of cytokine and immunoglobulin Blood samples were centrifuged at 2 000 r/min for 10 min to collect the serum. Serum samples were stored at -80 °C until cytokine and immunoglobulin analysis using the Luminex xMAP® platform. Cytokine and immunoglobulin levels were determined from the serum samples using the multiplex sandwich immunoassays with the Milliplex Mouse 11 Cytokine/ 5 Immunoglobulin Premixed Kit (Millipore; Billerica, MA) and established protocols in accordance with

177	the protocols provided by the manufacturer. Finally, the 96-well plate was read on the
178	MAGPIX® instrument (Luminex, Austin, Texas, USA) based on magnetic-bead technology
179	and level of magnetic field to separate the beads. The following cytokines/immunoglobulins
180	were analyzed using the Milliplex Analyst 5.1 software. Serum cytokine and immunoglobulin
181	concentrations were calculated using a standard curve derived from the reference cytokine
182	concentrations supplied by the manufacturer. A five-parameter model was used to calculate
183	final concentrations and values. The lower levels of detection for the 11 cytokines were
184	between 0.74 and 23.11 pg/mL and for the five immunoglobulins were between 0.37 and 3.95 $$
185	ng/mL. Serum aliquots had not undergone any previous freeze/thaws cycle.
186	2.9 Enzyme-linked imunosorbent assay for small intestinal SIgA
187	After the visceral organs of mice were excised and weighted, the small intestine was
188	removed and flushed with 2 mL cold calcium- and magnesium-free Hank's balanced salt
189	solution to remove intestinal contents [27]. The washing fluids were collected and stored at
190	-80 °C for the analysis of intestinal SIgA level by ELISA using a polyclonal goat anti-mouse
191	IgA to coat the plate, a purified mouse IgA as standard, and a horseradish
192	peroxidase-conjugated goat anti-mouse IgA [28].
193	2.10 Statistical analysis
194	Data were expressed as mean ± standard deviation (SD) and analyzed by one-way analysis
195	of variance (ANOVA) test, then multiple comparison of least-significant difference (equal
196	variances assumed) or Dunnett's T3-test (equal variances not assumed) was used to evaluate
197	the difference of parametric samples among groups. Final analyses of Luminex data for

198 cytokines considered data that fell within the detection limits of the Luminex assay.

199	Concentrations obtained below the sensitivity limit of detection (LOD) of the method were
200	calculated as LOD/2 for statistical comparisons as reported in previous studies [29-31]. If raw
201	data or log-transformed data did not meet the statistical criteria for the assumption of
202	normality showing equal variance, the nonparametric Kruskal-Wallis test was used to
203	determine statistical differences, and the adjusted significances were calculated and adopted
204	to decrease the probability of type 1 error. Differences were considered to be statistically
205	significant at P<0.05. All analyses were carried out using IBM SPSS Statistics version 20.0
206	and GraphPad Prism 5 Software.
207	3. Results
207 208	3. Results3.1 Effects of SOP on body weight and immune organ indices
208	3.1 Effects of SOP on body weight and immune organ indices
208 209	3.1 Effects of SOP on body weight and immune organ indices We found that daily oral administration of SOP did not cause any mortality and no significant
208 209 210	3.1 Effects of SOP on body weight and immune organ indicesWe found that daily oral administration of SOP did not cause any mortality and no significantchanges in final body weight and the indices of spleen and thymus, suggesting that SOP did not

Table 1. Effects of SOT on body weight and miniate organ malees in mile				
Groups	Initial body	Final body	Spleen index	Thymus index
	weight (g)	weight (g)	$(mg/g)^{\sharp}$	$(mg/g)^{\sharp}$
Vehicle control	18.80±1.10	20.66±1.44	4.55±0.49	1.71±0.41
Whey protein control	18.77±0.81	20.06±1.07	4.50±0.64	1.52±0.38
SOP 0.15 g/kg BW	18.81±1.25	21.07±0.58	4.67±0.26	1.79±0.47
SOP 0.30 g/kg BW	18.79±0.95	20.21±1.37	4.35±0.36	1.80±0.55
SOP 0.60 g/kg BW	18.80±1.17	20.32±1.05	4.67±0.33	1.47±0.43

214	The data were presented as the means \pm SD (n=10 per group), which were analysed by
215	one-way analysis of variance (ANONA) test, and followed by least-significant difference for
216	post-hoc test between multiple groups. * $p < 0.05$ versus vehicle control group, and # $p < 0.05$ versus
217	whey protein control group.
218	[#] Spleen index: Spleen weight/body weight; Thymus index: Thymus weight/body weight.
219	3.2 Effects of SOP on cell-mediated immunity
220	To evaluate the cell-mediated immunity in mice, we performed splenic lymphocyte
221	proliferation and delayed-type hypersensitivity (DTH) to sheep red blood cells (SRBC) (Figure 1).
222	The treatment with SOP 0.15, 0.30 and 0.60 g/kg BW significantly increased the ConA-stimulated
223	proliferation of splenic lymphocyte compared with vehicle control and whey protein control
224	groups (Figure 1A). The increase of footpad thickness of each mouse in 24 h was significantly
225	enhanced by 30%, 44%, 59% and 75% in whey protein control, SOP 0.15, 0.30 and 0.60 g/kg BW
226	groups, respectively, compared with vehicle control group, and the treatment with SOP 0.30 and
227	0.60 g/kg BW significantly increased by 22% and 35% compared with whey protein control group
228	(Figure 1B).

229 230

Figure 1. Effects of SOP on cell-mediated immunity in mice. (A) Proliferation response of

231 splenic lymphocyte to ConA; (B) Delayed-type hypersensitivity to SRBC. Values represented the

232	mean \pm SD (n=10 per group), which were analysed by ANONA test, and followed by
233	least-significant difference for post-hoc test between multiple groups. * $p < 0.05$ versus vehicle
234	control group, and $\# p < 0.05$ versus whey protein control group.
235	3.3 Effects of SOP on humoral immunity
236	The effects of SOP on the humoral immunity in mice were assessed by IgM antibody response
237	of spleen to SRBC [the plaque-forming cells (IgM-PFCs) assay] and serum hemolysin level (HC_{50})
238	in mice (Figure 2). The value of PFC per 5×10^6 spleen cells was significantly increased by 34%,
239	37% and 43% in SOP 0.15, 0.30 and 0.60 g/kg BW groups compared with vehicle control, and by
240	17%, 19% and 25% compared with whey protein control group, respectively (Figure 2A).
241	Moreover, the mice treated with whey protein had a slight improvement in the value of PFC
242	compared with vehicle control group ($p=0.093$). As shown in Figure 2B, the treatment with whey
243	protein, SOP 0.15, 0.30 and 0.60 g/kg BW significantly enhanced HC ₅₀ by 12%, 21%, 24% and 23%
244	compared with vehicle control group, respectively. The treatment with SOP 0.15, 0.30 and 0.60
245	g/kg BW also caused the increase of HC ₅₀ by 8% (p =0.077), 11% (p <0.05) and 10% (p <0.05)
246	compared with whey protein control group, respectively.

247

248 Figure 2. Effects of SOP on humoral immunity in mice. (A) IgM antibody response of spleen to

249 SRBC; (B) Serum hemolysin level (HC₅₀). Values represented the mean \pm SD (n=10 per group),

Food & Function Accepted Manuscript

250	which were analysed by ANONA test, and followed by least-significant difference for post-hoc
251	test between multiple groups. * $p < 0.05$ versus vehicle control group, and # $p < 0.05$ versus whey
252	protein control group.
253	3.4 Effects of SOP on macrophage phagocytosis
254	The phagocytosis capacity of peritoneal cavity phagocytes was studied through carbon
255	clearance assay and chicken red blood cells (CRBCs) phagocytosis capacity assay (Figure 3).
256	Macrophage phagocytosis in carbon clearance assay was significantly increased by 11%, 35%, 33%
257	and 15% in whey protein control and SOP 0.15, 0.30 and 0.60 g/kg BW groups compared with
258	vehicle control group, and by 22% and 20% in SOP 0.15 and 0.30 g/kg BW groups compared with
259	whey protein control group, respectively (Figure 3A). From phagocytic capacity assay of
260	peritoneal cavity phagocytes (Figure 3B), SOP 0.15, 0.30 and 0.60 g/kg BW significantly
261	increased phagocytic rate by 29%, 24% and 24% compared with vehicle control group,
262	respectively, and the treatment with SOP 0.15 g/kg BW significantly enhanced phagocytic rate by
263	25% compared with whey protein control groups. In addition, SOP 0.15, 0.30 and 0.60 g/kg BW
264	significantly enhanced phagocytic index by 30%, 23% and 26% compared with vehicle control
265	group, and by 20%, 13% and 17% compared with whey protein control group, respectively.

267 Figure 3. Effects of SOP on macrophage phagocytosis in mice. (A) Macrophage phagocytosis in mice

268	analyzed by carbon clearance assay; (B) Phagocytic rate of peritoneal cavity phagocytes in mice; (C)
269	Phagocytic index of peritoneal cavity phagocytes in mice. Values represented the mean \pm SD (n=10 per
270	group), which were analysed by ANONA test, and followed by least-significant difference for post-hoc
271	test between multiple groups. * $p < 0.05$ versus vehicle control group, and # $p < 0.05$ versus whey protein
272	control group.
273	3.5 Effects of SOP on NK cell activity

- Besides macrophage phagocytosis, NK cell activity was another important function for innate immune system. We observed that the mice treated with SOP 0.30 and 0.60 g/kg BW had a significant increase in NK cell activity by 57% and 63% compared with vehicle control group
- 277 (Figure 4).

278

Figure 4. Effects of SOP on NK cell activity in mice. Values represented the mean \pm SD (n=10 per

group), which were transferred to $\sin^{-1}\sqrt{P}$ (*P* was NK cell activity) and analysed by ANONA test, and

followed by least-significant difference for post-hoc test between multiple groups. * p < 0.05 versus

- vehicle control group, and # p < 0.05 versus whey protein control group.
- 283 3.6 Effects of SOP on splenic T lymphocyte subpopulations

Given that SOP may increase the activities of T cells by altering the quantities of T cells or

285	their subpopulations, we conducted phenotypic analysis of total T cells and T cells subsets (Table
286	2). Compared with vehicle control, the significant increase in the percentage of total T cells $(CD3^+)$
287	was observed in mice treated with SOP 0.30 and 0.60 g/kg BW, and the treatment with SOP 0.15
288	g/kg BW showed a trend toward increasing the percentage of CD3 ⁺ ($p=0.074$). In contrast to whey
289	protein, the treatment with SOP 0.30 (p <0.05) and 0.60 g/kg BW (p =0.075) improved the
290	percentage of CD3 ⁺ . We also observed a parallel increase in the percentage of CD3 ⁺ CD4 ⁺ in mice
291	treated with SOP 0.30 and 0.60 g/kg BW compared with vehicle control (p <0.05). A significant
292	change in the percentage of CD3 ⁺ CD8 ⁺ was absent among all groups. There was a trend toward
293	enhancing the ratio of $CD4^+/CD8^+$ in whey protein control (<i>p</i> =0.070) and SOP 0.30 g/kg BW
294	(p =0.064) groups. The treatment with whey protein, SOP 0.15, 0.30 and 0.60 g/kg BW
295	significantly increased the ratio of CD4 ⁺ CD25 ⁺ by 87%, 52%, 36% and 74% compared with
296	vehicle control, and whey protein significantly enhanced the ratio of CD4 ⁺ CD25 ⁺ compared with
297	SOP 0.15 and 0.30 g/kg BW.

298

Table 2. Effects of SOP on splenic T lymphocyte subpopulations

protein, the treatment with SOP 0.30 (p<0.05) and 0.60 g/kg BW (p=0.075) improved the								
percentage of CD3 ⁺ . We	e also observed a p	parallel increase in th	e percentage of C	CD3 ⁺ CD4 ⁺ in mice				
treated with SOP 0.30 a	and 0.60 g/kg BW	compared with vehic	the control ($p < 0.0$	5). A significant				
change in the percentag	ge of CD3 ⁺ CD8 ⁺ w	as absent among all	groups. There wa	s a trend toward				
enhancing the ratio of C	CD4 ⁺ /CD8 ⁺ in whe	y protein control (p=	=0.070) and SOP	0.30 g/kg BW				
(<i>p</i> =0.064) groups. The	treatment with whe	ey protein, SOP 0.15	, 0.30 and 0.60 g/	kg BW				
significantly increased	the ratio of $CD4^+C$	CD25 ⁺ by 87%, 52%.	36% and 74% co	mpared with				
treated with SOP 0.30 and 0.60 g/kg BW compared with vehicle control (p <0.05). A significant change in the percentage of CD3 ⁺ CD8 ⁺ was absent among all groups. There was a trend toward enhancing the ratio of CD4 ⁺ /CD8 ⁺ in whey protein control (p =0.070) and SOP 0.30 g/kg BW (p =0.064) groups. The treatment with whey protein, SOP 0.15, 0.30 and 0.60 g/kg BW significantly increased the ratio of CD4 ⁺ CD25 ⁺ by 87%, 52%, 36% and 74% compared with vehicle control, and whey protein significantly enhanced the ratio of CD4 ⁺ CD25 ⁺ compared with SOP 0.15 and 0.30 g/kg BW.								
vehicle control and wh	ev protein signific	antly enhanced the ra	atio of CD4 ⁺ CD2	5' compared with	vehicle control, and whey protein significantly enhanced the ratio of CD4 ⁺ CD25 ⁺ compared with			
		antly enhanced the ra	atio of CD4 ⁺ CD2	5' compared with				
vehicle control, and wh SOP 0.15 and 0.30 g/kg		antly enhanced the ra	atio of CD4 ⁺ CD2	5' compared with				
SOP 0.15 and 0.30 g/kg	gBW.	antly enhanced the ra						
SOP 0.15 and 0.30 g/kg	g BW. 2. Effects of SOP of	on splenic T lymphod			CD4 ⁺ CD25 ⁺			
SOP 0.15 and 0.30 g/kg	gBW.		cyte subpopulatio	ns	CD4 ⁺ CD25 ⁺ (%)			
SOP 0.15 and 0.30 g/kg	g BW. 2. Effects of SOP of	on splenic T lymphod	cyte subpopulatio	ns				
SOP 0.15 and 0.30 g/kg Table	g BW. 2. Effects of SOP of CD3 ⁺ (%)	on splenic T lymphod CD3 ⁺ CD4 ⁺ (%)	cyte subpopulatio CD3 ⁺ CD8 ⁺ (%)	ns CD4 ⁺ /CD8 ⁺	(%)			
SOP 0.15 and 0.30 g/kg Table Groups Vehicle control	2. Effects of SOP of CD3 ⁺ (%) 38.47±4.28	cD3 ⁺ CD4 ⁺ (%)	CD3 ⁺ CD8 ⁺ (%) 13.37±2.51	ns CD4 ⁺ /CD8 ⁺ 2.05±0.39	(%) 7.98±2.57			
SOP 0.15 and 0.30 g/kg Table Groups Vehicle control Whey protein control	2. Effects of SOP of CD3 ⁺ (%) 38.47±4.28 39.26±3.87	on splenic T lymphod CD3 ⁺ CD4 ⁺ (%) 27.23±2.82 28.28±2.71	cyte subpopulatio CD3 ⁺ CD8 ⁺ (%) 13.37±2.51 12.58±1.83	ns CD4 ⁺ /CD8 ⁺ 2.05±0.39 2.26±0.27	(%) 7.98±2.57 14.90±1.54*			

The data were presented as the means \pm SD (n=10 per group), which were analysed by ANONA

300	test, and followed by least-significant difference for post-hoc test between multiple groups. * p <0.05
301	versus vehicle control group, and # $p < 0.05$ versus whey protein control group.
302	3.7 Effects of SOP on serum cytokine concentrations
303	The previous study demonstrated that bioactive peptide enhanced Th cells to produce
304	increased amounts of various cytokines [7]. Therefore, we investigated serum cytokine
305	concentrations in mice. Compared with vehicle control, mice treated with whey protein
306	significantly enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-5
307	concentrations in serum, and the treatment with SOP 0.30 g/kg BW showed an increasing trend in
308	serum IL-6 concentration ($p=0.063$), but the depression were observed in IL-5 in mice treated with
309	SOP 0.30 and 0.60 g/kg BW (p <0.05) and in tumor necrosis factor (TNF- α) in mice treated with
310	SOP 0.15 g/kg BW ($p=0.058$) (Figure 5). In contrast to whey protein, the treatment with SOP
311	significantly reduced serum GM-CSF, IL-5 and TNF- α concentrations of mice. There were no
312	significant differences in IL-1 α , IL-2, IL-4, IL-10, IL-12p70, IL-17A and interferon (IFN)- γ
313	concentrations among all groups.

314

Figure 5. Effects of SOP on serum cytokine concentrations in mice. Values represented the mean ±

316 SD (n=10 per group), which were analysed by ANONA test, and followed by least-significant

Food & Function Accepted Manuscript

Food & Function

317	difference for post-hoc test between multiple groups. GM-CSF concentration was analysed by the
318	nonparametric Kruskal-Wallis test was used to determine statistical differences, and pairwise
319	comparisons were used for post-hoc test between multiple groups. To decrease the probability of
320	Type 1 error, the adjusted significances were calculated. * $p < 0.05$ versus vehicle control group,
321	and $\# p < 0.05$ versus whey protein control group.
322	3.8 Effects of SOP on serum immunoglobulin levels
323	Immunoglobulin A (IgA) is the most abundant antibody isotype in mucosal secretions and
324	owes its success in frontline immunity to its ability to undergo transcytosis across epithelial cells
325	[8]. Antibodies of the IgG isotype, including IgG1, IgG2a, IgG2b and IgG3, play a crucial role in
326	the cascade of the activation of humoral immune system, resulting in the clearance of invading
327	microbes and the generation of long lasting immunity [9]. IgM has the key properties to eliminate
328	infection in primary immune responses and promote the removal of apoptotic cells [9]. To
329	investigate the pattern of SOP affecting humoral immunity, we conducted the serum
330	immunoglobulin levels. As showed in Figure 6, we observed that mice treated with SOP 0.30 and
331	0.60 g/kg BW had significant increases in serum IgG1, IgG2b and IgG3 levels, and mice treated
332	with SOP 0.30 g/kg BW also had significant increase in serum IgG2a level. The treatment with
333	SOP 0.15 g/kg BW had significant increases in IgG1 and IgG2a levels and had a slight increase in
334	IgG2b level ($p=0.079$). There were no significant differences in serum immunoglobulin levels
335	between whey protein control group and vehicle control group. In contrast to whey protein, the
336	significant increases in IgA, IgG2a, IgG2b and IgM levels were observed in mice treated with
337	SOP 0.30 g/kg BW, and the treatment of SOP 0.60 g/kg BW showed a trend toward enhancing

338 IgG2b level (*p*=0.062).

340 Figure 6. Effects of SOP on serum immunoglobulin levels in mice. The data were presented as the

341 means \pm SD (n=10 per group), which were analysed by ANONA test, and followed by

least-significant difference for post-hoc test between multiple groups. * p<0.05 versus vehicle

- 343 control group, and # p < 0.05 versus whey protein control group.
- 344 3.9 Effects of SOP on small intestinal secretory IgA (SIgA) level
- 345 SIgA plays an important role in the protection and homeostatic regulation of intestinal,
- respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of
- 347 the body; and this primary function of SIgA is referred to as immune exclusion, a process that
- 348 limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable
- 349 mucosal barriers [10]. We investigated small intestinal SIgA level to confirm the effects of SOP on
- 350 mucosal immunity. The significant increase in SIgA level was observed in mice treated with SOP
- 351 0.15, 0.30 and 0.60 g/kg BW compared with vehicle control (Figure 7). In addition, there was an
- increasing tread in SOP 0.15 (*p*=0.080) and 0.30 g/kg BW (*p*=0.067) groups compared with whey
- 353 protein control.

354

Figure 7. Effects of SOP on small intestinal SIgA level in mice. Values represented the mean ± SD
(n=10 per group), which were analysed by ANONA test, and followed by least-significant

357 difference for post-hoc test between multiple groups. * p < 0.05 versus vehicle control group, and # 358 p < 0.05 versus whey protein control group.

359 4 Discussion

360	Derived from enzymatic hydrolysis, SOP, in which major components were small molecule
361	oligopeptides, is potential as immunomodulator. In vertebrates, two types of immunity are used to
362	protect the host from infections: innate and adaptive. The innate immune system is genetically
363	programmed to detect invariant features of invading microbes, and the adaptive immune system,
364	comprised on T and B lymphocytes, employs antigen receptors that are not encoded in the
365	germ-line but generated de novo in each organism [7]. Adaptive immune response included two
366	types: humoral immunity and cell-mediated immunity [11, 12]. Innate immune cells include
367	dendritic cells, macrophages, and neutrophils, among others [13], and we investigated innate
368	immune response via the macrophage phagocytosis and NK cell activity. The present study
369	demonstrated that SOP could improve the innate immunity by enhancing the functions of
370	cell-mediated immunity and humoral immunity, and improve adaptive immune responses by

371	increasing macrophage phagocytosis and NK cell activity. Furthermore, the immunomodulatory
372	effects of SOP were generally better than those of whey protein, suggesting that SOP would be a
373	potential immunomodulator. Although the mechanism underlying the immunomodulatory effects
374	of food-derived bioactive peptides remains uncertain, there is accumulating evidence that they
375	may enhance lymphocyte proliferation and antibody synthesis [14], macrophages function [15, 16],
376	humoral immune response, CD4 ⁺ T helper percentage, cytokines [7] and NK activity [17]. We also
377	observed that the treatment of SOP increased cell-mediated immunity by enhancing
378	ConA-stimulated proliferation of splenic lymphocyte and delayed-type hypersensitivity to SRBC,
379	as well as humoral immunity by increasing IgM antibody response of spleen to SRBC and serum
380	hemolysin level. These results were consistent with previous data, for example, marine
381	oligopeptide preparation from Chum Salmon (Oncorhynchus keta) could significantly increase
382	lymphocyte proliferation and the number of plaque-forming cells (antibody production) [7].
383	T lymphocytes coordinate the immune response and play a central role in cell-mediated
384	immunity [11]. T lymphocyte (CD3 ^{$+$}) subsets include two main lymphocyte T subsets - helper
385	$(CD4^{+})$ T cells and suppressor/cytotoxic $(CD8^{+})$ T, and their ratio $(CD4^{+}/CD8^{+})$ is the critical
386	indicator to evaluate the homeostasis of immune system. CD4 ⁺ T cells can be divided to two
387	distinct subsets of effector cells: T helper type 1 (Th1) cells which produces inflammatory
388	cytokines (IL-2, IL-12, IFN-7, GM-CSF and TNF) inducing cell-mediated immune responses, or T
389	helper type 2 (Th2) cells which secrets cytokines as like IL-4, IL-5, IL-6 and IL-10 inducing
390	humoral or allergic responses [18, 19]. In our study, SOP significantly increased the percentages of
391	CD3^+ and CD4^+ T cells in agreement with the results in cell-mediated immunity assays. We
392	further performed cytokine profile measurement using new multiplex sandwich immunoassays

393	technology. We found that the increases in inflammatory cytokines secreted by Th1 were absent,
394	revealing that the elevated function of cell-mediated immunity might be due to the increase of
395	effector cells, as like CD3 ⁺ and CD4 ⁺ T cells. In addition, although serum IL-5 in mice treated
396	with SOP 0.30 and 0.60 g/kg BW was depressed, serum IL-6, derived from Th2 cells, in mice
397	treated with SOP 0.30 g/kg BW had an increasing trend compared with vehicle control, and that
398	might partly contribute to the improvement of humoral immunity. In contrast, the mice treated
399	with whey protein had an increased GM-CSF and IL-5 concentrations, probably inducing the
400	increment of DTH, HC_{50} and macrophage phagocytosis in carbon clearance assay. Moreover, the
401	previous study demonstrated that human CD4 ⁺ CD25 ⁺ regulatory T cells (Tregs) could suppress
402	both proliferation and cytokine production, and this suppression was mediated by cell-to-cell
403	contact but not by a humoral factor or the inhibition of antigen-presenting cell [20]. In the present
404	study, we obtained significant enhancement in the percentage of CD4 ⁺ CD25 ⁺ in whey protein and
405	SOP groups, which might result to the decreased IL-5 concentration in SOP 0.30 and 0.60 g/kg
406	BW groups. Therefore, Tregs were critical in regulating the function of other immune cells and
407	preventing potentially harmful autoimmune responses [21].
408	Besides secreted cytokines from Th2 cells, the antibody responses of IgM, IgG and IgA were
409	also belonged to the effector classes of humoral immune responses. IgA antibodies play an
410	important role in mucosal immunity. IgG, the smallest but most common antibody, is very critical
411	in promoting the phagocytosis of monocyte macrophages to defense against bacterial and viral
412	infections. IgM, the largest antibody, is the first type of antibody made in response to an
413	early-stage infection, and also causes other immune system cells to destroy foreign substances.
414	When the host is attacked, antimicrobial peptides, secretory IgA and circulatory IgM, as the

415	low-cost effector mechanisms of defense mechanisms of immune system, are expressed
416	constitutively; when they are insufficient to contain pathogens, the response of next lowest cost,
417	tissue-resident macrophages, is induced; and when this response is insufficient, IgG1 is induced,
418	and so on. The order of next engagement is IFN-y-activated macrophages, neutrophils, IgG2a and
419	IgG2b, CTL and Th17 [22]. A previous study has shown that oral administration of
420	β -casomorphins, opioid like bioactive peptides released on digestion of β -casein of milk,
421	significantly increased humoral immune response (IgE, IgG and IgG1/IgG2a in intestinal fluid)
422	[23]. We also observed that the treatment of SOP induced major increases in small intestinal SIgA,
423	serum IgG1, IgG2a, IgG2b and IgG3 concentrations, which may be the main effectors
424	contributing to the improvement of humoral immune, macrophage phagocytosis and NK cell
425	activity. This might be attributed to the protection of SIgA on gut immune system, the antibody
426	functions of IgG, and the interaction of innate immune and adaptive immune. The cells of innate
427	immune system, such as mast cells, monocytes, macrophages, eosinophils, and neutrophils,
428	including a small population of NK cells express activating and inhibitory Fcy receptors
429	simultaneously, thereby setting a threshold for cell activation by IgG, which prevents unwanted
430	initiation of potentially dangerous effector functions such as phagocytosis, antibody-dependent
431	cellular cytotoxicity (ADCC), degranulation, and release of various immunoregulatory molecules
432	[9]. In addition, cytokines or activated complement proteins released during pro-inflammatory
433	reactions can also modulate this threshold [24, 25].
434	4. Conclusions

The data presented in the current study clearly demonstrated that oral administration of SOPhad the potential to increase the innate immune responses via macrophage phagocytosis and NK

437	cell activity and enhance the	he adaptive immune	responses via cel	l-mediated immunity and humoral
-----	-------------------------------	--------------------	-------------------	---------------------------------

- 438 immunity, which most likely attributed to the stimulation of Th cells, cytokines secretion and
- antibody production. It is supposed from these results that SOP could be a candidate
- 440 immunomodulator to improve immune function of immunocompromised persons or cancer
- 441 patients.

442 Acknowledgements

- 443 The authors would like to acknowledge *Jilin Taigu* Biological Engineering Co., Ltd. (*Jilin*,
- 444 China) for providing the samples used in this study and the Department of Toxicology of Peking
- 445 University for donating the YAC-1 cells. This research was supported by the foundation (No.
- 446 2006BAD27B08) from the Ministry of Science and Technology of the People's Republic of China.

447 **Conflict of interest**

448 The authors declare no conflict of interest.

449 References

450	1.	R. Hartmann and H. Meisel, Current opinion in biotechnology, 2007, 18, 163-169.
451	2.	B. A. Murray and R. J. FitzGerald, Current pharmaceutical design, 2007, 13, 773-791.
452	3.	H. Meisel, BioFactors (Oxford, England), 2004, 21, 55-61.
453	4.	L. Olivera-Castillo, J. Pérez-Vega, J. Á. Gómez-Ruiz and B. Hernández-Ledesma, Annals of
454		Nutrition and Metabolism, 2011, 58, 121.
455	5.	S. Bordbar, F. Anwar and N. Saari, Marine drugs, 2011, 9, 1761-1805.
456	6.	J. A. Pérez-Vega, L. Olivera-Castillo, J. Á. Gómez-Ruiz and B. Hernández-Ledesma, Journal of
457		Functional Foods, 2013, 5, 869-877.
458	7.	R. Yang, Z. Zhang, X. Pei, X. L. Han, J. B. Wng, L. L. Wang, Z. Long, X. Y. Shen and Y. Li, Food
459		Chemistry, 2009, 113, 464-470.
460	8.	A. Cerutti, K. Chen and A. Chorny, Annual review of immunology, 2011, 29, 273-293.
461	9.	F. Nimmerjahn and J. V. Ravetch, Immunological reviews, 2010, 236, 265-275.
462	10.	B. Corthesy, Frontiers in immunology, 2013, 4, 185.
463	11.	A. Ahmed, B. Saha, A. Patwardhan, S. Shivaprasad and D. Nandi, Resonance, 2009, 14,
464		610-621.
465	12.	A. Ahmed, B. Saha, A. Patwardhan, S. Shivprasad and D. Nandi, Resonance, 2009, volume
466		14, 455-471(417).
467	13.	A. Iwasaki and R. Medzhitov, Science (New York, N.Y.), 2010, 327, 291-295.
468	14.	S. F. Gauthier, Y. Pouliot and D. Saint-Sauveur, International Dairy Journal, 2006, 16,

469		1315-1323.
470	15.	F. Yamauchi and K. Suetsuna, Journal of Nutritional Biochemistry, 1993, 4, 450-457.
471	16.	M. Takahashi, S. Moriguchi, M. Yoshikawa and R. Sasaki, Biochemistry and molecular
472		biology international, 1994, 33, 1151-1158.
473	17.	N. Horiguchi, H. Horiguchi and Y. Suzuki, Bioscience, biotechnology, and biochemistry, 2005,
474		69, 2445-2449.
475	18.	S. L. Constant and K. Bottomly, Annual review of immunology, 1997, 15, 297-322.
476	19.	I. Raphael, S. Nalawade, T. N. Eagar and T. G. Forsthuber, Cytokine, 2015, 74, 5-17.
477	20.	T. Azuma, T. Takahashi, A. Kunisato, T. Kitamura and H. Hirai, Cancer research, 2003, 63,
478		4516-4520.
479	21.	D. A. Randolph and C. G. Fathman, Annual review of medicine, 2006, 57, 381-402.
480	22.	A. Iwasaki and R. Medzhitov, Nature immunology, 2015, 16, 343-353.
481	23.	M. R. Ul Haq, R. Kapila and V. Saliganti, Journal of Functional Foods, 2014, 8, 150-160.
482	24.	F. Nimmerjahn and J. V. Ravetch, Immunity, 2006, 24, 19-28.
483	25.	R. E. Schmidt and J. E. Gessner, Immunology letters, 2005, 100, 56-67.
484		

485