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Abstract

Bioactivity-guided fractionation of an ethanol-solel extract from the pericarps of
Garcinia mangostana, using tert-butyl hydroperoxide t{BHP) induced oxidative
damage in human normal hepatocytes (HL-7702), tedhe identification of 10
known xanthones. Among them;mangostin Y-Man) exhibited the most potent
activity to attenuatet-BHP induced hepatocytes injuryy-Man significantly
amelioratedt-BHP induced reactive oxygen species accumulatioitpchondrial
membrane depolarization and cell nuclei morpholdggnge in HL-7702 cell$-BHP
decreased intracellular key enzymes levels, inomdiglutamate oxaloacetate
transaminase and glutamate pyruvate transaminasehwas totally reversed by
y-Man. Moreover,;y-Man significantly decreased the level of lipid g@adation and
increased the levels of superoxide dismutase addcesl glutathione, resulting in
alleviative oxidative stress. The above results gesgy-Man as a potential
hepatoprotective agent mBHP induced oxidative injury, which may benefiteth

further application o6G. mangostana as healthy food.

Keywords: Garcinia mangostana, Xxanthones, y-mangostin, hepatoprotection,

oxidative stress
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40  This study identifiedy-mangostin from the pericarps Gfarcinia mangostana as a

41  potential hepatoprotective agent.
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Introduction

Oxidative stress is occurred when excessive reactixygen species (ROS)
production and/or cellular anti-oxidant defense teys unbalanced, which has
inevitably influence on cell function and even lgactell apoptosis or necro<idt is
widely recognized excessive amount of ROS playshgortant role in developing
some chronic diseas@d.iver is likely injured at the condition of oxidee stress
when drinking excessive amount of alcohol, attagkiry hepatic virus or intaking
some drugé.® Therefore, agents ameliorating oxidative stresg bmang great benefit
to prevent and/or treat liver diseases.

Organic hydroperoxide, such #st-butyl-hydroperoxide t(BHP), is extensively
used to induce oxidative stregs vitro and in vivo, and to make assessment of
anti-oxidative capacity of extracts and compouhdsBHP is converted into free
radicals by cytochrome P-450, which subsequenitjate lipid peroxidation, affect
cell integrity, induce reactions with cellular moldes, damage DNA, and finally
result in cytotoxicity.

Garcinia mangostana L. (Clusiaceae) is a well-known tropical plant, dely
distributed in Southeastern Asia, such as Thailémdbnesia, Myanmarand and Sri
Lanka® The fruit, mangosteen, is referred to the ‘queériraits’ not only for its
special tasty juice but also for its extraordinargdicinal values. The pericarps @f
mangostana was traditionally used for the treatment of diaghinflammation, and

ulcers in many countri€s Xanthones, the most characteristic constituent<$Gof
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mangostana, show diverse bioactivities, including anti-oxiidat®
anti-inflammation'® anti-cancef?! anti-virus*? anti-bacteri& and anti-allergy”* Due

to its potential roles, many healthy botanical aligt supplements have been
developed, such as ‘Xango’, ‘Verve’ and ‘TriaXaim. our systematic screening of
hepatoprotective natural products, the ethanolaektfrom the pericarps o6.
mangostana was found to significantly protect HL-7702 cell®rh t-BHP induced
oxidative injury. Although many studies have disgdd xanthones fronG.
mangostana showed significant anti-oxidative activity on cheal assays or cell
models'™ *° the hepatoprotective effect of these chemicatmésely investigated. In
the present study, we carried out bioassay-guidethtion and identification of

hepatoprotective principles &. mangostana usingt-BHP induced oxidative damage

on normal human hepatocytes.

Results and discussion

Bioassay-guided isolation of xanthones from the pmarps of G. mangostana,

protecting HL-7702 cells fromt-BHP induced oxidative injury

In our systematic screening of hepatoprotectiveimahtproducts, total extract (T.E)
from the pericarps db. mangostana was found to significantly protect HL-7702 cells
from t-BHP-induced oxidative injury at concentrationslad5 and 2.5@g mL™ (Fig.

1A). Next, the T.E was further partitioned into noé&tum ether fraction (P.E),
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chloroform fraction (Chloro), ethyl acetate fracti(g.A), n-butanol fraction r§-Bu)
and water fractions, respectively. Among them, EHRpro and E.A fractions showed
potent protective effect againsBHP induced oxidative injury at concentrations of
1.25 and 2.5y mL* (Fig. 1A). Interestingly, pretreatment with 2.5§ mL* Chloro
fraction rescued more than 90% hepatocytes fromdabixie damage. In the above
range of concentrations, T.E and all fractions digdhow cytotoxicity on HL-7702
cells (Supplemental Table S1). Thus, the Chlorotiva was subsequently chosen for
further isolation due to the most potent hepat@mtote effect with no cytotoxicity.

Additionally, anti-oxidative activities of T.E anffactions were examined on
DPPH and ABTS radical scavenging assays, respéctiMee results showed E.A and
n-Bu fractions had the strongest activities, with tf5, values comparable with that
of Vitamin C (Table 1). The radical scavenging aaipas of Chloro fraction on DPPH
and ABTS assays were also significant, assembl#ubtoof T.E (Table 1). The above
data indicated Chloro, E.A amdBu fractions showed potent anti-oxidative property

Further isolation and purification of the Chloradtion resulted in identification
of 10 known xanthones. After carefully analysis méss spectrumtH-NMR and
8C.NMR, the isolates were elucidated agmangostin {-Man) (1),*°
1,3,6,7-tetrahydroxy-8-prenylxanthone2) t’ gartanin 8),'® garcinone E 4),*°
8-deoxygartanin 5),'® p-mangostin §),'® o-mangostin (7} mangosharin §),%
9-hydroxycalabaxanthon®)¢® and 11-hydroxy-1-isomangostiad).”* The structure
of y-Man was shown in Fig. 1B, and others were showBupplemental Fig. S1.

Next, the hepatoprotective effect and anti-oxidatetivity of all the isolates were

Page 6 of 34



Page 7 of 34 Food & Function

109 tested. Among themy-Man (1) showed the most potent hepatoprotective actafty
110  concentrations of 0.63, 1.25, 2.50 and 5.00 uM lera). Especially, treatment of
111 2.50 or 5.00 uM of-Man totally rescued HL-7702 cells frarBHP-induce oxidative
112 injury. Besides, 1,3,6,7-tetrahydroxy-8-prenylxamtha @), gartinin @), garcinone E
113  (4) and 8-deoxygartanin5) also showed significant protective effect at adst
114  concentrations (Table 2). Further study foupdMan protectedt-BHP induced
115  oxidative injury in a dose dependent manner (FE). Additionally, all the xanthones
116  had no cytotoxicity at concentration of 2.50 puMdaompoundg, 2, 4 and10 didn’t
117  show cytotoxicity even at concentration of 5.00 ((®lipplemental Table S2). Thus,
118 y-Man was identified as the most potent hepatoptio&anthone irG. mangostana
119 and selected in the following studies.

120 y-Man also possessed significant anti-oxidativevagtion DPPH and ABTS
121  radical scavenging assays, withd®@alues at 6.84 and 11.28 uM, respectively (Table
122 3); and compoundg, 3 and4 showed comparable anti-oxidative activity as thiat
123 y-Man; while other xanthones almost had no effeab(@ 3).

124 In the current study, bioassay guided strategy taen advantage to identify
125  several potential hepatoprotective xanthones flwgrpericarps of. mangostana. Al
126  these isolates contained a xanthone core skelatbrdifferent substituents, including
127  hydroxyl, methoxyl and isoprenyl. The structurehatt relationship between these
128  xanthones and their hepatoprotective effect wasnsanzed as following: 1) The
129 number of phenolic hydroxyl group in xanthones niighay a key role in their

130 hepatoprotective activity. The xanthones contairfmgr phenolic hydroxyl groups,
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such as compound$-4, had significant hepatoprotective capacity, whdther
xanthones with two or three phenolic hydroxyl greinad less or no effect (Table 2).
2) The hepatoprotective ability of xanthones mighdo relate to the number of
isoprenyl group. Xanthones with two isoprenyl gupuch ad and 3, had more
potent hepatoprotective activity than those wite @) or three 4) isoprenyl groups
(Table 2). 3) Additionally, the heaptoprotectiveligéypof the xanthones might relate to
the position of substituents. The methoxyl groupGaii (such as compounés7, 9
and10) might attenuate its hepatoprotective effect.reggngly, the same conclusion
could be drawn for the radical scavenging capaaftyxanthones (Table 3). Taken
together, it was deduced tHatr phenolic hydroxyl groups, two isoprenyl grouwgrsl
without methoxyl group on C-7 might be necessaryxBmthones’ radical scavenging
ability and protection of oxidative injury in hepaytes. Meanwhile, the cytotoxicity
of xanthones on HL-7702 cells (Supplemental Taldpveas more significant when a
methoxyl group or a hydrogen on C-7 than that ehgounds with a hydroxyl group.
Surprisingly, the hepatoprotective effect of fractions from therigarps ofG.
mangostana (Fig. 1A) was inconsistent with their radical seaging activity (Table
1). The similar results have also been reportedther previous studies, which
indicated the anti-oxidative capacity of herbal ragts or compounds were
uncorrelated to their oxidative protection effeots cell or animal models. It was
mainly due to that the anti-oxidative assays wearetargeting relevant substrates and
not reflecting gross characteristics of biologisgstems?> %> On the other hand, the

hepatoprotective effect and radical scavengingvidigtof the xanthones were totally
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consistent(Tables 2 and 3)y-Man was found as the most effective compound on
radical scavenging assays an@HP induced oxidative injury model. To further
analyze the content of-Man in each fraction, HPLC-UV experiments were
performed. The data indicated the conteny-dan in T.E, P.E, Chloro, E.A»-Bu
and water fraction was 5.59%, 1.03%, 8.12%, 5.08%5% and not detected,
respectively (representative chromatogram showisupplemental Fig. S2). What
puzzled us was that the E.A ameBu fractions were more effective on radical
scavenging, in which the content pMan was less than that in Chloro fraction. It
might suggest other undiscovered compounds in theaBd n-Bu fractions which
contributed to the anti-oxidative activity. Remdrka the content of-Man in each
fraction was in agreement with their hepatoprotectffect, which demonstrated that
y-Man probably is the most potent effective compoandepatoprotection among all

the isolated compounds.

v-Man significantly inhibited ROS accumulation in HL-7702 hepatocytes

2',7-dichlorofluorescein diacetate (DCFH-DA) is widased to reflect cellular levels
of hydrogen peroxide, hydroxyl radicals and peratxige, which indicates ROS
production. In the present study, we fourBHP treatment robustly induced green
fluorescence compared with that of control groupjclw suggested increased ROS
accumulation (Fig. 2A). And pretreatment witiMan obviously decreased green

fluorescence, indicating thatMan prevented-BHP induced ROS production (Fig.
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2A). Quantitative analysis also supported thattineat witht-BHP induced about
2.50 fold of fluorescent intensity compared withatttof control group, which was
attenuated by pretreatment withMan in a dose dependent manner (Fig. 2B).
Surprisingly, when treated 2.50 or 5.0 y-Man, the level of intracellular ROS
decreased to that of control group. Oxidative striss commonly considered to
correlate with many diseases, such as a@firmgrdiovascular diseas&sdiabetes?
cancers’’ and liver diseasesHence,y-Man was found to effectively redu¢eBHP
induced accumulation of ROS in HL-7702 cells, whiolght bring great benefit for

prevention or treatment of these diseases.

v-Man significantly prevented t-BHP-induced loss of mitochondrial membrane

potential (MMP) and cell nuclei morphology change

Excessive accumulation of ROS induces depolarizatb MMP, which is often
accompanied with cell apoptosis or necrosis dueh® open of mitochondrial
permeability transition pore and mitochondrial dimel?® In the current study, the
R123 (Rhodaminel23) was used to investigate whélleehepatoprotective effect of
y-Man was through amelioratintgBHP induced loss of MMP. As shown in Fig. 3A,
the intracellular florescence was significantly anted when treated withBHP,
which indicated that the MMP was obviously lost.wéwer, pretreatment with-Man
significantly attenuated the loss of MMP. Quanttatanalysis of flow cytometry
result showed that the loss of MMPtHBHP treatment group was about 1.60 fold to

10
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that of control group, which was decreased in aeddspendent manner when
pretreated withy-Man (Fig. 3B). The result indicated the hepatopcove effect of
y-Man might be through decreasitBHP induced loss of MMP.

Intracellular accumulation of excessive ROS alss hegative effect on the
integrity of cell nuclei, which induces the occumce of gene mutatiofl.In this study,
the morphology of cell nuclei was also monitoreda f®tter explanation of the
hepatoprotective effect gfMan. In Fig. 3C, the slight condensed and deforiceld
nuclei were observed when treated wiBHP, while the cell nuclei were maintained

normally with the treatment gtMan.

v-Man protected t-BHP induced intracellular key enzymes change andidid

peroxidation

Next the contents of alanine aminotransferase (AlaSpartate aminotransferase
(AST), glutathione (GSH) and superoxide dismut&eL)), as well as lipid peroxides
product malondiadehyde (MDA) in HL-7702 cells watetermined. As shown in
Table 4,t-BHP treatment induced significant decrease oflsewé ALT, AST, GSH
and SOD, as well as increase of MDA content. Ilistamgly, pretreatment with 1.25
MM y-Man significantly preventedBHP induced changes of the enzymes and MDA,
and pretreatment of 5.00 upMan totally reversed the levels of enzymes and MDA
to those of control group (Table 4). These resualitcated thay-Man might exert its
hepatoprotective effect through attenuating keyyeres from being excessively

11
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damaged by acute oxidative stress.

Experimental

Materials

Phosphate-buffered saline (PBS) powder, RPMI 1640 ediom,
penicillin-streptomycin (P/S), 0.25% (w/v) trypsinmM EDTA and fetal bovine
serum (FBS) were purchased from Life Technologi@safid Island, NY, USA).
2',7-dichlorofluorescein  diacetate (DCFH-DA), Rhodan 123, t-BHP,
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-2-Htetralium bromide (MTT),
2,2-diphenyl-1-picrylhydrazyl (DPPH), dimethyl soide (DMSO) , 2,2'-azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) aHdechst 33342 were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Commercigphectrophotometric kits for
detection of alanine aminotransferase (ALT) andadspe aminotransferase (AST),
superoxide dismutase (SOD), glutathione (GSH) aatbndiadehyde (MDA) were
purchased from Nanjing Jiancheng Bioengineeringtuiie (Nanjing, Jiangsu, China).

Vitamin C was purchased from Farco Chemical SupB®ijing, China).

Sample preparation

The fruits of G. mangostana were collected from Chiang Mai, Thailand, and
identified by Prof. Jingui Shen (Shanghai InstitofeMateria Medica). The dried
pericarps of G. mangostana were smashed into fine powder and ultrasonically
extracted by 95% ethanol for three times, each ZTlne ethanol extract was

12
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concentrated to yield total extract (T.E), whichsviarther partitioned with petroleum
ether, chloroform, ethyl acetate, améhutanol successively, to obtain petroleum ether
fraction (P.E), chloroform fraction (Chloro), ethycetate fraction (E.A), and
n-butanol fraction rf-Bu), respectively. Subsequently, the Chloro fiattivas further
isolated and purified by column chromatography aibica gel, MCl and Sephadex

LH-20, as well as preparative HPLC.

Chemical structure identification

The structures of the isolates were identified YNMR, **C-NMR and mass spectra.
The NMR spectra were recorded on a Bruker AM-400R\Bpectrometer (Bruker,

Bremen, Germany). Chemical shifts were reporteatixad to tetramethylsilane (TMS)
as an internal standard. ESI-MS spectra were meadsom a Finnigan LCQ Deca
instrument, and HR-ESI-MS spectra were performee ddaters Micromass Q-TOF

spectrometer.

DPPH radical scavenging assay

The DPPH radical scavenging capacity of samples determined as described
previously’ The samples (1.00-125.0@¢y mL* and 1.00-500.0QM for fractions and
compounds, respectively, each 104000) were added to a volume of 190.0Q
methanol solution of DPPH radical (final concentratof DPPH was 40.00g mL™),
followed by shaking vigorously and keeping at rommperature in dark for 30 min.
Then the absorbance of the resulting solution wassured at 517 nm using a

13
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microplate reader (SpectraMax M5, Molecular DeviddSA). The absorbance of
DPPH methanol solution was tested as blank corifia.radical scavenging capacity
was calculated as following equation: DPPH Scavemngctivity % = (Aontrol —
Ates{Acontro) X 100 %. Where Aonirol iS the absorbance of 10.k methanol and
190.00uL fresh DPPH solution and+Ayis the absorbance of different concentrations

of samples.

ABTS radical scavenging assay

The ABTS radical scavenging capacity of samples determined as described
previously’ Briefly, the samples (1.00-125.00g mL* and 1.00-500.0uM for
fractions and compounds, respectively, 10ul0each) were added to a volume of
190.00uL solution of ABTS radical, followed by keeping rmtom temperature for 6
min. Then the absorbance of the resulting soluti@s measured at 734 nm by a
microplate reader (SpectraMax M5, Molecular DeviddSA). The absorbance of
ABTS methanol solution was tested as blank conirioé radical scavenging capacity
was calculated as following equation: ABTS scaveggactivity % = (Acontrol —
Ates{Acontro) X 100 %. Where Aonirol IS the absorbance of 10.Q0Q Milli Q water and
190.00uL fresh ABTS solution and Asiis the absorbance of different concentrations

of samples.

HPLC-UV analysis ofy-Man, total extract and fractions
HPLC analysis was performed on a Waters e2695 HBYStem composed of

14
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photodiode array detector. Chromatograph was aetisth a gradient elution at a
flow rate of 1.00 mL/min using reversed phase CliGasgel as stationary phase (250
x 4.6 mm, 5um, Waters SunFif& column) which maintained at 35 °C. The mobile
phase was composed of 0.01% aqueous formic aci@rid)acetonitrile (B), and the
gradient elution was as follows: 0-6 min, 40% A3®-min, 40-16% A; 30-50 min,
16-5% A. The detection wavelength was set at 254ameh the sample injection
volume was 10.0QL. Representative chromatogram was analyzed usikidpiers
Empower system and content piMan (%) in each fraction was determined by
external standard method. Fractions anllan were dissolved by 60% methanol

solution at concentration of 1.00 mg rhand 50.0Qug mL™, respectively.

Cell culture

HL-7702 human normal liver cells were obtained frddmanghai Institute of
Biochemistry and Cell Biology (Shanghai, China)eTdells were cultured in RPMI
1640 medium containing heat-inactivated 10% FB@psdbmycin (100 ug mt) and
penicillin (100 unit m*) in a 37°C incubator under a humidified atmosphere of 95%
air and 5% CQ Adherent cells were detached by trypsin-EDTA pladed onto 96-

or 6-well plate at 70—80% confluence for the follogviests.

Cell viability assay
HL-7702 cells were seeded in 96-well plates at msite of 1x1G cells per well.
When approximately 70-80% confluence, cells wesaterd with or without different

15
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concentrations of samples for 12 h. Subsequemidyctilture medium was discarded
and cells were treated with or without 200,0@ t-BHP solution for additional 6 h.
Then cell viability was determined by incubationttwRPMI 1640 containing MTT
(1.00 mg m[*) for 4 h, followed by dissolving the formazan dats with DMSO.
The absorbance at 570 nm was measured by a miagader (SpectraMax M5,
Molecular Devices, USA) and presented as relatelé \dability. The results were

analyzed based on at least three independent exgr@s.

Assessment of ROS production

Intracellular formation of ROS was assessed usihmgy @xidation sensitive dye
DCFH-DA, as described previousi\Briefly, HL-7702 cells were seeded in a 96-well
black plate at a concentration of 1%t8lls per well for 12 h. Then cells were treated
with or without different concentrations @fMan for additional 12 h, followed by
treatment with or without 200.00M t-BHP for 3 h. Subsequently, cells were
incubated with DCFH-DA (10.0QM) at 37°C in dark for 15 min. The florescence
was detected at an excitation wavelength of 485andh an emission wavelength of
535 nm using a spectrofluorometer (SpectraMax M5gebdar Devices, USA). The
intracellular ROS was also quantitated using aGeti Analyzer 2000 (GE Healthcare

Life Sciences, USA).

Measurement of mitochondrial membrane potential (MMP)
The MMP was monitored using the fluorescent dye RI1BBefly, cells were

16
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329 pretreated with or without different concentratiooisy-Man, followed byt-BHP
330 treatment for 2 h. Then cells were stained with R{20.00uM) for 10 min. The
331 fluorescence was observed and quantitated by flpwnueter (Becton Dickinson,
332 USA).

333

334  Nuclei morphology analysis

335  Hochest 33342 staining was performed as previowegprted™ In brief, cells were
336 treated with or without different concentrationsyd¥lan for 12 h and then incubated
337  with t-BHP for additional 6 h. Then cells were fixed witho paraformaldehyde for
338 30 min at room temperature and stained with HocB&842 (1.00ug mL?) for 10
339  min. The morphology of cell nuclei was monitoredngsan In Cell Analyzer 2000
340 (GE Healthcare Life Sciences, USA).

341

342  Hepatotoxicity assessment

343  The intracellular levels of AST and ALT were detéred using commercial detection
344  kits according to the manufacturer’s instructioasiascribed previousfy.

345

346  Determination of GSH, SOD and MDA levels

347  The levels of malondialdehyde (MDA), superoxidendigase (SOD) and glutathione
348  (GSH) in HL-7702 liver cells were determined usamnmercial assay kits according
349  to the manufacturer's protocdisProtein concentration was determined by a Pierce™
350 BCA Protein Assay Kit (Thermo Fisher Scientific In®ockford, IL, USA). All

17
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values were normalized to total protein.

Statistical analysis

Values were expressed as mean + SEM based on sit tleee independent
experiments. Between-group comparison was evalubayedne-way ANOVA test
using SPSS software 16.0 (Chicago, IL, USA) »alue less than 0.05 and 0.01 was

considered significantly and very significantlyfdiient, respectively.

Conclusions

In conclusion,y-Man was extraordinarily effective in protectingpaéocytes from
t-BHP induced oxidative damage through decreasiegR®S accumulation and the
loss of MMP, and reducing the depletion of antidait enzymes GSH and SOD.
Based on the current data, it is believed thian holds great potential for being
developed as healthy foods and therapeutic agentsrdatment or prevention of
oxidative stress related liver diseases. Bioassaged strategy is an effective and
direct way for identification of bioactive comporerfrom natural products. However,
a weak point of this study is that some potentiai-axidative principles, which were
not identified, might be neglected. Future workdhé focus on identification more
xanthones fromG. mangostana, which might supply powerful evidence for better

research and development of this fruit as hepateptive agent.
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Table 1. Anti-oxidative capacity of total extract and fracts from the pericarps &.
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mangostana on DPPH and ABTS radical scavenging assays.

TE

P.E
Chloro
E.A

n-Bu
Water
Vitamin C

DPPH ABTS
ICs0(ng mLY) ?
12.12+0.58  6.82+0.30
15.64 £ 0.43  16.95 + 0.68
13.70 £0.41  11.15+0.12
351+0.27  3.04+0.16
3.86 +0.07  4.39+0.37
34.46 +0.48 45.86 + 0.68
251+0.35  2.62+0.09

values are expressed as means + SD (n=6).
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Table 2. Hepatoprotective effects of xanthones from thegaepis ofG. mangostana ont-BHP induced oxidative injury HL-7702 cells

NO Compounds

Cell viability (%)*

0.63uM 1.25uM 2.50uM 5.00uM

1  y-mangostin 58.62 +4.72 86.01+1.53" 91.22+583" 95.26 +1.84"
2 1,3,6,7-tetrahydroxy-8-prenylxanthond8.13 + 8.17  48.42+3.36 41.15+5.83 40.63 £ 1.85
3  gartanin 53.37+0.93 61.12+1.34" 63.01+1.12" --

4  garcinone E 32.34+1.25 41.33+335 49.83+3.767.35+1.67
5  8-deoxygartanin 46.83+7.02 48.35+4.03 4156+7.47  ---

6  B-manostin 37.79+7.30 39.82+277 3556+4.63 - --

7  o-mangostin 30.74+1.05 30.92+0.66 28.17+0.84-- -

8  mangosharin 36.23+0.95 33.03 £2.07 31.34 £1.19--

9  9-hydroxy-calabaxanthone 30.83 £1.56 28.37 £1.780.15 £ 1.47

10 11-hydroxy-1-isomangostin 37.62 +5.38 32.734H62.2 37.34£5.16 32.43 + 3.67

Page 24 of 34

values are expressed as mean + SD (n=6). Conapgfl100.00 + 6.03) and model group (38.84 + 5.p&,0.01 model groups control

group.
"p<0.05" p<0.01, sample grows model group.
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448  Table 3.Anti-oxidative capacity of xanthones from the parps ofG. mangostana

449  on DPPH and ABTS radical scavenging assays

NO compound DPPH ABTS
ICso (uM) *
1  y-mangostin 6.84 +0.08 11.28 + 0.41
2 1,3,6,7-tetrahydroxy-8-prenylxanthone 9.83+£0.03 12.70+0.40
3 gartanin 6.97 £0.13 14.62 +£0.16
4 garcinone E 11.73 +£0.58 21.16 + 0.58
5 8-deoxygartanin 40.73+0.17 111.33+1.07
6 B-mangostin NI NI
7 g-mangostin 61.97 + 0.23 133.30 + 1.68
8  mangosharin 254.40 + 1.02 308.00 * 2.35
9 9-hydroxycalabaxanthone NI NI
10 11-hydroxy-1-isomangostin NI NI
Vitamin C 0.01+0.00 0.01+0.00

450  lvalues are expressed as means + SD (n=6). NI, INbiiary effect was observed at

451  concentration up to 500.Q0M.
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Table 4.y-mangostin reverseedBHP induced changes of intracellular key enzynmesMDA in HL-7702 cells.

Group SOD MDA GSH AST/GOT ALT/GPT
(U g* protein) (U g* protein) (umol g* protein) (U ¢g* protein) (U g* protein)
Control 71.11 + 3.96 528+0.39 179.82+556  29%3.05  10.46 + 0.84
t-BHP (200.00:M) 1354+134 1087+058 29.89+6.38 17.12+0.70  8.14+0.27
y-Man (0.63uM) + t-BHP 34.18+3.30 7.30+0.50 64.23+3.90  15.18+3.59 7.97 £0.26
y-Man (1.25.M) + t-BHP 5254 +7.60 7.52+0.21 83.31+2.86  2547+1.94 11.87 +0.35
y-Man (2.50uM) + t-BHP 5238+158  4.78+0.18 14059+259  2529+1.63 12.64+0.73
y-Man (5.00uM) + t-BHP 5823+1.75 548+022 18343+3.19 2526+201 12.35+0.79

All data were expressed as mean+SD ( n= 6).

*p < 0.05,t-BHP groupvs. control groupfp < 0.05, sample grows. t-BHP group.
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Figure legends

Fig. 1. Bioassay guided isolation of xanthones from thecpeps ofG. mangostana,
protecting HL-7702 cells frotBHP induced oxidative injury. (A) Protective eftsc
of total extract and other fractions from the pamps ofG. mangostana on t-BHP
induced oxidative injury. (B) Structure pfmangostin. (C) Protective effect piMan
on t-BHP induced oxidative injury HL-7702 cells. All s represent mean + SEM
(n=6). #p < 0.05, control group's model group; *p < 0.05 and **p < 0.01, sample

groupvs model group.
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466  Fig. 2. y-Man significantly inhibited the ROS accumulation hepatocytes. (A)
467 Representative photograph of intracellular floreseeof ROS monitored by Incell
468  Analyzer 2000 (1, control; 2, model; 3-6;Man 0.63-5.00uM). (B) Quantitative
469  analysis of intracellular ROS content. All valuepresent mean = SEM (n=6) pk

470  0.05, control groupss model group; *p < 0.05 and **p < 0.01, sample grougs

471 model group.
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Fig. 3. y-Man significantly decreased the loss of MMP indudey t-BHP and
maintained the morphology of cell nuclei. (AMan protected-BHP induced loss of
MMP detected by flow cytometry (1, control; 2, mbde6, y-Man 0.63-5.0QuM). (B)
Quantitative analysis of FITC fluorescent intens{ty) Nuclei morphology analysis.
All values represent mean £ SEM (n=6)p # 0.05, control groups model group; *

p < 0.05 and **p < 0.01, sample grougs model group.

A

3000+
B : C

25004
20004
S ok
1500 —1— **
o = ** %
10004 ; - -
- -Man (0.63 uM)

FITC Itensity

5004

0 S

tBHP (200 uM) - + + + + +
y-Man (M) - - 0.63 125 250 5.00

. s

29



482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

Food & Function Page 30 of 34

Supplemental materials

Table S1. Cytotoxicity of total extract and fractions fronmet pericarps ofG.

mangostana on HL-7702 cells

Table S2 Cytotoxicity of xanthones from the pericarps Gf mangostana on

HL-7702 cells

Fig. S1 Chemical structures of xanthones isolated from thericarps ofG.

mangostana.

Fig. S2 Chromatogram of-magostin, T.E and fractions from the pericarpsGof
mangostana (from top to bottom represeptimagostin andi-magostin, 50.00g mL™?;
T.E, P.E, Chloro, E.An-Bu and water fraction, 1.00 mg ML respectively.

Wavelength was set at 254 nm).
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This study identified y-mangostin from the pericarps of Garcinia mangostana as a potential

hepatoprotective agent.
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