
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Food &
Function

www.rsc.org/foodfunction

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


1 

 

Relationship between phenolic compounds from diet and microbiota: 1 

impact on human health.  2 

L. Valdés,
a
 A. Cuervo,

b
 N. Salazar,

a
 P. Ruas-Madiedo,

a
 M. Gueimonde

a
 and S. 3 

González
*b
 4 

a
 Department of Microbiology and Biochemistry of Dairy Products, Instituto de 5 

Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-6 

CSIC). Pase Río Linares s/n, 33300 Villaviciosa, Asturias, Spain. 7 

b 
Department of Functional Biology, University of Oviedo. Facultad de Medicina, 8 

C/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.  9 

* Corresponding author: Sonia González. Department of Functional Biology, University 10 

of Oviedo. Facultad de Medicina. C/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain. 11 

Tel: +34 985104209. Fax: +34985103534. Email: soniagsolares@uniovi.es.  12 

Page 1 of 47 Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t



2 

 

Abstract  13 

The human intestinal tract is home to a complex microbial community called 14 

microbiota. This gut microbiota, whilst playing essential roles for the maintenance of 15 

the health of host, is exposed to the impact of external factors such as the use of 16 

medication or the dietary patterns. Alterations in the composition and/or function of the 17 

microbiota have been described in several disease states, underlining the role of the gut 18 

microbiota in keeping a health status. Among the different dietary compounds 19 

polyphenols constitute a very interesting group as some of them have been found to 20 

pose important biological activities, including antioxidant, anticarcinogenic or 21 

antimicrobial activities. The term polyphenol comprises thousands of molecules 22 

presenting a phenol ring and are widely distributed in plant foods. The bioactivity of 23 

these compounds is highly dependent in their intestinal absorption and often they are 24 

ingested as non-absorbable precursors that are transformed into bioactive forms by 25 

specific microorganisms in the intestine. Some of these microorganisms have been 26 

identified and the enzymatic steps involved elucidated. However, little is known about 27 

the impact of these ingested polyphenols upon the human gut microbiota. The 28 

heterogeneity of the polyphenols compounds and their food sources, as well as their 29 

coexistence with other bioactive compounds within a normal diet, together with the 30 

complexity of the human gut microbiota difficult the understanding of the interactions 31 

between dietary polyphenols and gut microbes. This is, however, an important area of 32 

research which promises to expand our knowledge on the food functionality area 33 

through understanding the microbiota-food components interaction. 34 

Key-words: Polyphenols, diet, microbiota, microbiome  35 
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Gut microbiota composition along life 36 

The human gut tract harbours a complex microbial community called intestinal 37 

microbiota, representing the largest number and concentration of microorganisms found 38 

in the human body 
1
. The collective genomes of the microbiota are called microbiome 39 

and it is estimated to be more than 3 million genes (150 times more than human genes) 40 

2
. The intestine provides a nutrient-rich environment and suitable conditions for 41 

intestinal microbiota 
3,4
, whereas this collection of microorganisms plays important 42 

roles carrying out functions essential to the maintenance of the intestinal homeostasis 43 

and the human health 
5
. 44 

The microbial colonization of the gastrointestinal tract starts immediately after birth, 45 

resulting essential for the development of the mucosal barrier function, the intestinal 46 

homeostasis, the maturation of the immune system and for determining the disease risk 47 

in early and later life 
6,7
. Perinatal factors, such as feeding type (breastfeeding or 48 

formula feeding), delivery mode (vaginally or by caesarean section), gestational age 49 

(full-term or pre-term infants) or the use of treatments (antibiotics or probiotics-50 

prebiotics) can also influence the microbial colonization 
8,9
. Traditionally, it has been 51 

assumed that the intrauterine environment and the new-born infant were sterile until 52 

delivery, but recent studies have shown the presence of bacteria in the intrauterine 53 

environment, including placenta, amniotic fluid, umbilical-cord blood, and also in 54 

meconium 
10,11

. The gut microbial colonization of the new-born begins with facultative 55 

anaerobes, such as enterobacteria, enterococci and lactobacilli, and continues with 56 

strictly anaerobic bacteria, such as Bifidobacterium, Clostridium or Bacteroides 
12
 57 

(Figure 1). The intestinal microbiota reaches a stable population, similar to that of an 58 

adult, around 3 years of age 
12-14

.  59 
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Advances in metagenomic analysis have revealed that the adult gastrointestinal tract 60 

contains eukaryotes (mainly yeasts), bacteria, methanogenic archaea (mainly 61 

Methanobrevibacter smithii) and viruses (mainly bacteriophages) 
15
. The dominant 62 

bacteria in the adult healthy state in humans are the Firmicutes, and Bacteroidetes, with 63 

Actinobacteria, Proteobacteria and Verrucomicrobia also present in lower numbers 
14
. 64 

The adult-like intestinal microbiota is regarded as relatively stable throughout 65 

adulthood, until ageing 
12
. However, several studies have shown that extrinsic factors, 66 

such as diet or antibiotics, induce transient fluctuations in the gut microbiota 
16,17

. There 67 

have been significant attempts to identify a common core microbiome that is conserved 68 

between humans, however, the great variation between individuals, different inclusion 69 

criteria and methodological aspects have hindered its clear identification 
2,17,18

. It has 70 

been proposed that all humans could be divided into one of three gut microbiota clusters 71 

called “enterotypes”, each one being dominated by a particular bacterial genus: 72 

Bacteroides, Prevotella or Ruminococcus 
19
. These enterotypes appear independent of 73 

nationality, sex, age, or body mass index and have been suggested to be strongly related 74 

with long-term diet 
20
. However, the classification of human-associated bacteria in 75 

enterotypes is a debated concept; some studies, employing short-term intervention, have 76 

suggested that these enterotypes appear to be stable 
21,22 

but, by contrast, other studies 77 

have shown that this classification is not clear and that several approaches should be 78 

employed, and compared, when testing enterotypes 
23,24

. 79 

Ageing-related changes in the gastrointestinal tract such as difficulty in swallowing, 80 

decreased gastrointestinal motility or increased intestinal transit time, as well as changes 81 

in dietary patterns, hospitalization, recurrent infections, frequent use of antibiotics and a 82 

reduced functionality of the immune system, often referred as “immunosenescence”, 83 

will affect the intestinal microbiota 
25
. The reported age-related differences in the 84 
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intestinal microbiota composition include a reduction in species diversity, shifts in the 85 

dominant species, decline in beneficial microorganisms, increase of facultative 86 

anaerobic bacteria and decrease in the availability of total short-chain fatty acids 
12
. The 87 

gut microbiota of the elderly has been reported to show different microbial composition 88 

and greater inter-individual variations compared to younger adults 
26
. Furthermore, it 89 

seems that the influence of ageing on the abundance of dominant phyla of the intestinal 90 

microbiota, Firmicutes and Bacteroidetes, is controversial, and results are 91 

location/geography dependent 
27
. At a lower taxonomic level, it has been described 92 

differences between the abundances of some genera/species; however, there is no 93 

consensus on the key-players in the age-related changes in the intestinal microbial 94 

composition between studies, since it seems to be country dependent 
12
. Well 95 

documented aging effects are the decrease of one of the members of Clostridium cluster 96 

IV, i.e. Faecalibacterium prausnitzii 
25
, especially in elders that have been hospitalized 97 

or have followed an antibiotic treatment 
28
, and also the highest abundance of the 98 

potential pathogen Clostridium difficile, causative of the C. difficile diarrhoea 
29
. 99 

Microbiota role in health and disease  100 

Due to the crucial role of the gut microbiota in human health, imbalances in the 101 

composition and/or function of gut microbiota (dysbiosis) are possible causes of 102 

intestinal, metabolic and autoimmune diseases. High-throughput analytical tools and 103 

meta-“omics” technologies have probed the importance of the host-microbiota 104 

relationship. These methodologies have provided key information helping to correlate 105 

healthy or disease states with a detailed composition of the microbiota 
30
 or with 106 

bacterial richness 
31
, although the genesis of dysbiosis has not yet been clarified, and in 107 

many cases it is not clear if the altered microbiota is the cause or consequence of 108 
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disease. Some examples, however, do exist on specific microbiota alterations that 109 

precede the clinical manifestation of disease. These include, among others, early life 110 

microbiota alterations preceding the development of atopic disease 
32
, obesity 

33
 or the 111 

seroconversion to the autoimmune disease Type-I diabetes 
34
. Moreover, in preterm 112 

infants early microbiota composition has been reported to be a predictor of the later 113 

development of necrotizing enterocolitis 
35
. Indeed, data from animal studies have 114 

demonstrated the importance of the early microbiota for a proper host development and 115 

homeostasis in later life. To this regards, alterations in early life microbiota, in spite of 116 

later life microbiota restoration, appear to be enough for inducing sustained effects on 117 

host metabolism 
36
 or permanently altering the levels of systemic and tissue specific 118 

immune cells 
37,38

. Overall, recent data suggest that high microbial diversity is 119 

associated with a healthy phenotype, while loss of diversity seems to correlate with 120 

disease, although what constitutes a “healthy” gut microbiota remains still incomplete 121 

(Figure 1). The list of diseases linked with gut microbiota dysbiosis is increasing and 122 

range from intestinal diseases like inflammatory bowel disease (IBD), irritable bowel 123 

syndrome (IBS), coeliac disease and colorectal cancer (CRC) to extra-intestinal 124 

disorders like metabolic diseases, autoimmune diseases, and other related with the gut-125 

brain axis 
39
.  126 

IBD [Crohn´s disease (CD) and ulcerative colitis (UC)] is characterized by chronic 127 

relapsing inflammation affecting the intestinal mucosa and the key role of the gut 128 

microbiota has been well established in these pathologies. Several changes at different 129 

taxonomic level, as well as functional changes, have been described and a shift towards 130 

a pro-inflammatory state has been reported 
40
. In general, patients exhibit a decrease in 131 

microbial population and functional diversity with a reduction in specific Firmicutes 132 

and a concomitant increase in Bacteroidetes and facultative anaerobes such as 133 
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Enterobacteriaceae 
37
. UC and CD present a lower abundance of the anti-inflammatory 134 

microorganism F. prausnitzii which is also associated with the prolongation of disease 135 

remission 
41,42

, but significant alterations in the microbiota of CD versus UC patients 136 

have also been described 
42,43

. A recent study realized with paediatric CD patients has 137 

also revealed differences in the gut microbiota composition compared to healthy 138 

controls 
44
. Regarding IBS, another chronic gastrointestinal disorder, imbalances in 139 

microbiota composition have been observed in the different subtypes of disease 140 

compared to healthy counterparts, but are not consistent between the different studies 
45
. 141 

In CRC and coeliac disease several changes in the microbiota composition have also 142 

been recognized 
46,47

. The C. difficile-associated disease (CDAI) is another proven 143 

disease in which a dysbiotic microbiota has been observed. The treatment with 144 

antibiotics favours the overgrowth of this pathogen and the faecal transplantation has 145 

been shown to be an effective treatment against this disorder 
48
. 146 

There is also growing evidence supporting the role of gut microbiota in obesity and 147 

compositional changes in the intestinal microbiota have been observed in obesity with 148 

regard to normal weight individuals. The first data reported an increase in the ratio 149 

Firmicutes/ Bacteroidetes in obese subjects compared to their lean counterparts and a 150 

decrease in this ratio following weight loss 
49,50

, but the relative abundance of these 151 

phyla are not consistent between studies and changes at phylum in the context of human 152 

obesity remains a matter of debate 
51
. It may be possible that defining the bacterial 153 

distribution at phylum level is not enough and should be characterized at a more 154 

detailed taxonomic level, like genus or species. Indeed, a specific microorganism, called 155 

Akkermansia muciniphila, has been reported to be reduced in obese animals and the 156 

administration of the microorganism was found to reverse metabolic disorder 
52
. 157 

Moreover, the application of next-generation sequencing techniques and the 158 
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quantification of gut microbial genes have allowed characterizing obese people; they 159 

have a low number of gut microbial genes and are characterized by low bacterial gene 160 

richness. Besides, this population seem to be quite resistant to dietary intervention, and 161 

have a persistent inflammation state 
53
. It has also been proposed that obese individuals 162 

are more efficient in converting food into energy and in storing this energy in fat than 163 

lean individuals, which is related to, and may be a consequence of, the functionality of 164 

the intestinal microbiota 
54
. Additionally, in patients with type-II diabetes shifts in gut 165 

microbiota composition were found, such as a decrease in the abundance of butyrate-166 

producing bacteria, an increase in opportunistic pathogens, and an expansion of the 167 

microbial functions conferring sulphate reduction and oxidative stress resistance 
30
. 168 

Among the several hypothesis made recently, lifestyle seems to have a strong influence 169 

in the development of obesity, metabolic syndrome and type-II diabetes. Moreover, it 170 

has been demonstrated that diets rich in saturated fats, induces gut microbiota dysbiosis 171 

that could contribute to trigger low-grade inflammation and metabolic endotoxemia, 172 

most likely caused by impairment of intestinal permeability and barrier function 
55,56

. In 173 

addition, specific microbial profiles have been associated with obesity-related liver 174 

disease suggesting the impact of the gut microbiota on liver pathology 
57
. 175 

It has also been described that alterations in intestinal microbiota may be involved in 176 

extra-intestinal disorders 
39
, like asthma 

58
 or systemic lupus erythematosus 

59
. 177 

Moreover, preclinical studies have shown the potential role of the gut microbiota in 178 

several disorders related to the gut-brain axis, including autism spectrum disorders, 179 

Parkinson’s disease, disorders of mood and chronic pain. Thus, manipulation of gut 180 

microbiota could be a promising target for the possible modulation of behaviour and 181 

brain functions 
60
. 182 
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Polyphenols: bioavailability and role in human health  183 

Definition and dietary sources 184 

The term polyphenol comprises several thousand different compounds, found widely in 185 

plant foods providing colour, flavour and astringency, and with the common 186 

characteristic of presenting at least two phenolic rings in their structure 
61
. They are a 187 

heterogeneous group of molecules, divided into four main classes according to their 188 

chemical structure: flavonoids (including flavonols, flavanols, flavanones, flavones 189 

anthocyanidins, chalcones, dihydrochalcones, dihydroflavonols and isoflavones), 190 

lignans, stilbenes and tannins. Phenolic acids (hydroxibenzoic, hydroxicinnamic, 191 

hydroxyphenylacetic, hydroxyphenylpropanoic and hydroxyphenylactic acids), with 192 

only a phenolic ring, are frequently included in this category. At present, there are 193 

scarce data about the consumption of the major classes and subclasses of polyphenols in 194 

the population and there is certain controversy regarding the accuracy in the method 195 

used for the nutritional assessment of dietary polyphenols. Most of these studies use 196 

different methodology for dietary assessment and analyse a limited number of 197 

compounds by means of different food composition tables, making difficult the 198 

comparison between them.  199 

From an analytical point of view, the food content in polyphenols obtained from a food 200 

composition database (FCD) is imprecise because the nutritional composition of natural 201 

foods is highly variable. However, in nutritional research the value presented in the 202 

FCD is representative of the mean analytical values obtained for that particular food and 203 

allow us to compare across studies using the same database. Until 2010 most research in 204 

this area used the FCD of the United States Department of Agriculture (USDA), which 205 

collects data for about 385 flavonoids 
62
, 128 isoflavones 

63
 and 205 proanthocyanidins 206 
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6456
, and considering some losses during processing and cooking 

65
. Recently, the 207 

French National Institute for Agricultural Research published a database with extensive 208 

information for more than 500 polyphenols in 400 foods (Phenol-Explorer), allowing a 209 

more detailed assessment 
66
.   210 

The distribution of polyphenols is ubiquitous in plant foods, being identified as the most 211 

abundant dietary sources of these compounds: red wine, coffee, cocoa, tea, citrus fruits 212 

and berries. Based on information of Phenol-Explorer database, the foods with greater 213 

content in each one of the major classes of polyphenols (flavonoids, phenolic acids, 214 

lignans and stilbenes) were identified. Cocoa and cocoa products highlighted by its high 215 

content in flavonoids, more than three times higher than other food sources such as 216 

blackcurrant, berries, beans or soya (Figure 2). Also, examining the content of phenolic 217 

acids in foods, chestnuts showed twice as much concentration than the following 218 

foodstuff, flaxseed, which, in turn, is a food with a higher content in lignans. Within the 219 

group of lignans, significant differences were observed between the listed foods. 220 

Although sesame provides much more lignans than other foods, the low quantity and 221 

the infrequency in their consumption, lead to not consider it as a major dietary source of 222 

these compounds, being sesamin, sesaminol and sesamolin related to endothelial 223 

function, inflammation and oxidative stress 
67
. 224 

Stilbens are consumed by the population at very low amount, being their presence 225 

associated with the consumption of red wine and grapes. Red wine is an important 226 

constituent of Mediterranean diet, and responsible for a great part of the cardiovascular 227 

protective effect attributed to this dietary pattern
68
. This alcoholic beverage is a natural 228 

source of antioxidants, among which are phenolic compounds, especially flavonoids, 229 

lignans and stilbenes, contained in the skins and seeds of red grapes 
69
. Some factors, 230 
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such as grape variety, cultivation, processing and ageing can determine the final 231 

polyphenol content of red wines 
70
. Apart from the effects that these phenolic 232 

compounds exert on the organoleptic properties of this beverage, some authors have 233 

proposed their antioxidant capacity as the main reason for the beneficial health effects 234 

attributed to the moderate consumption of red wine 
71,72

. Specifically, it provides 235 

epicatechin, quercetin and trans-resveratrol, compounds that have been considered 236 

responsible for a protective effect on diabetes, hypertension and cardiovascular disease 237 

73-76
. 238 

Then, it seems expectable that the different dietary patterns among countries impact on 239 

quantity and type of polyphenol consumed by their inhabitants. In this sense, the 240 

Spanish Mediterranean diet, rich in fruits and vegetables, olive oil, nuts, legumes, 241 

whole-wheat bread, fish and red wine, has been associated with a higher intake of total 242 

polyphenols in comparison with other European countries 
77,78

. Also, Spanish dietary 243 

sources of polyphenols differ from other countries such as Poland, where coffee, tea, 244 

and chocolate, instead of fruits and vegetables, are the main food sources of these 245 

compounds 
79
 (Table 1).   246 

Bioavailability of polyphenols 247 

The physiological impact of polyphenols depends on their intestinal absorption; 248 

however, it is important to bear in mind that the most common polyphenols in diet are 249 

not necessarily the most bioavailable, since their structure plays an important role. Most 250 

native polyphenols in foods are in glycoside form (flavonols, flavones, flavanones, 251 

isoflavones and anthocyanins), together with the less frequent oligomers 252 

(proanthocyanidins), which cannot be absorbed in the intestinal mucosa 
80
. Only 253 

aglycones and some intact glucosides can be absorbed 
81
. Therefore, the release of 254 
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native polyphenols from its matrix, conducted by human and microbial enzymes, is a 255 

necessary mechanism for them to pass through the intestinal barrier 
82,83

. The resulting 256 

aglycones and polyphenol monomers can now be transported, via passive diffusion and 257 

membrane carriers, into the enterohepatic circulation 
80,84

. During their passage into the 258 

liver, these compounds will undergo conjugation (mainly glucuronidation and 259 

sulphation), and will be returned again to the small intestine with the bile. Polyphenols 260 

not absorbed in the small intestinal reach the colon where the presence of microbial 261 

glucuronidases and suphatases deconjugates these metabolites allowing the reuptake of 262 

aglycones 
85
. However, intestinal microbiota can also degrade aglycones releasing more 263 

simple aromatic compounds, such as hydroxyphenylacetic acids from flavonols, 264 

hydroxyphenylpropionic acids from flavones and flavanones and phenylvalerolactones 265 

and hydroxyphenylpropionic acids from flavanols 
83
. These compounds can be absorbed 266 

and subsequently conjugated, process that has been suggested to reduce their 267 

antioxidant potential 
86
, whereas others propose that it could enhance some of their 268 

benefits 
87
.  269 

Besides these human factors, the bioavailability of polyphenols is also influenced by 270 

exogenous factors related to the matrix of polyphenol-rich foods. Polyphenols present in 271 

native foods are protected within the cellular structure, but during chewing and food 272 

digestion, these compounds can be released and absorbed in the intestinal mucosa 
88
. 273 

However, while many plant foods are consumed unprocessed, many others are 274 

subjected to industrial processing, which may modulate the availability of these 275 

phenolic compounds. This occurs, for example, in the manufacture of orange juice, 276 

process that can lead to the precipitation of flavanones by combination with pectins and 277 

other orange macromolecules 
89
 resulting in compounds with less bioavailability than 278 

the original ones 
90
. The same occurs with other foodstuffs, as is the case of almond skin 279 
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when undergoing industrial bleaching, its polyphenols become less bioavailable 
91
. 280 

Also, polyphenols can interact with some nutrients coming from the same meal 281 

resulting in changes in their absorption rate in the mucosa. In line with this, while the 282 

surrounding lipids seem to enhance the availability of phenolic compounds 
92
, dietary 283 

fibre can perform the opposite effect 
93
.   284 

Polyphenols and intestinal microbiota: scientific evidence of the impact 285 

on health 286 

The phyto-compounds have received a special attention from the scientific community 287 

because of their ability to scavenge the free radicals during some pathological processes 288 

such as cancer, cardiovascular diseases, diabetes and neurodegenerative disorders 
81,94-

289 

97
. However, to date there is scarce literature assessing the regular intake of polyphenols 290 

in different populations to suggest an optimal intake level or to propose dietary 291 

recommendations 
98
. The main difficulty of approaching the study of the effect of 292 

polyphenols on health is due to the wide range of different phenolic compounds in 293 

foods 
99
, together with their high variability in both, bioavailability and bioactivity 

100
, 294 

as well as the complex relationship established between these compounds and the 295 

intestinal microbiota 
101

 and other food components such as fibres.  296 

The role that the intestinal microbiota plays in the metabolism of different polyphenols 297 

has been extensively studied and nowadays it is know that the microbiota plays a key 298 

role determining the functionality of these compounds 
102
. Most of the consumed 299 

polyphenols are metabolized by intestinal microbiota, in some cases, resulting in 300 

metabolites with greater biological activity than their predecessors 
103
. The role of the 301 

host microbiota in producing molecules with increased bioactivity from food 302 

polyphenols has also been repeatedly shown; in some cases the specific microorganisms 303 
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involved in this conversion have been identified, such as the production of equol from 304 

the soya-isoflavone daidzein 
104

 or that of urolithin from ellagic acid 
105

, among others. 305 

Thus, there is a bidirectional interaction polyphenols - microbiota in which gut microbes 306 

affect the absorption of the polyphenols and, at the same time, the polyphenol 307 

metabolites influence the growth of certain bacterial species 
96
. At this point, the high 308 

inter-individual variability, in terms of gut microbiota composition, may have a direct 309 

impact on the functionality for the host of the ingested polyphenols. Therefore, as some 310 

groups of bacteria are responsible for metabolism of polyphenols in the colon, the role 311 

of these compounds on health could be variable depending on the composition of the 312 

individual microbiota 
103,106

.  313 

The study of polyphenols metabolism by the intestinal microbiota constitutes a very 314 

active area of research and our knowledge in the field is accumulating rapidly. 315 

However, little it is known about the effects that polyphenols intake may have upon the 316 

gut microbiota. In addition to their proposed anti-oxidant, estrogenic or anti-317 

carcinogenic activities, some polyphenols are well known because of their antimicrobial 318 

activity against pathogenic microorganisms 
107
. However, so far, few studies have 319 

addressed the effect of polyphenols on the human gut microbiota and, in most cases, 320 

they have focused on the administration of polyphenol rich supplements which may 321 

show different effects to the dietary polyphenols intake. Although over last decades it 322 

has been accumulated evidence, from animal and human studies, showing the modulation 323 

of some intestinal bacterial populations after supplementation with polyphenol-rich food, 324 

such as red wine 
108
, tea 

109
, cocoa 

110
 or blueberries 

111,112
, results are inconclusive to 325 

date.  326 
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The relationship between red wine and microbiota has been explored in several studies 327 

in the last years. An increase in Lactobacillus/Enterococcus group has been observed 328 

with polyphenol-rich grape seed extract 
113

. However, other studies did not found 329 

significant effects of red wine polyphenols on the faecal cultures 
114

. In a study 330 

conducted using an intestinal system simulator both tea and red wine polyphenols were 331 

found to increase microorganisms such as Klebsiella or Akkermansia, but to inhibit 332 

others such as bifidobacteria, Blautia coccoides or Bacteroides 
115
. The in vivo data on 333 

the effect of dietary polyphenols on the gut microbiota do not shown consistent results 334 

either. For instance wine phenolic compounds have been indicated to stimulate the 335 

growth of bifidobacteria and lactobacilli, inhibiting that of clostridia in experimental 336 

animals 
116

. However, a recent animal study reports differential effects upon the 337 

microbiota of two of the main polyphenols, quercetin and resveratrol, differentially 338 

inhibiting certain clostridia, but without detecting any effect upon bifidobacteria 
117
. 339 

Human intervention studies have reported the ability of red wine to increase the levels 340 

of Enterococcus, Bifidobacterium or Eggerthella, among other microorganisms 
108,109

, 341 

but, on the contrary, regular consumers of red wine have been found to harbour lower 342 

levels of different microorganisms including lactobacilli and bifidobacteria 
118

. In this 343 

context, it has to be considered that the polyphenol amounts consumed under a 344 

nutritional intervention or with a polyphenol-enriched supplement may be very different 345 

from the intake in the context of a normal diet. In agreement with the reported changes 346 

in the phylum Firmicutes after red wine administration 
108
, Cuervo et al., have described 347 

the association between the regular intake of moderate amounts of red wine and 348 

Faecalibacterium concentrations 
119

, supporting the hypothesis about the prebiotic 349 

effect of moderate red wine consumption targeted by several authors 
116

. Also, 350 
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variations in the faecal metabolome upon the administration of red wine have revealed 351 

new mechanisms of action of red wine polyphenols in the human body 
120

.  352 

Giving that most cocoa-derived foods contain saturated fats and sugars, chocolate has 353 

been traditionally classified as an unhealthy food with an occasional recommended 354 

intake. Nevertheless, in the last years, this aspect has sparked differences since several 355 

reports have linked chocolate intake with a better cognitive function 
121

 and 356 

cardiovascular disease protection 
122
, being some of these positive effects attributed to 357 

the antioxidant effect promote by its flavonoid content. Most of the multiple in vivo and 358 

in vitro studies describing the antioxidant effect of cocoa flavanols and their impact on 359 

hypertension 
123
,  LDL oxidation 

124
 or insulin sensitivity 

125
 are refered to epicatechins 360 

and procyanidins, the two groups of cocoa flavanols with highest bioavailability in 361 

humans 
126,127

. However, as Tzounis et al., have suggested the majority of procyanidins 362 

in cocoa pass intact to the large intestine, where they are metabolized by the microbiota 363 

128
. Reviewing the literature, differential results are observed between animal and human 364 

studies, but it is possible that several factors, including cocoa composition, dose and 365 

duration of supplementation and inter-specie or inter-individual variation in microbiota 366 

composition 
129
, make difficult the comparison among them. The decrease of Bacteroides, 367 

Clostridium and Staphylococcus showed in animal studies may be due to the represive 368 

effect on certain bacterial groups by means of the association of polyphenols with 369 

dietary fibers 
110

. In humans, an increase in Lactobacillus and Bifidobacterium has been 370 

reported, linked with a lower concentration of C-reactive protein and, subsequently, 371 

with cardiovascular protection 
128

. Since some gastrointestinal disturbances, as IBS, are 372 

characterized by reduced proportions of Bifidobacteria, Lactobacilli, and higher 373 

numbers of Clostridia, the potential effect of chocolate could be remarkable 
130
.  374 
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Tea consumption has been associated with a reduced risk of cardiovascular disease, 375 

being this phenomenon attributed to its content in phenolic compounds 
131,132

. Since tea 376 

is the second most consumed beverage around the world after water, there is extensive 377 

information about its absorption and gut microbiota catabolism. In this line, it has been 378 

reported that flavan-3-ols derived in other catabolites, such as phenylvalerolactones and 379 

phenylvaleric acids, may have an important role in some of the protective effects linked 380 

to tea consumption 
133

. Tea phenolic compounds, including epicatechin, catechin or 381 

caffeic acid, were reported to inhibit the growth of Bacteroides without affecting that of 382 

other commensals, such as clostridia, bifidobacteria or lactobacilli 
109

. Faecal cultures 383 

have also been used and increases on specific microorganisms, including 384 

Bifidobacterium, have been reported in the presence of polyphenols such as clorogenic 385 

acid, caffeic acid, rutin or quercetin 
134

. However, there is little evidence about the in 386 

vivo effect of tea on intestinal microbiota. Jin et al., after 10 days of intervention with 387 

green tea, found an increase in the proportion of bifidobacteria, but they did not observe 388 

a significative change in the composition of Bifidobacterium species 
135
. Some studies 389 

have showed an association between the intake of cathechins from green tea and an 390 

adequate body weight regulation, wich may be mediated by the modulation of gut 391 

microbiota 
136

 and saturated fatty acid production 
137-139

. At this moment, more studies 392 

about the metabolism of catechins are required in order to deep in this association 393 

however, evidence from in vitro assays has shown a favourable effect of these phenolic 394 

compunds on obese microbiota by means of changes in the Firmucutes/Bacteroidetes 395 

ratio 
136

. Also, cathenichins and epigallocatechins from tea have been shown to exert a 396 

protective effect against gastrointestinal diseases, such as colitis and colon cancer. 397 

Together with the reduction in the concentrations of inflammatory citokines 
140

 they 398 
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promoted the bacterial adhesion of some probiotics like Lactobacillus rhamnosus that 399 

contributes to the maintenance of mucosal defences 
141
.  400 

In contrast to other food groups, epidemiological evidence has been mounting on the 401 

health benefits of fruits and vegetables consumption 
142-144

. Most of these effects have 402 

been attributed to their natural content in bioactive compounds. However, some authors 403 

have recently reported a possitive association between de frequency of consumption of 404 

fruits and vegetables with Lactobacillus, Clostridium coccoides and Prevotella 
145
. In 405 

this regard, the impact of apple in the maintenance well-being has been widely 406 

documented since long time 
146-148

, but it has been recently when evidence from in vitro 407 

studies have suggested that some of these benefits could be attributed to the interaction 408 

between apple polyphenols and gut microbiota 
103,149-151

. Dihydrochalcones from apples 409 

have been previously associated with Bifidobacterium in animal and humans models 410 

119,152,153 
and have also been shown to influence the commensal intestinal microbiota, 411 

increasing the levels of some bacteria in the gut, such as Lactobacillus species 
154

. To 412 

this regard, a recent study, carried out in the normal dietary context, only found a 413 

significant association (negative) between dietary flavanone intake and B. coccoides and 414 

Clostridium leptum, among the different dietary polyphenols evaluated 
155

. 415 

Interestingly, this study also found concomitant associations with dietary fibres, 416 

underlining the fact that in the dietary context a food does not only provide a certain 417 

type of nutrient or functional category. Indeed, polyphenols may appear often in fibre 418 

rich foods, such as whole grain 
156

. Given the well know functional properties of fibre 419 

157
, the understanding of the isolated effects of polyphenols within the dietary context 420 

may be difficult to achieve. In addition, several other dietary sources of polyphenols are 421 

available and may contribute to the total polyphenols intake. Moreover, the total intake 422 

of phenolic compounds may be very different in distinct human groups, for instance the 423 
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intake in elderly being less than half that of adults 
158
. All these factors difficult the 424 

understanding of the interactions between dietary polyphenols and intestinal microbiota 425 

but, nevertheless, this is an essential area of research which promises to increase our 426 

knowledge on the functionality of dietary polyphenols (Figure 3). 427 

Future perspectives 428 

A single view is enough to realize that the association between polyphenols and 429 

microbiota is a hot topic that could generate interesting results in order to improve 430 

nutritional strategies or to design new functional foods. Nevertheless, future studies 431 

should avoid some limitations regarding this issue. 432 

On one hand, there is limited information about the role of individual polyphenols on 433 

microbiota, taking into consideration that results from in vitro studies cannot be directly 434 

extrapolated to what occurs in the physiological context of the intestinal ecosystem. 435 

Besides, intervention works often involves very high doses of individual compounds, or 436 

high amounts of polyphenol rich foods (tea, coffee or cocoa being the most frequent), 437 

which are not representative of what occurs in the context of a regular diet. In adition, 438 

there is high inter-individual variability in polyphenol absorption depending on several 439 

factors, such as their microbial transformation in the gut or the nutritional composition 440 

of the meal 
159

. In relation to inter-individual variability, some authors have proposed 441 

that the differences in biotransformation between subjects should be recognized as an 442 

essential part of personalized nutrition approaches 
103,160,161

. Since foods are mixtures of 443 

bioactive compounds that could affect microbiota, there is no doubt about the 444 

complexity of analysing the associations for these components. It has been estimated 445 

that around 50% of dietary antioxidants, mainly polyphenols, pass through the 446 

gastrointestinal tract together with dietary fibre, so it would be interesting in the future 447 
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to take into account the dietary source from which polyphenols come, as this could 448 

condition its physiological effects 
93
.  449 

On the other hand, whilst there is a trend towards strong polyphenols supplementation 450 

with numerous very polyphenol-rich supplements being developed and commercialised, 451 

little is known about the potential risks associated with their consumption. An excessive 452 

polyphenol intake has been reported to be deleterious for the host 
162
. Interactions 453 

between these compounds and other bioactive molecules, such as certain drugs, have 454 

been described 
163

. These issues should be considered and monitored when supplements 455 

with high polyphenol content are administered. Moreover, there may be a large 456 

variability in the response to polyphenols as a consequence of differences in gut 457 

microbiota composition, difficulting the understanding of these interactions. It is 458 

possible that the variability in the composition of gut microbiota between population 459 

groups involve different diet-microbiota associations 
164,165

, or that subjects with a well-460 

balanced immune system could be less susceptible to the effect of dietary components 461 

than subjects with altered immune responses, therefore in would be interesting for the 462 

future to deep in the relationship between polyphenols and microbiota in different 463 

groups from the immunological point of view. 464 

In addition, in the absence of consensus about a method for polyphenol dietary 465 

assessment, nutritional studies use food frequency questionnaire (FFQ) or 24h dietary 466 

recall, with the implicit limitations on each one; while FFQ cannot include all potential 467 

sources of polyphenols, 24h dietary records are not representative of the regular intake 468 

and do not consider seasonal variation, which is of great importance for polyphenol 469 

assessment. Also, a food composition databases cannot include analytical information 470 
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about local food variety, losses during processing, storage or cooking of food or 471 

changes in polyphenol content with maturation. 472 
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Table 1. Mean intake of total, classes and subclasses of polyphenols in different geographical areas. 

Country Date n 
Dietary intake data-

collection method 

Food composition 

tables/database 

Group of 

polyphenols 
Mean intake (mg/d) Food sources 

Poland 1 2014 10,477 FFQ Phenol-Explorer Total polyphenols 
X = 1756.5 ± 695.8 

Me = 1662.5 

Coffee, tea and 

chocolate 

Spain 2 2013 7,200 FFQ Phenol-Explorer Total polyphenols X = 820 ± 323 Fruit 

     Flavonoids X = 443 ± 218  

     Phenolic acids X = 304 ± 156  

Japan 
3
 2013 815 7 day recalls Phenol-Explorer Total polyphenols Me = 1047  

U.S.A. 
4
 2012 98,469 FFQ USDA Total flavonoids 

Men: X = 268; Me = 203 

Women: X = 268; Me = 201 
 

FFQ: food frequency questionnaire; USDA: United States Department of Agriculture. X = mean; Me = median 
1
 Grosso G. et al. Nutrition (2014) 30, 1398–1403 

2 
Tresserra-Rimbau A. et al. Nutr Metab Cardiovas (2014) 24, 639e647 

3
 Wang Z. et al. World J Gastroenterol (2013) 19, 2683-2690 

4
 McCullough M.L. et al. Am J Clin Nutr (2012)95, 454–64 
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Table 1. Cont. 

Country Date n 
Dietary intake data-

collection method 

Food composition 

tables/database 

Group of 

polyphenols 
Mean intake (mg/d) Food sources 

Multicentre 5,6 2011 36,037 24 h recall 
USDA and Phenol-

Explorer 
Anthocyanidins 

Men: X = 29.44 ± 0.53 

Women: X = 33.52 ± 0.39 
 

     Flavonols 
Men: X = 29.84 ± 0.48 

Women: X = 28.40 ± 0.35 
 

     Flavanones 
Men: X = 32.35 ± 0.72 

Woman: X = 37.03 ± 0.52 
 

     Flavones 
Men: X = 4.58 ± 0.08 

Woman: X = 4.58 ± 0.06 
 

France 7 2011 2,574 24 h recall Phenol-Explorer Total polyphenols 
Men: X = 1180 ± 512 

Women: X = 1120 ± 477 

Coffee, fruit, 

wine and tea 

Finland 8 2007 2,007 24 h recall Finoli Total polyphenols 
Men: X = 919 ± 458 

Women: X = 817 ± 368 

Coffee, rye bread, 

tea and fruits 

USA 9 2007 8,809 24 h recall USDA Total flavonoids 190  

USDA: United States Department of Agriculture. X = mean.  
5 Zamora-Ros R. et al. Brit J Nutr (2011) 106, 1915–1925 
6
 Zamora-Ros R. et al. Brit J Nutr (2011) 106, 1090–1099 

7 
Kesse-Guyot E. et al. J. Nutr (2012) 142, 76–83 

8
 Ovaskainen M. et al. J. Nutr (2008) 138, 562–566 

9
 Chun O.K. et al. J. Nutr (2007) 137, 1244–1252 
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Figure 1. Main key-features of human intestinal microbiota along ageing and in relation to disease.  
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Figure 2. Mean content (mg/100 g of food) of flavonoids, phenolic acids, lignans and stilbenes in the main food sources of these 

polyphenol classes, according to data collected in the database Phenol-Explorer.  

Flavonoids Phenolic acids 

  
Lignans Stilbenes 

  

 

Evergreen huckleberry

Pecan nut

Hazelnut

Highbush blueberry

Soy, flour

Black raspberry

Capers

Common bean, whole, raw

Lowbush blueberry

Blackcurrant

Chocolate, dark

Cocoa, powder

417.0

493.4

496.5

525.9

572.3

608.0

654.7

667.1

674.8

987.9

1736.9

3656.8

Maize, whole grain

Fox grape, black

Chicory, red, raw

Japanese walnut

Coffee beverage, filter

Olive, green, raw

Olive, black, raw

Sunflower seed, meal

Walnut

American cranberry

Flaxseed, meal

Chestnut, raw

215.1

227.6

234.8

251.1

313.4

355.4

451.1

462.7

477.9

625.6

672.5

1215.2

Oat, whole grain flour

Buckwheat, whole grain flour

Bread, rye, whole grain flour

Olive, oil, extra virgin

Sunflower seed, meal

Rye, whole grain flour

Olive, oil, virgin

Olive, oil, refined

Flaxseed, meal

Sesame seed, meal

Sesame seed, black, oil

Sesame seed, oil

0.9

0.9

1.2

1.3

1.7

1.9

2.8

3.3

284.4

931.2

1223.3

1294.7

Grape, black

Grape, green

Strawberry

Wine, rosé

Fox grape, red wine

Bilberry

Wine, white

Redcurrant

European cranberry

Lingonberry

Muscadine grape, red…

Wine, red

0.2

0.3

0.4

0.4

0.5

0.7

0.8

1.6

1.9

3.0

3.0

3.4
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Figure 3. Bidirectional associations between polyphenols and microbiota. 
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