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Abstract: There is a shortage of daily high spatial land surface temperature (LST) data for use in high 

spatial and temporal resolution environmental process monitoring. To address this shortage, this work 

used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and 

Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion 10 

Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution 

Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to 

evaluate the precision of the combined LST imageries using the correlation analysis method. This method 

was tested and validated in study areas located in Gansu Province, China. The results show that all the 15 

models can generate daily synthetic LST imagery with a high correlation coefficient (r) of 0.92 between 

the synthetic imagery and the actual ASTER LST observations. The ESTARFM has the best performance, 

followed by the STDFA and the STARFM. Those models had better performance in desert areas than in 

cropland. The STDFA had better noise immunity than the other two models. 

Keywords: MODIS; ASTER; Land surface temperature; Multi-sensor fusion; 20 

Environmental impact 

The land surface temperature (LST) product is very important for understanding the impact of global climate change and human activities on climate change. 

However, there is a shortage of LST data for high spatial and temporal environmental process monitoring. To solve this problem, the Spatial and Temporal Adaptive 

Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data 

Fusion Approach (STDFA) were tested and validated to estimate high spatial and temporal resolution land surface temperature data by combining Advanced 25 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products in study 

areas located in Gansu Province, China. The results show that all the models can accurately generate daily synthetic LST imagery, with a correlation coefficient 

higher than 0.92. The generated daily synthetic LST images enable high spatial and temporal resolution environmental process monitoring of environmental 

pollution, the ecological environment, and agriculture. 

 30 

1. Introduction 

Land surface temperature (LST) data on the earth's surface is 

used for the analysis and simulation of important surface energy 

balance parameters,1 and is also an important input parameter in 

soil moisture, drought, and crop yield estimation models.2-3 LST 35 

is also widely used in regional hydrology ecological and 

environmental research.4-5 Because the response of different 

vegetation types or ecosystems to temperature is an important 

part of global change research, LST plays a large role in 

monitoring global climates6-8 and studying urban heat island 40 

effects.9-11 Thus, the LST product is very important to 

understanding the impact of global climate change and human 

activities on climate change.12 

    The main method of estimating LST is an inversion approach 

using thermal infrared remote sensing images.13 Currently, global 45 

LST products can be estimated from Advanced Spaceborne 
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Thermal Emission and Reflection Radiometer (ASTER) and 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

data.14-15 The thermal infrared data from Landsat and the Huan 

Jing Constellation satellite (HJ) can also be used to estimate 

LST.16-17 However, due to limitations in satellite data acquisition 5 

and the influence of clouds, there is a lack of high spatial and 

temporal resolution LST data. MODIS LST products (MOD11A1) 

have a high temporal resolution and have been widely used in 

global or large-scale area monitoring.18 However, these products 

are not suitable for high precision monitoring in small areas due 10 

to their lower spatial resolution. The LST products of ASTER, 

Landsat, and HJ have a high spatial resolution and have been 

widely used in small study areas, for example, to examine urban 

heat islands.19 However, these products are not suitable for time 

series monitoring due to the long review cycle of the satellites. 15 

Therefore, there is a pressing need to combine those two types of 

data to achieve both high spatial and high temporal resolutions. 

    Recently, several data fusion approaches have been proposed 

to blend high spatial resolution data and high temporal resolution 

data. These approaches generate synthetic high spatial resolution 20 

imagery with a high temporal resolution. Gao et al.20 introduced 

the Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) for blending MODIS and Landsat imagery. Several 

studies applied this model and demonstrated the use of STARFM 

within a mainly coniferous area, as well as for urban 25 

environmental variables extraction, vegetated dry land ecosystem 

monitoring, public health studies, and the generation of daily land 

surface temperatures.21-25 Zhu et al.26 enhanced the STARFM for 

complex heterogeneous regions. Other researchers proposed 

methods that fuse Landsat and MODIS data to generate high 30 

temporal resolution synthetic Landsat data based on a linear 

mixed model.27-29 Wu et al.30 introduced a Spatial and Temporal 

Data Fusion Approach (STDFA) based on linear mixing theory 

and applied it to the estimation of a high-resolution Leaf Area 

Index31 and crop mapping.32 In these cases, the methods were 35 

originally proposed fusing Landsat and MODIS reflectance 

images. Thus, there is a need to test the ability of these methods 

with other sensors and products. 

    The present work seeks to apply these methods in the fusion of 

ASTER and MODIS LST products. The objectives of this study 40 

are to (1) compare the suitability of applying STARFM, 

ESTARFM, and STDFA in the fusion ASTER and MODIS LST 

products; and (2) evaluate the applicability of these three models 

for different land use types. 

2. Study area and data preparations 45 

2.1. Study area 

Zhangye country, Gansu province, China was selected as the 

study area for this research. The latitude and longitude range for 

the region are from 38°02′32.23″to 38°09′24.17″N，

and from 100°00′29.63″to 100°02′45.89″E, respectively. 50 

Zhangye has a continental dry climate with an annual average 

temperature of 6 ℃. The coldest month is January, while the 

hottest month is July. The main land forms of Zhangye are plains, 

cities, and deserts. The plains in the region are mainly devoted to 

agriculture. 55 

 
Fig. 1Location of the study site. 
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2.2. Data preparation 

Eleven ASTER LST data sets and twenty-nine MODIS LST 

datasets (MOD11A1) were used in this study (Table 1).  

Table 1 Main characteristics of ASTER and MODIS images used in the research 5 

ASTER Usage MOD11A1 ASTER Usage MOD11A1 ASTER Usage MOD11A1 

06/15/2012 Reference 06/15/2012   07/31/2012   08/28/2012 

  06/18/2012 08/02/2012 
Reference and 

Validation 
08/02/2012   08/29/2012 

  06/19/2012   08/04/2012 09/03/2012 
Reference and 
Validation 

09/03/2012 

  06/20/2012 08/11/2012 
Reference and 

Validation 
08/11/2012 09/12/2012 

Reference and 

Validation 
09/12/2012 

  06/21/2012   08/14/2012   09/15/2012 

06/24/2012 
Reference and 

Validation 
06/24/2012   08/15/2012   09/17/2012 

  07/04/2012 08/18/2012 
Reference and 

Validation 
08/18/2012 09/19/2012 

Reference and 

Validation 
09/19/2012 

07/10/2012 
Reference and 
Validation 

07/10/2012   08/21/2012   09/21/2012 

  07/14/2012   08/22/2012   09/26/2012 

  07/19/2012 08/27/2012 
Reference and 
Validation 

 09/28/2012 Reference 09/28/2012 
 

 

2.2.1. ASTER data 

ASTER is one of five remote sensory devices on board the Terra 

satellite. ASTER provides earth images every 16days in 14 

different bands in a spectral range from visible to thermal infrared 10 

light. Its spatial resolution ranges between 15 to 90 meters. 

ASTER data are widely used to create detailed maps of land 

surface temperatures, emissivity, reflectance, and elevation. 

    Eleven ASTER LST datasets, provided by the Cold and Arid 

Regions Science Data Center at Lanzhou, were used in this study 15 

(Table 1). The data were acquired under clear sky conditions and 

were estimated from ASTER L1B thermal infrared data using the 

temperature emissivity separation (TES) inversion algorithm. The 

thermal infrared data were atmospherically corrected using the 

water vapour scaling (WVS) method in MODTRAN with 20 

MODIS atmosphere profile data products (MOD07) acquired on 

the same day as the ASTER data. The ASTER L1B thermal 

infrared data were then georeferenced using a second-order 

polynomial warping approach based on the selection of an 

appropriate number of ground control points (GCPs). This 25 

procedure used ASTER L3 data with the nearest neighbour 

resampling method and a position error within 0.7 ASTER pixels. 

The accuracy of this data was evaluated using the ground 

measured LST data. The results showed that the average 

deviation of this product was less than 0.5K with an RMSE less 30 

than 2K.33-34 

2.2.2. MODIS LST data 

MODIS is a key instrument aboard the Terra and Aqua satellites. 

MODIS provides earth images every 1 to 2 days in 36 spectral 

bands, ranging from visible to thermal infrared light. Its spatial 35 

resolution ranges from 250 to 1000 meters. 

Twenty-nine MODIS LST data sets (MOD11A1, 1 km, 

collection5) obtained under clear sky conditions were used in this 

study (Table 1). These MODIS images were re-projected from 

the native sinusoidal projection to a UTM-WGS84 reference 40 

system, and were resized to the selected study areas using the 

MODIS reprojection tool (MRT). The MODIS data were then 

georeferenced by a second-order polynomial warping approach 

based on the selection of an appropriate number of GCPs on 

1000m ASTER images, using a nearest neighbour resampling 45 

method. The 1000m ASTER images were generated from 

georeferenced ASTER images with the pixel aggregate 

resampling method, and the position error was within 0.78 

ASTER pixels. The MODIS LST data included some default data. 

Median filtering methods were used to remove these default 50 

values. 

3. Approach 

3.1 Model introduction 

3.1.1 STARFM 

In STARFM model, the relationship between the fine resolution 55 

image and the coarse resolution image is described as:  

 )(),,(),,( kkk ttyxRtyxr   (1) 

where ),,( ktyxr  is the fine resolution reflectance of target 

pixels (x,y) at time tk; ),,( ktyxR is the coarse resolution 

reflectance; )( kt is the sensor difference. Suppose the ground 60 

coverage type and system errors does not change over prediction 

date, the STARFM model predicts synthetic high spatial 

imageries from low spatial imageries as follows: 20 
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),,(),,(),,(),,( 00 tyxRtyxrtyxRtyxr kk   (2) 

By introducing additional information from the neighbouring 

pixels to reduce the influences of land cover change, surface 

heterogeneity, and solar geometry bidirectional reflectance 

distribution function (BRDF) changes, a weighted STARFM 5 

model can be determined as follows: 

 
  


w

i

w

j

n

k

ijkk rtRRWtr
1 1 1

0ji0jikji )t,y,x(),y,x()t,y,x()y,x,(

                               

(3) 

 

Where k is the number of pixels (xi,yj) in the window w; w is the 

search window size; ijkW is the weight determined by the 10 

spectral difference
ijkS  and temporal difference

ijkT between the 

fine and low resolution data, and 
ijkD is the distance between the 

target pixel and the candidate pixel. Those parameters are 

calculated as follows: 

ijkijkijkijk dTSW                                (4) 15 

)t,y,x(),y,x( kjiji rtRS kijk                   (5) 

)t,y,x(),y,x( 0jiji RtRT kijk                   (6) 

AdD ijkijk /1                                   (7) 

   22
yiyxixd ijk                         (8) 

where A is the constant used to determine whether the spectral 20 

similarity weight or the distance weight is more important. 

3.1.2 ESTARFM 

The ESTARFM is based on the assumption that the change of 

reflectance of each endmember is linear over time. Thus the ratio 

vk of the change of reflectance for kth endmember to the change 25 

of reflectance for a coarse pixel can be described as: 

 k
k

k v
tRtR

trtr





))()((
))()((

0

0  (9) 

Similar to the STARFM, a weighted ESTARFM model considers 

information from neighbouring pixels as follows:26 

    
  


w

i

w

j

n

k

jikjiijkijkjik tyxRtyxRvWtyxrtyxr
1 1 1

00 ,,,,),,(),,(

                       

(10) 30 

 

The weight 
ijkW  of ESTARFM is calculated as follows: 

   



n

i

iii DDW
1

11                            (11) 

  iii dSD  1                                 (12) 

     2//
22

1 wyyxxd iii               (13) 35 

      
   ii

iiii
i

RDrD

RERrErE
S




                    (14) 

3.1.3 STDFA 

The STDFA is based on the linear mixing theory. According to 

linear mixing theory, the reflectance of a coarse-resolution spatial 

pixel measured by a sensor is its composite value. The response 40 

of each coarse spatial resolution pixel is assumed to be a linear 

combination of the responses of each land cover class 

contributing to the mixture which was expressed as: 35 

 ),,(),(),,(),,(
0

tyxtcrcyxftyxR
k

c

c 


  (15) 

Constrained: 1),,(
0




k

c

c cyxf ; and 0),,( cyxfc for all 45 

where ),,( cyxfc
is the fractional cover of class c in coarse pixel 

(x,y) at time t, which is usually assumed not to change over time, 

),( tcr  is the mean reflectance of fine resolution homogeneous 

pixels belonging to land cover class c and ),,( tyx is the residual 

error term. Using the ordinary least squares technique, time series 50 

mean reflectance values can be obtained by solving the linear 

system of Equation (15). Then based on the assumption that the 

temporal variation properties of each fine resolution pixels in the 

same class are constant, the STDFA model predicts synthetic 

high spatial imagery as follows: 30 
55 

 ),(),(),,(),,( 00 tcrtcrtyxrtyxr kk   (16) 

where ),( ktcr  and ),( 0tcr  are the mean reflectance of land 

cover c. 

3.2 Application of spatial and temporal fusion models 

For the STARFM, ESTARFM, and STDFA methods, two types 60 

of data must be input: the reference images and the time series 

MODIS LST products. These latter must contain MODIS LST 

data acquired on the same day as the reference image, and at least 
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one MODIS LST data set acquired on the same day as the 

ASTER LST image that we want to predict. The selection of 

reference images has an important influence on the fusion 

accuracy.36 Usually, the ASTER LST data that are from a date 

near the predicted date are used as the reference images. However, 5 

since the temporal change in LST over time may not be constant, 

similar dates do not necessarily indicate similarity in LST. 

Therefore, in this work, the ASTER LST data used for the 

reference images were selected based on the day with the highest 

correlation of MODIS data between that day and the day being 10 

predicted. Two-day ASTER and MODIS LST images are also 

needed in the ESTARFM. The early day ASTER and MODIS 

LST images were acquired on the same day as the reference 

ASTERLST image. The later day ASTER and MODIS LST 

images were acquired on a date later than the day being predicted. 15 

Two days of ASTER LST images (one day for the reference 

ASTERLST image, the second after the prediction date) were 

also needed for classification in the STDFA. For the STARFM 

and ESTARFM, the MODIS LST images must be resampled to 

the same resolution of the ASTER LST data by the nearest 20 

neighbour resampling method. 

3.3 Evolution of spatial and temporal fusion models 

Since the objective of the STARFM, ESTARFM, and STDFA 

methods was to generate synthetic ASTER LST data, nine real 

ASTER LST data sets were used to validate the algorithm. 25 

Obviously, the closer the synthetic ASTER LST imagery is to the 

actual imagery, the higher the precision. The algorithm was 

validated using two methods. First, visual interpretation was used 

to qualitatively evaluate the difference between the synthetic and 

real ASTER LST imagery. If the synthetic and real ASTER LST 30 

imagery can be distinguished visually, the accuracy of the method 

is not very high. Second, a correlation analysis was used to 

quantitatively evaluate the similarity between the actual 

observations and the synthetic imagery. Several indicators, such 

as the coefficient (r), variance, mean absolute difference(MAD), 35 

bias, and root mean square error(RMSE), were used to represent 

the precision of this model. Higher r and lower variance, MAD, 

bias, and RMSE indicate a higher accuracy. 

4. Results 

4.1. Overall accuracy comparison 40 

Using the STARFM, ESTARFM, and STDFA, 29 synthetic 

ASTER LST images were generated using each method. Nine 

actual ASTER LST images were used to evaluate the accuracy of 

those three methods. Figure 2 shows the actual MODIS LST data, 

the actual ASTER LST data, and three synthetic ASTER LST 45 

images generated by those three methods on 10 July 2012. 

Through visual interpretation, we found that the synthetic 

ASTER LST data generated by the ESTARFM and STDFA were 

very similar to the actual ASTER LST data, while the resolution 

of the synthetic ASTER LST data generated by the STARFM was 50 

some what lower the actual ASTER LST data. However, all 

synthetic ASTER LST images had a higher resolution than the 

MODIS LST product. Table 2 shows the result of the correlation 

analysis. From Table 2, it is seen that all methods generate 

ASTER LST images very similar to the actual ones, with 55 

coefficient (r) higher than 0.92 and RMSE lower than 3.4k. The 

ESTARFM had the best performance, followed by the STDFA 

and then the STARFM. 

 
Fig.2A comparison between MODIS LST, ASTER LST, and synthetic 60 

LST data generated by the STARFM, ESTARFM, and STDFA acquired 

on 10 July 2012: (a) MOD11A1 LST data; (b) ASTER LST data; (c) 

synthetic LST data generated by the STARFM; (d) scatter plot between 

the ASTER LST and synthetic LST generated by the STARFM; (e) 

synthetic LST data generated by the ESTARFM; (f) scatter plot between 65 

the ASTER LST and synthetic LST generated by the ESTARFM; (g) 

synthetic LST data generated by the STDFA; (h) scatter plot between the 

ASTER LST and synthetic LST generated by the STDFA. 
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Table 2Comparison between actual LST and synthetic LST images 

Day 
STARFM ESTARFM STDFA 

R Var MAD RMSE bias R Var MAD RMSE bias R Var MAD RMSE bias 

06/24/2012 0.94  8.92  2.26  2.99  0.09  0.96  5.87  1.79  2.43  -0.09  0.96  6.42  1.90  2.54  -0.09  

07/10/2012 0.94  7.79  2.06  2.81  -0.29  0.97  3.73  1.38  1.97  -0.38  0.97  3.82  1.40  2.01  -0.48  

08/02/2012 0.95  6.57  1.85  2.60  0.45  0.97  3.73  1.38  1.97  0.38  0.97  3.62  1.37  1.96  0.48  

08/11/2012 0.94  6.32  1.89  2.59  -0.64  0.97  3.48  1.36  2.01  -0.75  0.95  5.06  1.69  2.35  -0.66  

08/18/2012 0.92  6.44  1.98  2.71  -0.95  0.95  7.54  2.24  2.93  -1.03  0.94  6.62  2.14  2.81  -1.13  

08/28/2012 0.92  11.15  2.56  3.38  -0.49  0.93  9.36  2.29  3.12  -0.58  0.94  7.85  2.19  2.85  -0.53  

09/03/2012 0.93  6.74  1.94  2.67  0.63  0.92  9.36  2.29  3.12  0.58  0.93  7.50  2.15  2.79  0.54  

09/12/2012 0.93  6.99  1.94  2.67  -0.37  0.96  4.18  1.41  2.09  -0.46  0.95  5.36  1.58  2.38  -0.55  

09/19/2012 0.94  5.26  1.68  2.35  0.52  0.96  4.18  1.41  2.10  0.46  0.94  5.25  1.58  2.35  0.54  
 

 

 

4.2 Accuracy comparison of each land cover types 

To demonstrate the performance of the STARFM, ESTARFM, 5 

and STDFA for each land cover type, an accuracy comparison for 

each land cover was conducted on those nine days. Table 3 

showed the correlation analysis results for those three methods 

with each land cover type. Figure 3 shows scatter plots with the 

actual and synthetic ASTER LST images in each class, which fit 10 

well to the 1:1 lines. From Table 3 and Fig. 3, we find that the 

ESTARFM and STDFA have the same precision evaluated using 

all nine days of images in the desert class. The ESTARFM had 

slightly better performance than the STDFA in the crops and 

cities classes. Further more, the STARFM had the worst 15 

performance in each land cover type. 

Table 3Comparison between actual LST and synthetic LST imageries of different land cover types 

 

All nine days Crops Cities Desert 

STARF

M 

ESTARF

M 

STDF

A 

STARF

M 

ESTARF

M 

STDF

A 

STARF

M 

ESTARF

M 

STDF

A 

STARF

M 

ESTARF

M 

STDF

A 

R 0.73  0.96  0.96  0.15  0.62  0.55  0.35  0.80  0.79  0.75  0.96  0.96  

Var 50.00  6.01  6.05  65.08  5.33  6.00  76.88  10.10  10.83  23.90  3.33  3.61  

MAD 2.20  1.79  1.84  2.15  1.79  1.94  3.21  2.45  2.55  1.74  1.30  1.37  

RMS

E 
7.07  2.46  2.47  8.13  2.31  2.45  8.80  3.22  3.34  4.94  1.83  1.90  

bias 0.01  -0.21  -0.21  -1.00  0.00  0.11  0.77  -0.51  -0.58  0.70  0.12  0.06  
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Fig.3 Comparison of ASTER LST and synthetic LST data for different land cover types generated by (a) the STARFM,(b) the ESTARFM, and (c) the 

STDFA.

5. Discussion 

The correlation analysis between the actual observations and the 5 

synthetic ASTER LST images showed high correlation with r 

higher than 0.92. This demonstrated that spatial and temporal 

data fusion methods, such as the STARFM, ESTARFM, and 

STDFA, can be used to combine ASTER LST and MODIS LST 

data to generate daily synthetic ASTER LST data. However, 10 

issues remain that should be addressed in the application of these 

methods. 

 (1) Influence of noise. ASTER and MODIS image noise will 

reduce the accuracy of the three models. Table 4 shows the 

correlation analysis results between the actual observations and 15 

the synthetic images generated without removing the default data 

from the MODIS LST data. Comparing Table2 and Table4, we 

see that the STDFA had the smallest decrease in correlation 

coefficient r and had the highest tolerance for noise, while the 

ESTARFM had the greatest decrease in correlation coefficient r 20 

and had the lowest tolerance for noise. This is because the 

STARFM and ESTARFM use a 3×3 window in their prediction, 
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while the STDFA uses a 40×40 window. Noise values appearing 

in the window would therefore have a greater influence on the 

ESTARFM. 

Table 4 Comparison of ASTER LST and synthetic LST data on 10 July 

2012 generated by the STARFM, ESTARFM, and STDFA. MODIS LST 5 

data is input with noise. 

 
STARFM ESTARFM STDFA 

R 0.92  0.77  0.96  

Var 10.35  36.90  6.68  

MAD 2.17  2.57  2.13  

RMSE 3.22  6.09  2.92  

bias -0.20  0.45  1.36  
 

 

 (2) Influence of spatial variability. The spatial and temporal 

data fusion methods assume that the temporal effects are constant 

over time. This may be true in classes like deserts and cities, but 10 

may be violated in classes like crops. The temporal changes in 

crops are easily affected by farm management practices such as 

irrigation,36 so there would be reduced accuracy for crops. 

Different methods were used to handle the spatial variability of 

reflectance. The STARFM and ESTARFM use additional 15 

information from a 3×3 window to reduce the influence of 

spatial variability, while the STDFA uses a 40×40 window. 

Thus, spatial variability still exists in the 40×40 window of the 

STDFA, which results in its lower accuracy compared to the 

ESTARFM. The ESTARFM is more suitable for complex surface 20 

areas. 

 (3) The spatial and temporal data fusion methods use optical 

images that are easy affected by cloudy weather. For example, 

during the 106 days from 15 June 2012 to 28 September2012, 

there have been only 29 MODIS images without clouds. The 25 

effective data rate is only 23%. Therefore, the development of an 

optical and radar data fusion algorithm is an important direction 

for multi-source remote sensing data.37-42 

6. Conclusions 

The STARFM, ESTARFM, and STDFA methods were compared 30 

and validated in the generation of daily ASTER LST data in 

Zhangye Country, Gansu province, China. The results showed the 

following: 

 (1) All three methods can generate synthetic ASTER LST 

images very similar to the actual ASTER LST imageries, with r 35 

values higher than 0.92 and RMSE values lower than 3.4k. The 

ESTARFM had the best performance, followed by the STDFA 

and then the STARFM. 

 (2) All three methods had their best performance with desert 

land types. The next best performance was for cities, and the 40 

worst performance was for crops. The ESTARFM and STDFA 

have the same precision in the desert class, while the ESTARFM 

had slightly better performance than the STDFA in the crops and 

cities classes. The STARFM method had the worst performance 

for each land cover type. 45 

 (3) ASTER and MODIS image noise will reduce the accuracy 

of these three models. The STDFA had the best tolerance to noise, 

while the ESTARFM had the worst tolerance to noise. 
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