# Environmental Science Processes & Impacts

Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



rsc.li/process-impacts

# **Environmental Impact**

In aquatic systems, dissolved organic matter (DOM) acts as a sunscreen, a food source, a trace metal chelator, and a photosensitizer. DOM's composition, which varies across environments, affects its ability to play such roles, but is difficult to ascertain because of challenges in isolating and analyzing it. In many studies solid-phase extraction has been used to isolate DOM, and it is ideally suited for coupling with mass spectrometry. This study assesses the performance of 2 solid-phase resins on the extraction of DOM from Lake Superior, the world's largest lake by area. Both sample recovery and the molecular-level fractionation of the isolated DOC were investigated, thus providing critical information for the comparison of different DOM-related environmental studies in natural systems.

**Environmental Science: Processes & Impacts** 

Environmental Science: Processes & Impacts Accepted Manuscript

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 0  |
| 0  |
| 9  |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 22 |
| 20 |
| 24 |
| 25 |
| 26 |
| 27 |
| 28 |
| 29 |
| 30 |
| 31 |
| 32 |
| 33 |
| 34 |
| 35 |
| 36 |
| 37 |
| 38 |
| 20 |
| 39 |
| 40 |
| 41 |
| 42 |
| 43 |
| 44 |
| 45 |
| 46 |
| 47 |
| 48 |
| 49 |
| 50 |
| 51 |
| 52 |
| 53 |
| 54 |
| 54 |
| 50 |
| 00 |
| 5/ |
| 58 |
| 59 |
| 60 |

| 1  | Dissolved organic matter in Lake Superior: insights into the effects of extraction       |
|----|------------------------------------------------------------------------------------------|
| 2  | methods on chemical composition                                                          |
| 3  | Hongyu Li <sup><i>a,*</i></sup> , Elizabeth C. Minor <sup><i>b</i></sup>                 |
| 4  |                                                                                          |
| 5  | Abstract Dissolved organic matter (DOM) in aquatic systems plays many                    |
| 6  | biogeochemical roles, acting as a sunscreen, a food source, a trace metal chelator, and  |
| 7  | a photosensitizer. The efficiency of DOM in these roles is, in part, a function of its   |
| 8  | composition, which is difficult to determine due to its heterogeneity and the difficulty |
| 9  | in isolating representative portions for subsequent molecular level analyses. In this    |
| 10 | study, the performance of two major types of solid phase extraction (SPE) resins (C18    |
| 11 | vs polymeric SDVB) in disk format (C18 disk vs SDB-XC disk) was studied using            |
| 12 | DOM from Lake Superior, the earth's largest lake by area. The performance of the         |
| 13 | two SPE disks and their influences on the molecular chemical composition of the          |
| 14 | extracted retentates were studied with Uv-vis spectrometry and negative-ion              |
| 15 | electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI            |
| 16 | FT-ICR MS). We found that SDB-XC disks outperformed C18 disks in the isolation           |
| 17 | of DOC in terms of both higher recovery and less fractionation relative to the initial   |
| 18 | DOM composition. Extracts of the same samples obtained with the different resins         |
| 19 | shared 70% of molecular formulae. Compounds exclusive to the SDB-XC extractions          |
| 20 | exhibited similar compound distributions to those of the shared formulae but were        |
| 21 | somewhat contain more N, P or S and more aromatic. The C18 exclusive compounds           |
| 22 | had somewhat higher H/C ratios and contained a large proportion of compounds with        |

| 23 | oxygen and nitrogen (CHON). Cluster analysis and principle component analysis                     |
|----|---------------------------------------------------------------------------------------------------|
| 24 | confirmed that sample location was the main driver of the composition of extracted                |
| 25 | samples but showed some fractionation of the samples based upon the type of resin.                |
| 26 |                                                                                                   |
| 27 | 1. Introduction                                                                                   |
| 28 |                                                                                                   |
| 29 | Dissolved organic matter (DOM) is ubiquitous in aquatic systems, and it constitutes               |
| 30 | one of the largest dynamic reservoirs of organic carbon on Earth. <sup>1</sup> Its variable molar |
| 31 | masses and chemical structures help to determine its roles in the natural environment,            |
| 32 | including acting as a food and nutrient source to aquatic organisms, as a                         |
| 33 | photosensitizer for anthropogenic compounds, and as a chelator of trace metals.                   |
| 34 | Identifying the molecular composition of DOM, especially the molecularly                          |
| 35 | uncharacterized fraction, is fundamental to the understanding of the sources, reactivity          |
| 36 | and cycling of DOM as well as global C. <sup>2</sup> However, the very low concentration of       |
| 37 | organic matter (~1 to 2 mg C/l) in the oceans and oligotrophic lakes <sup>3,4,5</sup> challenges  |
| 38 | most analytical techniques, especially for marine water which contains large amounts              |
| 39 | of inorganic salts.                                                                               |
| 40 | A major focus of aquatic DOM research has been in the isolation and desalting of                  |
| 41 | sufficient amounts of representative material that would provide more comprehensive               |
| 42 | structural information using analytical methods such as nuclear magnetic resonance                |
| 43 | (NMR), infrared spectroscopy and mass spectrometry. Such isolation approaches fall                |
| 44 | into the three main categories: solid phase extraction (SPE), ultrafiltration, and                |
| 45 | reverse osmosis and reverse osmosis/electrodialysis (RO/ED). The SPE approach for                 |
|    |                                                                                                   |

**Environmental Science: Processes** 

| 46 | the isolation of DOM using one or a combination of XAD resins was established in                    |
|----|-----------------------------------------------------------------------------------------------------|
| 47 | the late 1970s and has been applied to many studies as the classic extraction                       |
| 48 | approach. <sup>6</sup> Very different recoveries were obtained for different aquatic systems, e.g., |
| 49 | a total recovery of 16-21% for sea water <sup>7</sup> and 50 to 80% recoveries for "colored         |
| 50 | water" with a high contribution from humic substances. <sup>8</sup> This is possibly due to a       |
| 51 | selective isolation of fractions of DOM with these resins. <sup>9</sup> Recently, C18 resin, which  |
| 52 | is a silica based octadecyl carbon sorbents, and polymeric styrene-divinylbenzene                   |
| 53 | (SDVB) resin have been widely applied <sup>10,11,12</sup> , usually to acidified samples. A         |
| 54 | comparison of the two types of resins in cartridge format to acidified water samples                |
| 55 | (primarily marine but including a groundwater sample) showed that C18 resins (with                  |
| 56 | 25 to 40% recovery) were the most efficient silica-based sorbents, while resins based               |
| 57 | upon styrene divinyl benzene polymers (e.g., PPL, Oasis HLB, LiChrolut EN)                          |
| 58 | outperformed C18 resins, with PPL resin producing the highest DOM recoveries (up                    |
| 59 | to ~62% recovery). <sup>9,13</sup>                                                                  |
| 60 | SPE resins have been found to selectively isolate certain fractions of compounds                    |
| 61 | in DOM as illustrated in recent work examining SPE fractionation with subsequent                    |
| 62 | characterization by high-resolution mass spectrometry or NMR. <sup>12,14</sup> These studies        |
| 63 | show that C18 resin discriminates against more oxygenated compounds (tannins?) as                   |
| 64 | well as aliphatic amines and amides, fractionates the carboxylic acid pool <sup>14</sup> , and,     |
| 65 | compared with other tested resins, preferentially retains higher H/C compounds $^{12}$ . A          |
| 66 | comparison of the retention of C18 vs PPL resins showed that C18 resin retained                     |
| 67 | more saturated aliphatics and PPL retained more material falling within van Krevelen                |
|    |                                                                                                     |

| 1                 |  |
|-------------------|--|
| 2                 |  |
| 3                 |  |
| 4                 |  |
| <del>т</del><br>5 |  |
| 6                 |  |
| 0                 |  |
| 1                 |  |
| 8                 |  |
| 9                 |  |
| 10                |  |
| 11                |  |
| 12                |  |
| 13                |  |
| 14                |  |
| 15                |  |
| 16                |  |
| 17                |  |
| 18                |  |
| 19                |  |
| 20                |  |
| 21                |  |
| 21<br>22          |  |
| 22<br>22          |  |
| 23                |  |
| 24                |  |
| 25                |  |
| 26                |  |
| 27                |  |
| 28                |  |
| 29                |  |
| 30                |  |
| 31                |  |
| 32                |  |
| 33                |  |
| 34                |  |
| 35                |  |
| 36                |  |
| 27                |  |
| 20                |  |
| 30<br>20          |  |
| 39                |  |
| 40                |  |
| 41                |  |
| 42                |  |
| 43                |  |
| 44                |  |
| 45                |  |
| 46                |  |
| 47                |  |
| 48                |  |
| 49                |  |
| 50                |  |
| 51                |  |
| 52                |  |
| 53                |  |
| 5/                |  |
| 54<br>55          |  |
| 55                |  |
| 00                |  |
| 5/                |  |
| 58                |  |
| 59                |  |
| 60                |  |

| 6  | ranges seen for protein and CRAM, while NMR spectra of the same samples isolated                 |
|----|--------------------------------------------------------------------------------------------------|
| 6  | by the two techniques looked very similar. <sup>12</sup>                                         |
| 7  | Despite SPE drawbacks, such as fractionation, and the possibility of chemical                    |
| 7  | changes within the extracts due to pH alterations of DOM structure, SPE retains a                |
| 7  | 2 significant role in DOM concentration and isolation studies due to its simple setup            |
| 7  | and wide applicability in different working conditions, especially in remote field               |
| 7  | 4 settings.                                                                                      |
| 7. | 5 Ultrafiltration, which isolates DOM fractions based on molecular size (primarily               |
| 7  | 6 with a 1-kDa membrane), is another widely recognized method for the extraction of              |
| 7  | DOM (ultrafiltered DOM, or UDOM), and the one most favored by isotope                            |
| 7  | geochemists. It isolates up to 30% of marine DOM and larger percentages of the                   |
| 7  | initial DOC in colored waters, such as most lakes and rivers which have larger                   |
| 8  | terrestrial impact, and higher average molecular weight DOM. <sup>15,16</sup> The combination of |
| 8  | reverse osmosis and electrodialysis allows isolation of much larger proportions of               |
| 8  | aquatic DOM as compared to other techniques, with DOC recovery ranging 60% to                    |
| 8  | 95%. <sup>17,18</sup> However, the RO/ED technique requires access to expensive equipment that   |
| 8  | can be prohibitive in many cases especially in the field, and due to large membrane              |
| 8  | 5 surface areas, may contribute significantly to organic carbon blanks.                          |
| 8  | Advanced spectroscopic techniques have been employed to identify the                             |
| 8  | composition of DOM in both raw water and concentrates. Measurements of DOC and                   |
| 8  | colored DOM (via UV-spectrometry) provide average evaluation of the bulk                         |
| 8  | properties of each DOM sample. FT-ICR-MS, which has a high degree of mass                        |
|    |                                                                                                  |

**Environmental Science: Processes** 

| 2        |
|----------|
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 8        |
| 9        |
| 10       |
| 14       |
| 10       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| ∠∪<br>ว4 |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 20       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 27       |
| 20       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 16       |
| 40       |
| 4/       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 55       |
| 20       |
| 5/       |
| 58       |
| 59       |

60

1

| 90 | accuracy and precision, can provide molecular information on complex natural OM                   |
|----|---------------------------------------------------------------------------------------------------|
| 91 | and has been yielding new insights into DOM variations in aquatic systems. <sup>19,20,21,22</sup> |
| 92 | FT-ICR-MS can detect ions over a wide range of mass to charge ratios (m/z) at high                |
| 93 | accuracy, coupled with electrospray ionization (ESI), which ionizes both acidic and               |
| 94 | basic functional groups in DOM (depending upon ESI settings and sample solution                   |
| 95 | pH) at atmospheric pressure, a wide range of molecules in DOM can be detected. <sup>23, 24</sup>  |
| 96 | A typical DOM mass spectrum results in a large matrix of thousands of molecular                   |
| 97 | formulae and their signal intensities. Thus comparing multiple samples to understand              |
| 98 | environmental variations in DOM structure requires appropriate data visualization and             |

99 data mining approaches.<sup>23,24,25</sup>

In this study, the performance of C18 and SDB-XC disks was compared using 100 101 coastal and off-shore Lake Superior water. Dissolved organic carbon (DOC) concentrations, stable ( $\delta^{13}$ C) and radiocarbon ( $^{14}$ C) signatures and UV-Visible 102 analyses of bulk DOM samples were used to assess the nature of water samples from 103 104 different sites and depths. DOC and UV-Visible analyses of raw water, filtrates and 105 retentates (DOM isolates) were also used to evaluate disk performance, including both 106 the quantity and quality of isolated DOM. The molecular level composition of the 107 extracted DOM obtained using the different disk resins (C18 vs SDB-XC) from one 108 offshore site (WM) and one nearshore site (BR) were investigated using ESI FT-ICR 109 MS. We chose to test C18 resin (C18 disk) and SDVB resin (SDB-XC disk) in disk 110 format as this format is marketed as more appropriate for high pressure and large volume extractions than cartridges; disks also require less solvent use. The C18 disk 111 112 approach has been applied for decades, while SDB-XC disk use is relatively new. As 113 SDB-XC uses an SDVB resin construction it should perform similarly to PPL cartridges, which have been reported to produce higher DOC recovery.<sup>9</sup> This 114 comparison may provide insight into the impact of two major SPE resin types to 115

1

DOM extraction and assist comparison of current and previous studies sampled with

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 0        |  |
| 0        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 20<br>04 |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 22       |  |
| 3Z       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 12       |  |
|          |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 55       |  |
| 20       |  |
| 5/       |  |
| 58       |  |
| 59       |  |
| 60       |  |

| 117 | different resins (C18 vs SDVB).                                                                     |
|-----|-----------------------------------------------------------------------------------------------------|
| 110 | 2 Experimental                                                                                      |
| 119 |                                                                                                     |
| 120 | 2.1. Sites and Sampling                                                                             |
| 121 | Lake Superior is the Earth's largest lake by surface area (82,100 km <sup>2</sup> ) and is a        |
| 122 | dimictic, oligotrophic system. <sup>26,27</sup> Preliminary characterization of DOM within          |
| 123 | western Lake Superior and its tributaries by UV-visible spectroscopy, FTIR, direct                  |
| 124 | temperature resolved mass spectrometry and FT-ICR-MS revealed that the western                      |
| 125 | arm of Lake Superior has a very different DOM composition from that found in local                  |
| 126 | tributaries, which was attributed in part to the process of photo-degradation of                    |
| 127 | terrestrially-derived material. <sup>28,29</sup> These studies showed a shift from higher molecular |
| 128 | weight organic matter enriched in protein and lignin at the tributary sites toward                  |
| 129 | compositionally different material which had a stronger aliphatic signature in the open             |
| 130 | lake. Lake Superior DOM was also shown to have a higher proportion of compounds                     |
| 131 | containing N, S, and P than DOM from the tributaries. <sup>29</sup> Stable and radiocarbon          |
| 132 | isotopic studies show that distinct processes operating in the surface (e.g.,                       |
| 133 | photosynthesis) and deep waters (sediment re-suspension and pore-water intrusion) in                |
| 134 | the open lake control the relative contribution of modern and old DOM in the water                  |
| 135 | column. <sup>30</sup> Bulk DOC across the entire lake (western through eastern basins) appears      |
| 136 | to be semilabile according to its average radiocarbon composition, which indicates an               |
| 137 | average turnover time of $\leq 60$ years. <sup>31</sup>                                             |
| 138 |                                                                                                     |

**Environmental Science: Processes** 

| 3      |        |  |
|--------|--------|--|
| 4      |        |  |
| 5      |        |  |
| 6      |        |  |
| 7      |        |  |
| 8      |        |  |
| 9      |        |  |
| 1      | 0      |  |
| 1      | 1      |  |
| 1      | 2      |  |
| 1      | 3      |  |
| 1      | 4      |  |
| 1      | 5      |  |
| 1      | 6      |  |
| 1      | 7      |  |
| 1      | 8      |  |
| 1      | 9      |  |
| 2      | 0      |  |
| 2      | 1      |  |
| 2      | 2      |  |
| 2      | 3      |  |
| 2      | 4      |  |
| 2      | 5      |  |
| 2      | 6      |  |
| 2      | 7      |  |
| 2      | 8      |  |
| 2      | 9      |  |
| 3      | 0      |  |
| 3      | 1      |  |
| 3      | 2      |  |
| 3      | 3      |  |
| კ<br>ე | 4      |  |
| კ<br>ე | С<br>С |  |
| ა<br>ი | 07     |  |
| ა<br>ი | /<br>0 |  |
| ა<br>2 | o<br>o |  |
| ა<br>⊿ | 9<br>0 |  |
| 4<br>1 | 1      |  |
| -<br>1 | י<br>2 |  |
| 4      | 3      |  |
| 4      | 4      |  |
| 4      | 5      |  |
| 4      | 6      |  |
| 4      | 7      |  |
| 4      | 8      |  |
| 4      | 9      |  |
| 5      | 0      |  |
| 5      | 1      |  |
| 5      | 2      |  |
| 5      | 3      |  |
| 5      | 4      |  |
| 5      | 5      |  |
| 5      | 6      |  |
| 5      | 7      |  |
| 5      | 8      |  |
| 5      | 9      |  |

60

150

1 2

| 139 | Surface and deep-water samples were taken from seven Lake Superior sites (Fig. 1) in   |
|-----|----------------------------------------------------------------------------------------|
| 140 | June 2010 when the water-column was well-mixed. The sampling sites were chosen         |
| 141 | to cover nearshore and open-lake regions, western to eastern basins in order to obtain |
| 142 | a comprehensive view of the lake water composition. Water samples were collected       |
| 143 | via Niskin bottles from a CTD rosette at each site for DOC concentration and SPE       |
| 144 | processes.                                                                             |

145 The SPE resins applied for comparison were C18 and SDB-XC (3M Empore

146 disks). Information on resin structure can be found on the 3M website

(http://solutions.3m.com/wps/portal/3M/en\_US/Empore/extraction/products/disks/pro
duct-listing/). The Empore C18 disk (pore size 60 Å) contains octadecyl bonded silica
sorbent which acts as non-polar stationary phase. The SDB-XC disks (pore size 80Å),

151 based upon both aliphatic and aromatic interactions. Manufacturer protocols were

are made of a poly (styrenedivinylbenzene) copolymer and thus retain compounds

used to obtain DOM extracts ("eR") from 3 to 5 liters of filtered (<GF/F, nominally

 $153 < 0.7 \mu m$ ) water samples ("init"), as shown in Fig. 2.

154 Briefly, each filtered sample was first acidified to pH 2 using hydrochloric acid 155 (ACS Reagent grade). Aliquots of this acidified sample were added to the prepared 156 SDB-XC disk (rinsed with HPLC grade acetone, pesticide grade isopropanol, Fisher 157 Optima grade Methanol and MilliQ water) or the C18 disk (rinsed with Fisher Optima grade Methanol/MilliQ water (v/v, 9:1) one time, Fisher Optima grade Methanol two 158 159 times and then MilliQ water), and then extracted under reduced pressure (around 300 160 mmHg). The sample on the extraction disk was then rinsed with 10ml of MilliQ water 161 to remove salts. A 90:10(v/v) methanol:water solution was then used to recover the 162 DOM from each sample-containing disk. To monitor SPE performances, aliquots of 163 'init' sample were analyzed by UV-Visible spectrophotometer and total organic

| 1         |  |
|-----------|--|
| 2         |  |
| 3         |  |
| 4         |  |
| 5         |  |
| 6         |  |
| 7         |  |
| 1         |  |
| 8         |  |
| 9         |  |
| 10        |  |
| 11        |  |
| 12        |  |
| 13        |  |
| 14        |  |
| 15        |  |
| 16        |  |
| 17        |  |
| 18        |  |
| 19        |  |
| 20        |  |
| 21        |  |
| 21        |  |
| 22        |  |
| 23        |  |
| 24        |  |
| 25        |  |
| 26        |  |
| 27        |  |
| 28        |  |
| 29        |  |
| 30        |  |
| 31        |  |
| 32        |  |
| 33        |  |
| 34        |  |
| 35        |  |
| 36        |  |
| 37        |  |
| 20        |  |
| 20        |  |
| 39        |  |
| 40        |  |
| 41        |  |
| 42        |  |
| 43        |  |
| 44        |  |
| 45        |  |
| 46        |  |
| 47        |  |
| 48        |  |
| 49        |  |
| 50        |  |
| 51        |  |
| 52        |  |
| 52        |  |
| 00<br>E / |  |
| 54<br>57  |  |
| 55        |  |
| 56        |  |
| 57        |  |
| 58        |  |
| 59        |  |
| 60        |  |

| 164                             | carbon (TOC) analyzer and aliquots of extraction filtrate ('eF', the portion of DOM                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 165                             | that is not retained on the resin) were also analyzed by UV-Visible spectrophotometer.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 166                             | The 'eR' samples were stored in a freezer (-20°C), transported to lab, dried in a                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 167                             | vacuum oven at approximately 40°C and then stored at room temperature in the dark                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 168                             | to await analysis via UV-Visible spectrophotometer and TOC analyzer (after                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 169                             | dissolution in known aliquots of MilliQ water), and ESI FT-ICR-MS (after addition of                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 170                             | 70:30(v/v) methanol: water). Method blanks were also prepared by extracting 5-L of                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 171                             | Milli-Q water in the same manner as lake water samples. All glassware used was                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 172                             | acid-washed and baked in a muffle furnace at 450°C for four hours prior to use and                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 173                             | plastics were acid-washed in 10% HCl and rinsed with copious amounts of deionized                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 174                             | water prior to use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 175                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 176                             | 2.2. DOC analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 177                             | DOC concentrations of whole water, 'init' and 'eR' (aliquots dried and then                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 178                             | reconstituted in MilliQ water) at each site, both surface and deep, were determined                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 179                             | with a Shimadzu $TOC_{VCSH}$ analyzer (Shimadzu Scientific Instruments, Inc., Columbia,                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 180                             | MD, USA). Non-purgeable organic carbon in each sample (previously acidified to pH                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 181                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | 2 with 6N ACS Reagent grade HCl) was analyzed after high temperature catalytic                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 182                             | 2 with 6N ACS Reagent grade HCl) was analyzed after high temperature catalytic oxidation (HTCO). Potassium hydrogen phthalate (KHP) solutions were used for                                                                                                                                                                                                                                                                                                                                                 |
| 182<br>183                      | 2 with 6N ACS Reagent grade HCl) was analyzed after high temperature catalytic<br>oxidation (HTCO). Potassium hydrogen phthalate (KHP) solutions were used for<br>calibration. To assess the instrumental performance, deep sea standards (from the                                                                                                                                                                                                                                                         |
| 182<br>183<br>184               | 2 with 6N ACS Reagent grade HCl) was analyzed after high temperature catalytic<br>oxidation (HTCO). Potassium hydrogen phthalate (KHP) solutions were used for<br>calibration. To assess the instrumental performance, deep sea standards (from the<br>DOC Consensus Reference Materials Program                                                                                                                                                                                                            |
| 182<br>183<br>184<br>185        | <ul> <li>2 with 6N ACS Reagent grade HCl) was analyzed after high temperature catalytic</li> <li>oxidation (HTCO). Potassium hydrogen phthalate (KHP) solutions were used for</li> <li>calibration. To assess the instrumental performance, deep sea standards (from the</li> <li>DOC Consensus Reference Materials Program</li> <li>http://yyy.rsmas.miami.edu/groups/biogeochem/CRM.html), additional KHP</li> </ul>                                                                                      |
| 182<br>183<br>184<br>185<br>186 | <ul> <li>2 with 6N ACS Reagent grade HCl) was analyzed after high temperature catalytic</li> <li>oxidation (HTCO). Potassium hydrogen phthalate (KHP) solutions were used for</li> <li>calibration. To assess the instrumental performance, deep sea standards (from the</li> <li>DOC Consensus Reference Materials Program</li> <li>http://yyy.rsmas.miami.edu/groups/biogeochem/CRM.html), additional KHP</li> <li>standards and MilliQ blanks were analyzed as samples. Three injections were</li> </ul> |

**Environmental Science: Processes** 

| 187 | performed for each sample and two more injections were performed when the                         |
|-----|---------------------------------------------------------------------------------------------------|
| 188 | standard deviation of the first three injections was greater than 2.5%; in the latter case,       |
| 189 | the closest three of the five injections were averaged to yield sample concentration.             |
| 190 |                                                                                                   |
| 191 | 2.3. UV/Visible spectroscopic analysis                                                            |
| 192 | Scanning UV-Visible spectrophotometry was performed on whole water, 'init', 'eF',                 |
| 193 | and 'eR' samples with a Genesys6 scanning spectrophotometer (Thermo Fisher                        |
| 194 | Scientific Inc., Waltham, MA, USA). The samples were scanned from 800 to 200 nm                   |
| 195 | using a 1 cm or 5 cm quartz cuvette (depending on estimated sample concentrations).               |
| 196 | The Naperian absorption coefficient, $\alpha$ , was obtained using the following equation         |
| 197 | after blank correction, backscatter correction and dilution correction of absorbance:             |
| 198 | $\alpha_{j} = 2.303 A_{j} * l^{-1}$ eq. (1)                                                       |
| 199 | where A is absorbance; $\lambda$ is wavelength; and <i>l</i> is the path length (cuvette size) in |
| 200 | meters. UV-Visible spectra of milli-Q water were used for blank correction. The                   |
| 201 | average absorbance over 700-800 nm of each sample was used to correct backscatter.                |
| 202 | The sum of the volume-normalized absorption coefficients in the range of 250 nm to                |
| 203 | 400 nm was used to calculate the chromophoric dissolved organic matter (CDOM)                     |
| 204 | abundance. These CDOM abundance values were then used to calculate percent                        |
| 205 | recoveries of each extraction including:                                                          |
| 206 | % recovery after initial filtration = $CDOM_{init}/CDOM_{whole} \times 100\%$ eq. (2)             |
| 207 | % eF recovery = $CDOM_{eF}/CDOM_{init} \times 100\%$ eq. (3)                                      |
|     |                                                                                                   |

| 209 | % mass balance = % eF recovery + % eR recovery eq. (5)                                                       |
|-----|--------------------------------------------------------------------------------------------------------------|
| 210 | The following indexes were used to study the chemical properties of each sample:                             |
| 211 | E2/E3 ratio, which is the ratio of the volume normalized absorption coefficients at                          |
| 212 | 250 nm (E2) and 365 nm (E3). This ratio is inversely related to molecular weight and                         |
| 213 | inversely proportional to the amount of aromatic material in the sample. <sup>32</sup> SUVA <sub>254</sub> , |
| 214 | which is the ratio of the ultraviolet light absorption coefficient at wavelength 254 nm                      |
| 215 | $(\alpha_{254})$ to the sample DOM concentration (in mg carbon per L), giving a quantitative                 |
| 216 | measure of the aromatic content per unit of organic carbon concentration. <sup>33</sup>                      |
| 217 | Spectral slope, S, which is determined by curve-fitting the absorption coefficient                           |
| 218 | from 250 to 400 nm to a single exponential decay function using a reference                                  |
| 219 | wavelength of 250 nm. <sup>34</sup> Calculations of S were performed in Microsoft Excel, where               |
| 220 | iteration was used to maximize $R^2$ . This index is used to give an indication of                           |
| 221 | terrestrial influence and water color. <sup>35</sup>                                                         |
| 222 | As Lake Superior's water column is low in dissolved and particulate iron                                     |
| 223 | concentrations (0.6 to 62 nmol/L, and 22-249 nmol/L, respectively, ref. 36), no                              |
| 224 | correction for iron effects upon UV-Visible absorption parameters (as described in ref.                      |
| 225 | 37) was deemed necessary.                                                                                    |
| 226 |                                                                                                              |
| 227 | 2.4. Isotopic Analyses on Bulk DOM                                                                           |
| 228 | Radiocarbon and stable carbon isotope measurements of 'init' DOM samples were                                |
| 229 | performed at the National Ocean Sciences Accelerator Mass Spectrometry Facility                              |
| 230 | (NOSAMS) at the Woods Hole Oceanographic Institution as described in Zigah et                                |
| 231 | al. <sup>30</sup> Briefly, the organic matter in $\langle GF/F $ filtered water samples (acidified to pH 2)  |

**Environmental Science: Processes** 

| 3        |
|----------|
| 4        |
| 5        |
| 6        |
| 7        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 20       |
| 21       |
| 28       |
| 29       |
| 3U<br>24 |
| ง<br>วา  |
| 32<br>33 |
| 33<br>34 |
| 35       |
| 36       |
| 37       |
| 38       |
| 30       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
| 59       |
| 60       |

1 2

| 232 | were first oxidized to $CO_2$ by ultraviolet (UV) oxidation. After removal of a                     |
|-----|-----------------------------------------------------------------------------------------------------|
| 233 | subsample of the purified CO <sub>2</sub> for $\delta^{13}$ C-DOC measurement, the remainder of the |
| 234 | purified CO <sub>2</sub> was reduced to graphite and then analyzed by accelerator mass              |
| 235 | spectrometry (AMS) to determine radiocarbon content. Radiocarbon values are                         |
| 236 | reported as $\Delta^{14}$ C following Stuiver and Polach. <sup>38</sup>                             |
| 237 |                                                                                                     |
|     |                                                                                                     |

### 238 2.5. FT-ICR-MS analysis

239 Surface DOM samples from sites BR and WM were extracted with both C18 and 240 SDB-XC disks and analyzed by FT-ICR-MS. Mass spectrometry was performed on a 241 Thermo Scientific 7 Tesla Electrospray Ionization Fourier Transform Ion Cyclotron 242 Resonance Mass Spectrometer (LTQ FT Ultra hybrid mass spectrometer) at the 243 Woods Hole Oceanographic Institution. A linear ion trap mass spectrometer (LTQ 244 MS) served as the ion accumulation site for high resolution analysis in the ICR cell. A 245 mass accuracy of <1 ppm or +0.0001 Da at 400 Da can be achieved. A scan range of 246 200-1100 m/z and 200 scans per analysis were used for this study. Since negative 247 ionization results in a larger range of chemical formulae for DOM samples than 248 positive ionization and because problematic sodiated complexes may occur in positive mode<sup>24,39</sup>, all dried samples for this study were redissolved with 70:30(v/v) 249 250 methanol:water solution and then directly injected in the ESI FT-ICR-MS system for scanning in negative mode. All sample concentration range 0.6-1.0mgC/ml before 251 252 injection. Peak detection was based on a signal-to-noise ratio (S/N) greater than 5, and 253 the peak lists were internally calibrated with a list of calibrants (Appendix Table 1). 254 Elemental formulae were assigned to the aligned peaks (m/z values) using the

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23<br>24 |  |
| 24<br>25 |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 31       |  |
| 30       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50<br>51 |  |
| 51<br>52 |  |
| 52<br>52 |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

| 255 | Compound Identification Algorithm (CIA) originally described by Kujawinski and                              |
|-----|-------------------------------------------------------------------------------------------------------------|
| 256 | Behn <sup>24</sup> modified in Kujawinski et al. <sup>23</sup> Generally C, H, O, N, P and S are considered |
| 257 | for formulae calculation. An assignment rate of 97.9 %±1.1% was achieved for all                            |
| 258 | samples. Any statistical analyses applied in this study were based on all peaks with                        |
| 259 | S/N $>$ 5, rather than just the peaks with assigned elemental formulas,                                     |
| 260 |                                                                                                             |
| 261 | 2.6. Cluster Analysis and Principle Component Analysis (PCA)                                                |
| 262 | The Bray-Curtis dissimilarity measurement was used to calculate the distance matrix                         |
| 263 | of CA (code from Fathom toolbox, David Jones, University of Miami,                                          |
| 264 | http://www.rsmas.miami.edu/personal/djones/matlab/matlab.html) based on                                     |
| 265 | FT-ICR-MS data. This dissimilarity measurement has been found to be robust and                              |
| 266 | reliable for expressing sample relationships in environmental sciences and has been                         |
| 267 | widely applied to FT-ICR-MS data. <sup>23, 29</sup> The Bray-Curtis dissimilarity calculation only          |
| 268 | considers zero/nonzero abundance of species within the sample, thus is suitable for                         |
| 269 | eliminating the influence of selective ionization suppression at different m/z caused                       |
| 270 | by matrix-effects. Similarly, in applying PCA, the FT-ICR-MS data matrix consisting                         |
| 271 | of only peak presence/absence information of samples from all sites, depths and                             |
| 272 | season was used to minimize the influence of varying response factors. Prior to PCA,                        |
| 273 | z-scoring and variance scaling was performed. PCA was also applied on UV-visible                            |
| 274 | spectrometry data for all samples based on both normalized absorption coefficients                          |
| 275 | from 200 to 800 cm <sup>-1</sup> and the calculated spectrophotometry indices including E2/E3,              |
|     |                                                                                                             |

SUVA254 and spectral slope. Matlab 7.0 and in-house m-files were used for data processing and multivariate analyses. 3. Results and discussion 3.1. TOC analysis, stable ( $\delta^{13}$ C) and radiocarbon ( $\Delta^{14}$ C) signatures of 'init' DOM DOC analysis (Table 1) shows that the offshore sites and the nearshore BR site have similar DOC concentrations (range, 86.0-92.8 µM), while the nearshore ONT site exhibits higher DOC concentrations (108.6  $\mu$ M), possibly due to the excess DOC input by spring snowmelt at ONT. The surface and deep samples show no significant difference in DOC concentration based on a pairwise t-test (p = 0.6707). Our average offshore DOC concentration ( $88.2 \pm 1.50 \mu$ M) is comparable to open-lake DOM values reported by Zigah et al.<sup>31</sup> (88.3-94.2 µM for samples from spring and summer 2009) and lower than nearer-shore values reported by Minor and Stephens  $(210 \pm 19 \mu M)$ .<sup>40</sup> Our average offshore DOC value is smaller than reported tributary DOC by a factor of 3 to 12 and is somewhat higher than reported surface open ocean DOC values (65-75  $\mu$ M).<sup>27,40,41</sup> The  $\delta^{13}$ C values (-26.5±0.1‰) of all samples do not exhibit considerable 

292 variation and are close to the previously reported Lake Superior DOM  $\delta^{13}$ C values for

2009 (-26~-28‰).<sup>31</sup> The lake's "init" DOM is primarily modern (post-1950s) at all

sites according to its positive  $\Delta^{14}$ C values (except ONT). An overlap of pre-aged and modern DOM from different sources may contribute to the variations of  $\Delta^{14}$ C values among samples from different locations and depth.

| 2  |
|----|
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 8  |
| 0  |
| 9  |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 10 |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 24 |
| 24 |
| 20 |
| 26 |
| 27 |
| 28 |
| 29 |
| 30 |
| 31 |
| 32 |
| 22 |
| 33 |
| 34 |
| 35 |
| 36 |
| 37 |
| 38 |
| 39 |
| 10 |
| 11 |
| 41 |
| 42 |
| 43 |
| 44 |
| 45 |
| 46 |
| 47 |
| 48 |
| 10 |
|    |
| 50 |
| 51 |
| 52 |
| 53 |
| 54 |
| 55 |
| 56 |
| 57 |
| 50 |
| 50 |
| 59 |
| 60 |

| 298 | 3.2. Disk Performance Comparison Based on TOC analysis and UV/Visible                             |
|-----|---------------------------------------------------------------------------------------------------|
| 299 | Spectrometry                                                                                      |
| 300 | TOC analysis and UV-visible spectrometry were used to examine the performance of                  |
| 301 | our SPE approach and to compare characteristics of 'init' DOM vs 'eR' from the                    |
| 302 | SDB-XC vs C18 disks applied in this study. SPE method banks had low but                           |
| 303 | measurable carbon levels. The 'eR' fractions of the blanks contained 2.86 $\mu mol \ C$ and       |
| 304 | 1.67 $\mu$ mol C per liter of MilliQ water that was processed through SDB-XC disk and             |
| 305 | C18 disk, respectively. These values correspond, respectively, to 13.1% and 11.0% of              |
| 306 | the average organic carbon recovered per liter of lake water. This indicates that either          |
| 307 | extraction disks or Milli-Q water introduce some contamination and that the                       |
| 308 | processed blank has to be analyzed together with the samples via the same structural              |
| 309 | and compositional characterization technique (such as FT-ICR-MS in this study) to                 |
| 310 | exclude the possibility of misinterpretations of sample content.                                  |
| 311 | The percentage of in-situ CDOM recovered after initial filtration ( <gf f)="" th="" was<=""></gf> |
| 312 | 94.4 $\pm$ 5.2%, indicating no significant contamination introduced by the initial filtration     |
| 313 | step. CDOM mass balance (eR% + eF%) averaged $94.2 \pm 8.6\%$ for SDB-XC disk                     |
| 314 | SPE extraction and $85.1 \pm 6.0\%$ for C18 disk SPE extraction, indicating no significant        |
| 315 | CDOM contamination introduced by either resin and minimal losses through                          |
| 316 | irreversible sorption. Comparison of recoveries from extractions of Lake Superior                 |
| 317 | water (Table 1) showed that SDB-XC disks performed better than C18 disk in terms                  |
| 318 | of both CDOM recoveries ( $31.0\pm3.80\%$ relative to $24.4\pm3.9\%$ ) and DOC recoveries         |
| 319 | (25.8. $\pm$ 9.20% relative to 18.4 $\pm$ 6.4%). Both SDB-XC and C18 resin disks produced         |

Environmental Science: Processes & Impacts Accepted Manuscript

| 2        |
|----------|
| 3        |
| 4        |
| 5        |
| 6        |
| 0        |
| 1        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 20       |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 24       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
| 11       |
| 10       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 10       |
| +9<br>50 |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 57       |
| 58       |
| 59       |
| 60       |

| 320 | higher CDOM recoveries relative to DOC recoveries at most sites (with the exception                            |
|-----|----------------------------------------------------------------------------------------------------------------|
| 321 | of the WM deep sample), suggesting preferential retention of CDOM relative to DOC.                             |
| 322 | Our SPE DOC recoveries of Lake Superior water were generally lower than                                        |
| 323 | lake/river/estuary studies, <sup>8,9,10</sup> similar to previous Lake Superior measurements, <sup>40,42</sup> |
| 324 | and comparable to or lower than marine studies. <sup>7,9,14</sup> This is possibly due to a                    |
| 325 | combination of selective retention by solid phase resins and the organic matter                                |
| 326 | composition in oligotrophic, clear-water Lake Superior.                                                        |
| 327 | The indices obtained via UV-visible spectrophotometry (E2/E3 ratios, $SUVA_{254}$                              |
| 328 | and spectral slope) were used to characterize the 'init' CDOM at each site, to compare                         |
| 329 | XDB-XC vs C18 resin disks and to examine if the SPE substantially isolated certain                             |
| 330 | portions of the DOM pool. As shown in Table 1, the E2/E3 values of 'init' water                                |
| 331 | range between 8.80 to 17.5 with the general trend being higher values in offshore lake                         |
| 332 | samples relative to nearshore samples (except for SM_deep). These values are                                   |
| 333 | somewhat higher than most of those reported for mountain lakes in Italy (4.64-11.3)                            |
| 334 | with only the rockiest, above-treeline lake exhibiting an E2/E3 value in the Lake                              |
| 335 | Superior range. <sup>43</sup> Our E2/E3 values are consistent with previous nearshore to                       |
| 336 | offshore studies in Lake Superior and in a Chesapeake Bay sub-estuary, which found                             |
| 337 | that the E2:E3 ratio ranged from 5.40 to 15.29 for the Superior transect and from 4.42                         |
| 338 | to 10.28 for the Chesapeake transect; in both transects the ratios increased from marsh                        |
| 339 | to riverine, estuarine, coastal and open lake/ocean sites. <sup>16</sup> DOM from Atlantic Ocean               |
| 340 | water was found to have E2/E3 ratios of 13.5±1.6.35 The values indicate that Lake                              |
| 341 | Superior water is generally light in color and low in DOM molecular weight, with                               |
|     |                                                                                                                |

**Environmental Science: Processes** 

| 342 | open-lake values comparable to or even higher than values from mountain lakes                             |
|-----|-----------------------------------------------------------------------------------------------------------|
| 343 | above the treeline and with ocean values. The $E2/E3$ values of recovered 'eR'                            |
| 344 | fractions from both SDB-XC and C18 resin disks are lower and show less variation                          |
| 345 | than the 'init' samples, indicating both extractions preferentially isolated higher                       |
| 346 | molecular weight and/or more aromatic DOM. However, the SDB-XC extraction                                 |
| 347 | produces 'eR' E2/E3 values (8.7±0.7) closer to 'init' E2/E3 values (12.6±2.8) than                        |
| 348 | does C18 extraction (7.0±0.5). This suggests that SPE with SDB-XC disk alters 'eR'                        |
| 349 | molecular weight and/or aromatic DOM contents to a lesser degree than C18                                 |
| 350 | extraction disk.                                                                                          |
| 351 | SUVA <sub>254</sub> of Lake Superior 'init' water ranges between 2.81 to 3.83 with most                   |
| 352 | open-lake sample values around 3 and BR and ONT mixed season sample values at                             |
| 353 | the high end of the range. Based on previous studies <sup>33, 44</sup> of DOM from a variety of           |
| 354 | environments (marine to dark-water rivers), Lake Superior offshore waters (SUVA $_{254}$                  |
| 355 | values $\leq 3 \text{ Lmg}^{-1} \text{ m}^{-1}$ ) contain mainly non-humic, hydrophilic and low molecular |
| 356 | weight materials. Our SUVA254 values are consistent with previous work in Lake                            |
| 357 | Superior, where $SUVA_{254}$ values ranged from 9.0 in the St. Louis River to 2.0 in the                  |
| 358 | open lake. <sup>16</sup> Our SUVA <sub>254</sub> values also show that SPE extraction with both SDB-XC    |
| 359 | and C18 resins generally leads to preferential retention of more aromatic DOM                             |
| 360 | components, as suggested by the higher SUVA254 values of 'eR' than 'init' (except for                     |
| 361 | WM_deep). The SDB-XC extraction produces 'eR' SUVA 254 values (3.53±0.75)                                 |
| 362 | somewhat closer to 'init' SUVA $_{254}$ values (3.11±0.29) as compared to those of C18                    |
| 363 | extractions( $3.60\pm0.67$ ), with the exception of samples from NM and the two                           |
|     |                                                                                                           |

**Environmental Science: Processes** 

| 364 | nearshore sites. This indicates that SPE with SDB-XC alters 'eR' aromatic DOM              |
|-----|--------------------------------------------------------------------------------------------|
| 365 | contents to a lesser degree than C18 extraction, however, its performance is affected      |
| 366 | by 'init' DOM composition.                                                                 |
| 367 | For samples from all sites, and extractions with both resin types, the 'eR' fractions      |
| 368 | have lower spectral slope values than 'init', with 'eR'-C18 showing a greater              |
| 369 | deviation from 'init' water. These indicate a shift toward greater molecular size and/or   |
| 370 | aromaticity within the 'eR' fractions and are therefore consistent with the other          |
| 371 | UV-visible proxies. Thus, the combination of the UV-visible spectrometry proxy             |
| 372 | information, with SUVA $_{254}$ and E2/E3 providing insight into aromaticity and the S     |
| 373 | providing a combined view of aromaticity and molecular weight, suggests that               |
| 374 | material with higher average molecular weight and aromaticity is preferentially            |
| 375 | concentrated within the 'eR' samples by both SPE resin types, with SDB-XC SPE              |
| 376 | providing less compositional alteration and deviation from 'init' water samples.           |
| 377 | To further investigate the compositional variation of 'eR' samples with different          |
| 378 | SPE resin types, Principle Component Analysis (PCA, ref. 45, 46) was performed on          |
| 379 | the UV-visible spectrometry data of both 'init' and 'eR' samples, using the following      |
| 380 | two data sets: A) the normalized absorption coefficients for each integer wavelength       |
| 381 | within the complete UV-visible spectrum from 200 to 800 cm <sup>-1</sup> and B) calculated |
| 382 | spectrophotometry indices, as seen in Fig. 3. Despite the possible compositional           |
| 383 | differences of 'init' DOM samples from different sites and depths, the SPE 'eR'            |
| 384 | concentrates were separated from 'init' samples, with sample preparation as the main       |
| 385 | factor driving the PCA1 variation. Fig. 3b shows that 'eR' of SDB-XC extraction may        |

have retained more similar compositional information relative to its 'init' as compared
to C18 extraction; this is shown by the closer spacing of SDB-XC 'eR' samples to the

Impacts Accepted Manuscript

õ

**Environmental Science: Processes** 

In summary, the combination of DOC analyses and UV/visible spectrometry parameters on bulk organic matter indicates that Lake Superior offshore water is oligotrophic, low in dissolved organic carbon content, and very clear. The DOM is low in aromatic components, with primarily non-humic, hydrophilic and low molecular weight material. In comparison of the two types of SPE disks on Lake Superior water, we found SDB-XC disks to outperform C18 disks in the isolation of DOC in terms of both higher recovery and less degree of fractionation relative to the initial DOM composition. Besides the fractionation, our blank and mass balance studies of SPE with both extraction disks show that they both introduce non-negligible contamination to 'eR' fractions, thus the interpretation of DOM structures based on the retentates has to be performed with care. Method blank samples have to be analyzed by whatever techniques are applied to other samples to identify blank-associated components.

#### **3.3. FT-ICR-MS Analysis**

404 Using extraction to isolate DOM may provide an imperfect view of the native DOM
405 pool due to preferential recovery of certain compound types as suggested by our
406 UV-vis spectrometry data and as reported by others. <sup>9,13,42</sup> Therefore, ESI FT-ICR-MS
407 has been applied to determine molecular differences between the samples from

**Environmental Science: Processes** 

| 408 | different sites (WM vs BR) and obtained with different extraction resins (SDB-XC vs                |
|-----|----------------------------------------------------------------------------------------------------|
| 409 | C18). All samples were analyzed under negative ion mode, which has been shown to                   |
| 410 | provide greater DOM response and suppressed blank contributions relative to positive               |
| 411 | ion mode. $^{29,39}$ High abundances of DOM peaks with high intensity ranging from m/z             |
| 412 | 250 to 600 (Fig. 4) were detected, which is consistent with previous spectra from                  |
| 413 | Lake Superior and its tributaries. <sup>29</sup> DOM peaks in samples were singly charged as       |
| 414 | determined using the isotopic distribution of carbon, <sup>47</sup> which is again consistent with |
| 415 | previous DOM studies, including that of Lake Superior and selected tributaries. <sup>29</sup>      |
| 416 | Peaks identified in the method blank contributed 1147 to 1685 peaks to each sample,                |
| 417 | accounting for 11.8% to 15.9% of the total number of peaks in each sample, thus                    |
| 418 | blank correction of the samples was performed. After blank correction, the number of               |
| 419 | peaks in samples (S/N >5) are 8691 ('eR' of SDB-XC) and 8908 ('eR' of C18) for                     |
| 420 | BR surface samples and 8472 ('eR' of SDB-XC) and 8551 ('eR' of C18) for WM                         |
| 421 | surface samples.                                                                                   |
| 422 | We also observed clear differences in the molecular characteristics between 'eR'                   |
| 423 | of SDB-XC vs C18 extraction. The peak magnitudes of the SDB-XC samples are                         |
| 424 | generally higher than those of the C18 extracted samples and different numbers of                  |
| 425 | peaks can be seen within the same m/z ranges. As an example, the enlargement area                  |
| 426 | of m/z 310 to 313 is shown in Fig. 4; 15 peaks exist in 'eR' of SDB-XC while only 10 $$            |
| 427 | peaks exist in 'eR' of C18 extracted WM surface samples.                                           |
| 428 | For the same water sample (from BR surface or WM surface), the common                              |
| 429 | formulae $(m/z)$ and the unique formulae found in 'eR' obtained with different resin               |
|     |                                                                                                    |

| 430 | disks (SDB-XC vs C18) are displayed using Van Krevelen diagrams <sup>48,49</sup> (Fig. 5). The |
|-----|------------------------------------------------------------------------------------------------|
| 431 | formulae (m/z) common to 'eR' from both extraction disks account for a very large              |
| 432 | percentage of each sample's total DOM formulae in both the offshore site (WM,                  |
| 433 | 70.8% in SDB-XC 'eR' and 69.0% in C18 'eR') and nearshore site (BR, 70.3% in                   |
| 434 | SDB-XC 'eR' and 69.7% in C18 'eR'), as seen in Fig. 5a and b. The prevalence of                |
| 435 | these common formulae makes sense considering that the same 'init' water sample                |
| 436 | was used for the extractions. Natural biomolecules have relatively uniform and                 |
| 437 | discrete elemental compositions such that different types of molecules can be                  |
| 438 | tentatively distinguished by the combination of their H/C, O/C, and N/C ratios. Seven          |
| 439 | discrete categories (indicated with Roman numbers in Fig. 5) with elemental                    |
| 440 | compositions overlapping biochemical structures commonly found in soils and natural            |
| 441 | waters were defined according to H/C and O/C ratios as proposed by Hockaday et al.             |
| 442 | <sup>48</sup> and include: I, lipid-like compounds (O/C~0-0.2; H/C~1.5-2.3); II, peptide-like  |
| 443 | compounds (O/C~0.2-0.52; H/C~1.5-2.2); III, aminosugar-like compounds                          |
| 444 | (O/C~0.52-0.7; H/C~1.5-2.2); IV, carbonhydrate-like compounds (O/C~0.7-1.2;                    |
| 445 | H/C~1.5-2.4); V, condensed hydrocarbon-like compounds (O/C~0-0.25;                             |
| 446 | H/C~0.5-1.2); VI, lignin-like compounds (O/C~0.25-0.67; H/C~0.7-1.5) and VII,                  |
| 447 | tannin-like compounds (O/C~0.67-0.95; H/C~0.6-1.25). Although classifying species              |
| 448 | identified by FT-ICR MS into these seven categories is an obvious oversimplification,          |
| 449 | we do so here for the sake of comparing chemical variation of SPE DOM obtained at              |
| 450 | different sites and with different resins. The lignin-like fraction (within region VI, a       |
| 451 | small fraction of which contains N and P) was found to be the major component at               |
|     |                                                                                                |

**Environmental Science: Processes** 

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 8  |
| a  |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 1/ |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
| 27 |
| 28 |
| 29 |
| 30 |
| 31 |
| 32 |
| 33 |
| 24 |
| 25 |
| 30 |
| 30 |
| 37 |
| 38 |
| 39 |
| 40 |
| 41 |
| 42 |
| 43 |
| 44 |
| 45 |
| 46 |
| 47 |
| 48 |
| 49 |
| 50 |
| 51 |
| 52 |
| 53 |
| 54 |
| 55 |
| 56 |
| 57 |
| 58 |
| 50 |
| 60 |
| 00 |

| 452 | both sites and likely derives from terrestrial inputs. The Van Krevelen space of this            |
|-----|--------------------------------------------------------------------------------------------------|
| 453 | fraction also overlaps with the section consistent with CRAM, the most abundant                  |
| 454 | identified component of DOM in the deep ocean. <sup>50</sup> The observation that CRAM is a      |
| 455 | major structural component (17-25%) of isolated HMW DOC in Lake Superior was                     |
| 456 | reported by Zigah et al. <sup>51</sup> Their estimated old age (2043 BP years) for CRAM in Lake  |
| 457 | Superior HMW DOM is consistent with its refractory nature as reported for ocean                  |
| 458 | systems. <sup>50</sup> CRAM, identified by a combination of NMR and FT-ICR-MS techniques,        |
| 459 | was also found to be a large contributor to DOM in freshwater Lake Ontario. <sup>52</sup> The    |
| 460 | origin of CRAM has been widely discussed; CRAM could result from degradation of                  |
| 461 | cell wall and membrane components in aquatic organisms or transformation of                      |
| 462 | lignin-like material originally from terrestrial sources. <sup>50</sup> Most of the CRAM in HMW  |
| 463 | DOC from Lake Superior is believed to be terrigenous and/or from solubilized                     |
| 464 | sedimentary OC released via pore water diffusion and sediment resuspension events. <sup>51</sup> |
| 465 | The percentage of peaks unique to the SDB-XC extraction 'eR' and the C18                         |
| 466 | extraction 'eR' at both sites are similar, and range from 29.1% to 30.9% of the total            |
| 467 | number of peaks in the original sample. The compounds unique to the SDB-XC                       |
| 468 | extraction 'eR' and the C18 extraction 'eR' were both found over the entire van                  |
| 469 | Krevelen spaces. However, the SDB-XC extraction 'eR' has unique compounds that                   |
| 470 | somehow follow the distribution of its common peaks, with a higher percentage of                 |
| 471 | peaks in categories IV, V, VI, and VII. In contrast, the unique C18 extraction 'eR'              |
| 472 | compounds are more densely located within a particular region, with an H/C ratio                 |
| 473 | from 1 to 2 and an O/C ratio from 0.25 to 0.5. Such dense clustering of the                      |
|     |                                                                                                  |

| 1         |
|-----------|
| 2         |
| 3         |
| 4         |
| 5         |
| 6         |
| 7         |
| 0         |
| 0         |
| 9         |
| 10        |
| 11        |
| 12        |
| 13        |
| 14        |
| 15        |
| 16        |
| 17        |
| 18        |
| 19        |
| 20        |
| 21        |
| 22        |
| 23        |
| 24        |
| 25        |
| 26        |
| 20        |
| 21        |
| 20        |
| 29        |
| 30        |
| 31        |
| 32        |
| 33        |
| 34        |
| 35        |
| 36        |
| 37        |
| 38        |
| 39        |
| 40        |
| 41        |
| 42        |
| 43        |
| 44        |
| 45        |
| 46        |
| 40<br>⊿7  |
| 77<br>/Q  |
| 40        |
| 49<br>50  |
| 00<br>54  |
| 51        |
| ວ2<br>ເວິ |
| 53        |
| 54        |
| 55        |
| 56        |
| 57        |
| 58        |
| 59        |
| 60        |

| 474 | C18-specific formulae in the same region of van Krevelen space has been seen before,              |
|-----|---------------------------------------------------------------------------------------------------|
| 475 | e.g., in Perminova et al., <sup>12</sup> where these authors attribute the C18 specific formulae  |
| 476 | primarily to lipids and terpenoids. Such molecular-level distribution differences can             |
| 477 | explain the UV-visible data above, where SDB-XC 'eR' samples were more similar to                 |
| 478 | the 'init' water sample as compared to C18 'eR'.                                                  |
| 479 |                                                                                                   |
| 480 | 3.4. Comparison of the FT-ICR-MS spectral features (elemental ratios, DBE, etc)                   |
| 481 | Elemental ratios, double bond equivalences (DBE), elemental formula percentages,                  |
| 482 | and elemental percentages (Table 2) were calculated as described in Minor et al. <sup>29</sup> to |
| 483 | provide an additional view of the chemical variations in samples from different sites,            |
| 484 | and extracted with different resins. The DBE (13.10-13.64) and DBE/C (0.40-0.46)                  |
| 485 | values of 'eR' samples obtained with the different resins are similar. The exclusive              |
| 486 | compounds in SDB-XC 'eR' and the C18 'eR' both have higher number-averaged                        |
| 487 | DBE (17.63-19.08) as compared to the total formulae in each sample; however, when                 |
| 488 | DBE is normalized to the total number of C atoms in a given molecule (DBE/C),                     |
| 489 | exclusive compounds in C18 'eR' have lower values (DBE/C) than the total formulae                 |
| 490 | and the exclusive compounds in XC 'eR'. This is probably a function of the larger                 |
| 491 | average molecular size of the C18 'eR' compounds (as shown in the UV Visible                      |
| 492 | proxy data); the C18 'eR' exclusive compounds contain a higher number of rings                    |
| 493 | and/or double bonds, but are, actually, a bit less unsaturated on a per C basis.                  |
| 494 | Small variations in terms of 'eR' elemental ratios are also found. The SDB-XC                     |
| 495 | 'eR' compounds were found to have larger number-averaged and weight-averaged                      |

Environmental Science: Processes & Impacts Accepted Manuscript

Environmental Science: Processes & Impacts Accepted Manuscript

# **Environmental Science: Processes & Impacts**

| 3  |
|----|
| 4  |
| 5  |
| 6  |
| 0  |
| 1  |
| 8  |
| 9  |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
| 11 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 10 |
| 19 |
| 20 |
| 21 |
| 22 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
| 27 |
| 21 |
| 28 |
| 29 |
| 30 |
| 21 |
| 51 |
| 32 |
| 33 |
| 34 |
| 35 |
| 26 |
| 30 |
| 37 |
| 38 |
| 39 |
| 40 |
| 40 |
| 41 |
| 42 |
| 43 |
| 11 |
| 44 |
| 45 |
| 46 |
| 47 |
| 48 |
| 40 |
| 49 |
| 50 |
| 51 |
| 52 |
| 52 |
| 53 |
| 54 |
| 55 |
| 56 |
| 57 |
| 51 |
| 20 |
| 59 |
| 60 |

| 496 | O/C and P/C ratios, smaller H/C ratios, variable N/C and the same (very small) S/C              |
|-----|-------------------------------------------------------------------------------------------------|
| 497 | ratios relative to the C18 'eR' compounds. For both SDB-XC and C18, the exclusive               |
| 498 | compounds have lower O/C ratios, and higher N/C ratios and somewhat higher P/C                  |
| 499 | and S/C ratios. The SDB-XC exclusive compounds as compared to the C18 exclusive                 |
| 500 | compounds have lower number-averaged and weight averaged H/C ratios and higher                  |
| 501 | P/C ratios. That C18 retains more H-saturated components within DOM than                        |
| 502 | styrene-divinylbenzene based resin has been seen before.9                                       |
| 503 | The percentages of formulae containing S ( $F_S$ ) and P ( $F_P$ ) are also higher in           |
| 504 | SDB-XC 'eR' relative to C18 'eR', while the percentages of formulae containing N                |
| 505 | $(F_N)$ are comparable for both resins. The exclusive compounds in both resin-type              |
| 506 | 'eRs' have considerably higher $F_N$ , $F_P$ and $F_S$ values than the total formulae.          |
| 507 | Combining the elemental data with the DBE numbers, the 'eR' from both                           |
| 508 | SDB-XC and C18 extraction contains a large proportion of unsaturated compounds                  |
| 509 | containing N, P and S, such as aromatic compounds and heteroatom-containing                     |
| 510 | compounds. However, the SDB-XC resin appears to isolate DOM with slightly lower                 |
| 511 | H/C ratios and slightly more double bonding; it also isolates a slightly higher                 |
| 512 | percentage of formulae containing P than does the C18 resin.                                    |
| 513 | Our O/C <sub>w</sub> ratios for total formulae in the extracts (0.40~0.43) are slightly higher  |
| 514 | than previously reported values for Lake Superior C18-extracted DOM (0.38, ref 29),             |
| 515 | Lake Baikal C18-extracted DOM (0.331 to 0.348, ref 53) and C18- extracted DOM                   |
| 516 | from Atlantic Ocean surface water (0.34–0.36, ref 23). Our O/C <sub>w</sub> ratios are slightly |
|     |                                                                                                 |

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 1        |  |
| ð        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 22<br>22 |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 20       |  |
| 20       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 52       |  |
| 5/       |  |
| 54       |  |
| 50       |  |
| 00       |  |
| 5/       |  |
| 58       |  |
| 59       |  |
| 60       |  |

| 517 | lower than reported for PPL-extracted arctic samples from creek, river, and bay sites               |
|-----|-----------------------------------------------------------------------------------------------------|
| 518 | in the watershed of the Lena River (0.427, 0.425, and 0.445, respectively, ref 54).                 |
| 519 | $H/C_w$ values for our samples (1.27 to 1.34) are slightly higher than previously                   |
| 520 | reported for C18-extracted DOM from Lake Superior (1.22) and selected tributaries                   |
| 521 | (1.08~1.28, ref 29) and similar to values for C18-extracted Lake Baikal samples                     |
| 522 | (1.321-1.373, ref 53) and to values reported for creek, river, and bay PPL-extracted                |
| 523 | samples in the Lena River watershed (1.31, 1.28, and 1.23, respectively, ref 54). They              |
| 524 | are comparable to reported Dismal Swamp whole water by Sleighter and Hatcher <sup>14</sup>          |
| 525 | and Chesapeake Bay C18 SPE-extracted DOM (1.25 and 1.29) $H/C_w$ values, and                        |
| 526 | values reported by Kujawinski et al. for $C_{18}$ -extracted DOM (1.30-1.32) <sup>23</sup> and Koch |
| 527 | et al. <sup>55</sup> for PPL-extracted DOM (1.3–1.39) from ocean surface water.                     |
| 528 | Compounds containing only carbon, hydrogen and oxygen (CHO) account for                             |
| 529 | 45.6% to 46.7% of all DOM formulae in each extracted sample (Table 2). This                         |
| 530 | percentage is significantly lower than reported for surface ocean, deep ocean and river             |
| 531 | C18-extracted DOM samples (72.2–93.7%; ref 23), and Lake Superior tributary                         |
| 532 | C18-extracted DOM samples. <sup>29</sup> DOM compounds with formulae of CHON account                |
| 533 | for 29.1%~32.7% (depending on sample) of all DOM formulae in each sample. These                     |
| 534 | compounds are possibly in the amino-acid/protein family. The number of CHONP                        |
| 535 | formulae ranges from 11.3% to 14.9% and these are likely to be nucleotides and                      |
| 536 | DNA/RNA derivatives. With the above three types of compounds comprising over                        |
| 537 | 95% of DOM formulae in each sample, compounds with formulae of CHOS, CHONS,                         |
| 538 | CHOP and CHONSP are only minor species. Comparing 'eR' obtained with the 2                          |
|     |                                                                                                     |

**Environmental Science: Processes** 

| 539 | different extraction resins, SDB-XC 'eR' has a similar percentage of CHO               |
|-----|----------------------------------------------------------------------------------------|
| 540 | compounds, a higher proportion of CHOS, CHONP, CHONSP compounds, a lower               |
| 541 | proportion of CHON and CHONS compounds, and similar or lower proportions of            |
| 542 | CHOP compounds. The exclusive compounds exaggerate these trends with a much            |
| 543 | lower percentage of CHO compounds and much higher percentage of compounds              |
| 544 | containing N, P and S as seen in Table 2. The majority of the exclusive formulae for   |
| 545 | both resins are CHON compounds.                                                        |
| 546 | Our UV-Vis data and these FT-ICR-MS data show that the use of styrene                  |
| 547 | divinylbenzene-based resins vs C18 resins leads to the isolation of somewhat different |
| 548 | portions of the DOM pool. Thus comparisons of literature values obtained with          |
| 549 | different SPE protocols should be viewed with some caution.                            |
| 550 |                                                                                        |
| 551 | 3.5. Comparison of the FT-ICR-MS with Multivariate analysis                            |
| 552 | Cluster Analysis (CA) and PCA were performed on the FT-ICR-MS data to further          |
| 553 | investigate the variation among samples extracted at different sites (WM vs BR) and    |
| 554 | with different resin types (SDB-XC vs C18). Cluster analysis is a convenient tool to   |
|     |                                                                                        |

- compare samples and to visualize their differences on the basis of multidimensional
- data such as mass spectra. The analysis is based on the peak presence/absence of all
- 557 identified molecular formulas after blank correction in the different 'eR' samples. The
- 558 x-axis represents the degree of similarity with Bray-Curtis distance. As seen in Fig. 6a,
- the variance between samples from different sites (WM vs BR) rather than different
- 560 extraction techniques drives the grouping, which is a desired result considering that

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 8  |
| 9  |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
| 27 |
| 28 |
| 29 |
| 30 |
| 31 |
| 32 |
| 33 |
| 34 |
| 35 |
| 36 |
| 37 |
| 38 |
| 39 |
| 40 |
| 41 |
| 42 |
| 43 |
| 44 |
| 45 |
| 46 |
| 47 |
| 48 |
| 49 |
| 50 |
| 51 |
| 52 |
| 53 |
| 54 |
| 55 |
| 56 |
| 57 |
| 58 |
| 59 |
| 60 |

| 561 | we want an effective and representative isolation of DOC that represents the 'init'      |
|-----|------------------------------------------------------------------------------------------|
| 562 | sample nature, which is usually affected by sampling location, season and depth. PCA     |
| 563 | was also used to explore the compositional differences and similarities among            |
| 564 | samples. As seen in the PC1 vs PC2 plot (Fig. 6b), the grouping by PCA is similar to     |
| 565 | the results from cluster analysis. PC1, which accounts for 40.70% of the total variance, |
| 566 | separated the BR samples (on the negative side) with WM samples (on the positive         |
| 567 | side); however, at the same time, PC2, which accounts for 31.93% of the total            |
| 568 | variance, separated the C18 samples (on the positive side) with the SDB-XC samples       |
| 569 | (on the negative side). This finding confirms some retention of sample nature by SPE     |
| 570 | even with different extraction resins, and the occurring of fractionation to the initial |
| 571 | DOM composition, affected by the type of resins. Understanding the fractionation on      |
| 572 | a molecular level will be critical to the comparison of different DOM studies of         |
| 573 | different natural systems.                                                               |
| 574 | 4. Conclusions                                                                           |
| 575 | Combining DOC analysis, UV-Visible spectrometry, stable and radiocarbon                  |
| 576 | signatures and FT-ICR-MS allows us to assess the nature of Lake Superior DOM and         |
| 577 | to investigate and compare the performance of different SPE resins (SDVB vs C18) in      |
| 578 | disk format on the isolation of DOC in terms of both recovery and 'eR' molecular         |
| 579 | features.                                                                                |
| 580 | DOC analyses and UV/visible spectrometry parameters show that Lake Superior              |
| 581 | offshore water is oligotrophic, low in DOC concentration, and very clear. The DOM        |
| 582 | is low in aromatic components, with primarily non-humic, hydrophilic, lower              |
|     |                                                                                          |

త

**Environmental Science: Processes** 

583 molecular weight material than in most studied fresh-water systems. The retained

- 584 DOM from both extraction techniques shows a greater percentage of formulas
- 585 including one or more of the heteroatoms N, S, and P and a lower percentage of CHO
- 586 formulas than reported in other (ocean and river) studies.

In the comparisons of resin performance, we found that using polymeric SDVB (SDB-XC disk) leads to greater DOC and CDOM recoveries as well as less fractionation in composition relative to initial water samples. The UV-visible spectrometry proxies suggest that higher molecular weight and aromaticity material is preferentially concentrated within the 'eR' samples by both SPE resin types, with SDB-XC SPE providing less compositional deviation from 'init' water samples. Molecular-level differences among 'eR' obtained from the same sample using different extraction disk resins do exist based on FT-ICR-MS data, however, the shared compounds account for approximately 70% of the sample formulas. There was some preferential retention of unsaturated compounds enriched in P with the SDB-XC vs C18 resins. Comparing the two resin types, SDB-X retains similar percentages of CHO compounds, more CHOS, CHONP, CHONSP compounds, and fewer CHON, CHONS and CHOP compounds than C18. The CA and PCA analyses, which are commonly used statistical measurements of sample similarity, confirm that the greatest variance in the sample set is driven by sample location, rather than the difference in extraction techniques. However, significant fractionation relative to the initial DOM composition does occur, and the degree is affected by the type of resin. The implication of this study is that SPE retentates do contain enough chemical characteristics to represent the nature of samples, however, fractionation on a molecular level needs to be considered, especially when comparison is made between DOM samples isolated using different resins. Samples from different natural systems are also very likely to behave differently considering that the source, age and composition of their DOM are different. For oligotrophic, low-C water samples such as from Lake Superior and ocean waters, a method blank has to be considered and

| 1                    |  |
|----------------------|--|
| 2                    |  |
| 3<br>4               |  |
| 5                    |  |
| 6                    |  |
| 7                    |  |
| 8<br>Q               |  |
| 10                   |  |
| 11                   |  |
| 12                   |  |
| 13                   |  |
| 15                   |  |
| 16                   |  |
| 17                   |  |
| 18                   |  |
| 20                   |  |
| 21                   |  |
| 22                   |  |
| 23                   |  |
| 25                   |  |
| 26                   |  |
| 27                   |  |
| 28                   |  |
| 30                   |  |
| 31                   |  |
| 32                   |  |
| 33<br>34             |  |
| 35                   |  |
| 36                   |  |
| 37                   |  |
| 38<br>30             |  |
| 40                   |  |
| 41                   |  |
| 42                   |  |
| 43<br>44             |  |
| 45                   |  |
| 46                   |  |
| 47                   |  |
| 48<br>⊿0             |  |
| <del>4</del> 3<br>50 |  |
| 51                   |  |
| 52                   |  |
| 53<br>54             |  |
| 54<br>55             |  |
| 56                   |  |
| 57                   |  |
| 58<br>50             |  |
| 59<br>60             |  |

| 611 | analyzed along with sample since considerate contamination (up to 10% in our          |
|-----|---------------------------------------------------------------------------------------|
| 612 | samples) can be introduced by SPE resins.                                             |
| 613 |                                                                                       |
| 614 |                                                                                       |
| 615 | Acknowledgments                                                                       |
| 616 | The authors thank Elizabeth B. Kujawinski, Melissa C. Kido Soule and Krista           |
| 617 | Longnecker at the WHOI FT-MS facility for FT-ICR-MS analyses and the captain          |
| 618 | and crew of the R/V Blue Heron for sampling assistance. We thank Bruce Mattson for    |
| 619 | help with the SDB-XC SPE and the subsequent TOC and UV/Visible spectroscopic          |
| 620 | analysis. We also thank Prosper K. Zigah for assistance with sampling and for sharing |
| 621 | radiocarbon data. The research was supported by NSF Grant OCE-0825600 (to E. C.       |
| 622 | M).                                                                                   |
| 623 |                                                                                       |
| 624 |                                                                                       |
| 625 |                                                                                       |
| 626 |                                                                                       |
| 627 |                                                                                       |
| 628 |                                                                                       |
| 629 |                                                                                       |
| 630 |                                                                                       |
| 631 |                                                                                       |
| 632 |                                                                                       |
| 633 |                                                                                       |

| 634 | Figure Captions                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------|
| 635 | Fig. 1 Lake Superior sampling sites. Stars indicate open-lake stations and circles                          |
| 636 | indicate near-shore stations.                                                                               |
| 637 | Fig. 2 Protocol used for sampling and extraction, including naming conventions                              |
| 638 | followed in the text.                                                                                       |
| 639 | Fig. 3 Principle component analysis results based on A) normalized absorption                               |
| 640 | coefficients from 200 to 800 cm <sup>-1</sup> ; B) spectrophotometry indices (E2/E3, SUVA254                |
| 641 | and spectral slope) of all samples. Black filled squares represent <gff 'init'="" samples;<="" td=""></gff> |
| 642 | gray filled circles represent SDB-XC SPE DOM samples; triangles represent C18                               |
| 643 | SPE DOM samples.                                                                                            |
| 644 | Fig. 4 Negative ion mode FT-ICR-MS of a) WM surface SDB-XC SPE DOM with                                     |
| 645 | the enlargement of $m/z$ 310 to 313 on the right, b) WM surface SDB-C18 SPE DOM                             |
| 646 | with the enlargement of $m/z$ 310 to 313 on the right.                                                      |
| 647 | Fig. 5 Van Krevelen diagram of a) formulae (m/z) found in both C18 and SDB-XC                               |
| 648 | SPE DOM for surface sample at BR site; b) formulae (m/z) found in both C18 and                              |
| 649 | SDB-XC SPE DOM for surface sample at WM site; c) unique compounds from                                      |
| 650 | SDB-XC SPE DOM at BR; d) unique compounds from SDB-XC SPE DOM at WM;                                        |
| 651 | e) unique compounds from C18 SPE DOM at BR; f) unique compounds from C18                                    |
| 652 | SPE DOM at WM; CHO and CH compounds (black) are overlaid with CHON (blue)                                   |
| 653 | compounds on top of which any CHONP compounds (cyan) are placed. Any CHOP                                   |
| 654 | compounds (red) are on the top. The van Krevelen spaces are divided into seven                              |
| 655 | discrete regions indicating by Roman numbers, modified from the diagrams proposed                           |

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| ა∠<br>22 |  |
| 33<br>34 |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 4/<br>⊿0 |  |
| 4ŏ<br>⊿∩ |  |
| 49<br>50 |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

| 656        | by Hockaday et al. <sup>48</sup> , Kim et al. <sup>49</sup> ; Sleighter and Hatcher <sup>14</sup> . The elemental ratios of |
|------------|-----------------------------------------------------------------------------------------------------------------------------|
| 657        | compounds in the seven regions are: I, lipid-like; II, protein-like; III, aminosugar-like;                                  |
| 658        | IV, carbohydrate-like; V, condensed hydrocarbon-like; VI, lignin-like; VII,                                                 |
| 659        | tannin-like. The percentage of peaks from each region relative to the total number of                                       |
| 660        | peaks in the sample is shown in brackets.                                                                                   |
| 661<br>662 | Fig. 6 Comparison of C18 SPE DOM and XC SPE DOM based on peak                                                               |
| 663        | absence/presence of FT-ICR-MS. A) Cluster diagram of the samples based on original                                          |
| 664        | Bray-Curtis distance. The samples with lower information content (lower x-values)                                           |
| 665        | are more similar than those which occur farther apart; B) Principle component                                               |
| 666        | analysis results.                                                                                                           |
| 667        |                                                                                                                             |
| 668        |                                                                                                                             |
| 669        |                                                                                                                             |
| 670        |                                                                                                                             |
| 671        |                                                                                                                             |
| 672        |                                                                                                                             |
| 673        |                                                                                                                             |
| 674        |                                                                                                                             |
| 675        |                                                                                                                             |
| 676        |                                                                                                                             |
| 677        |                                                                                                                             |
|            |                                                                                                                             |
|            |                                                                                                                             |

Environmental Science: Processes & Impacts Accepted Manuscript

| 1        |
|----------|
| 2        |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 0        |
| 0        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 22       |
| 20       |
| 24       |
| 20       |
| 26       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 20       |
| 39<br>40 |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 55       |
| 00<br>57 |
| 5/<br>50 |
| 58       |
| 59       |
| 60       |

| 678 | Notes and References                                                                           |
|-----|------------------------------------------------------------------------------------------------|
| 679 | <sup>a</sup> Large Lakes Observatory and Water Resources Science Program, University of        |
| 680 | Minnesota, Duluth, MN 55812, USA. Current contact information: Earth and Ocean                 |
| 681 | Sciences, University of South Carolina, 701 Sumter Street, EWS 617, Columbia, SC               |
| 682 | 29208. Phone: +0012182697516; Email: hli@geol.sc.edu                                           |
| 683 | <sup>b</sup> Large Lakes Observatory and Department of Chemistry and Biochemistry,             |
| 684 | University of Minnesota Duluth, 2205 East 5th St, Duluth, MN 55812, USA. Tel:                  |
| 685 | 218-726-7097; E-mail: eminor@d.umn.edu.                                                        |
| 686 |                                                                                                |
| 687 | 1 J. I. Hedges and J. M. Oades, Org <i>Geochem.</i> , 1997, <b>27</b> , 319 361.               |
| 688 | 2 R. Benner In: D. A. Hansell and C. A. Carlson (Eds), <i>Biogeochemistry of marine</i>        |
| 689 | dissolved organic matter, Academic Press, Boston, 2002, 69 70.                                 |
| 690 | 3 C. A. Carlson, H. W. Ducklow and A. F. Michaels, <i>Nature</i> , 1994, <b>371</b> , 405 408. |
| 691 | 4 R. G. Wetzel, <i>Limnology: Lake and river ecosystems</i> , third edition. Academic          |
| 692 | Press, San Diego, 2001.                                                                        |
| 693 | 5 P. Raimbault, N. Garcia and F. Cerutti, <i>Biogeosciences</i> . 2008, <b>5</b> , 281 298.    |
| 694 | 6 T. Dittmar, R. J. Lara and G. Kattner, <i>Mar Chem.</i> , 2001, <b>73</b> , 253 71.          |
| 695 | 7 E. R. M. Druffel, P. M. Williams, J. E. Bauer and J. R. Ertel, <i>J Geophys Res.</i> 1992,   |
| 696 | <b>97</b> , 15,639 15,659.                                                                     |
| 697 | 8 E. M. Thurman and R. L. Malcolm, <i>Environ Sci Technol.</i> 1981, <b>15</b> , 463 466.      |
| 698 | 9 T. Dittmar, B. Koch, H. Hertkorn and G. Kattner, Limnol. Oceanogr. Methods,                  |
| 699 | 2008, 6, 230 235.                                                                              |

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4<br>5   |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 10       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28<br>29 |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34<br>35 |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40<br>⊿1 |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46<br>47 |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52<br>53 |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58<br>50 |  |
| 60       |  |

| 700 | 10 S. Kim, A. J. Simpson, E. B. Kujawinski, M. A. Freitas and P. G. Hatcher, Org     |
|-----|--------------------------------------------------------------------------------------|
| 701 | Geochem. 2003, <b>34</b> 1325 1335.                                                  |
| 702 | 11 V. Roubeuf, S. Mounier and J. Y. Benaim. Org Geochem. 2000, 31 127 131.           |
| 703 | 12 I. V. Perminova, I. V. Dubenkov, A. S. Konanykhin, A. I. Konstantinov, A. Y.      |
| 704 | Zherebker, M. A. Andzhushev, V. A. Lebedev, E. Bulygina, R. M. Holmes, Y. I.         |
| 705 | Kostyukevich, I. A. Popov, and E. N. Nikolaev. Environ. Sci. Technol. 2014, 48,      |
| 706 | 7461 7468.                                                                           |
| 707 | 13 H. Waska, A. Koschinsky, M. J. Ruiz Chancho and T. Dittmar. Mar Chem. 2015,       |
| 708 | <b>173</b> , 78 92.                                                                  |
| 709 | 14 R. L. Sleighter, P. G. Hatcher, Mar Chem., 2008, 110, 140 152.                    |
| 710 | 15 R. Benner, B. Biddanda, B. Black and M. McCarthy, Mar Chem., 1997, 57, 243        |
| 711 | 263.                                                                                 |
| 712 | 16 B. M. Stephens and E. C. Minor, Aquat Sci., 2010, 72, 403 417.                    |
| 713 | 17 T. A. Vetter, E. M. Perdue, E. Ingall, J-F. Koprivnjak and Ph. Pfromm, Sep Purif  |
| 714 | Technol., 2007, <b>56</b> , 383 387.                                                 |
| 715 | 18 J-F. Koprivnjak, Ph. Pfromm, E. Ingall, V. A. Vetter, P. Schmitt-Koplin, N.       |
| 716 | Hertkorn, M. Frommberger, H. Knicker, and E. M. Perdue, Geochim Cosmochim            |
| 717 | Acta., 2009, <b>73</b> , 4215 4231.                                                  |
| 718 | 19 E. B. Kujawinski, Environ Forensics., 2002, 3, 207 216.                           |
| 719 | 20 R. N. Mead, K. M. Mullaugh, G. Brooks Avery, R. J. Kieber, J. D. Willey and D. C. |
| 720 | Podgorski, Atmos Chem Phys., 2013, 13, 4829 4838.                                    |
| 721 | 21 A. Nebbioso and A Piccolo, Anal Bioanal Chem., 2013, 405, 109 214.                |

| 722 | 2 A. M. Kellerman, T. Dittmar, D. N. Kothawala and L. J. Tranvik. Nat Commun.,      |
|-----|-------------------------------------------------------------------------------------|
| 723 | 2014, DOI: 10.1038/ncomms4804.                                                      |
| 724 | 23 E. B. Kujawinski, K. Longnecker, N. V. Blough, R. Del Vecchio, L. Finlay, J. B.  |
| 725 | Kitner and S. J. Giovannoni, Geochim Cosmochim Acta 2009, 73, 4384 4399.            |
| 726 | 24 E. B. Kujawinski and M. D. Behn, Anal Chem., 2006, 78, 4363 4373.                |
| 727 | 25 H. A. N. Abdulla, P. L. Sleighter and P. G. Hatcher, Anal Chem., 2013, 85, 3895  |
| 728 | 3902.                                                                               |
| 729 | 26 C. E. Herdendorf, J Great Lakes Res., 1982, 3, 379 412.                          |
| 730 | 27 N. R. Urban, M. T. Auer, S. A. Green, X. Lu, D. S. Apul, K. D. Powell and L.     |
| 731 | Bub, J Geophys Res., 2005, 110, C06S90, doi:10.1029/2003JC002230.                   |
| 732 | 28 E. C. Minor, J. J. Boon, H. R. Harvey and A. Mannino, Geochim Cosmochim Acta.    |
| 733 | 2001, <b>65</b> , 2819 2834.                                                        |
| 734 | 29 E. C. Minor, C. J. Steinbring, K. Longnecker and E. B. Kujawinski, Org Geochem., |
| 735 | 2012, <b>43</b> , 1 11.                                                             |
| 736 | 0 P. K. Zigah, E. C. Minor, J. P. Werne and S. L. McCallister, Limnol Oceanogr.,    |
| 737 | 2011, <b>56</b> , 867 886.                                                          |
| 738 | P. K. Zigah, E. C. Minor and J. P. Werne, <i>Global Biogeochem Cycles</i> , 2012,   |
| 739 | doi:10.1029/2011GB004132.                                                           |
| 740 | 2 J. Peuravuori and K. Pihlaja, Anal Chim Acta., 1997, 337, 133 149.                |
| 741 | 3 J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii and K.       |
| 742 | Mopper, <i>Environ Sci Technol.</i> , 2003, <b>37</b> , 4702 4708.                  |
| 743 | 4 C. A. Stedmon, S. Markager and H. Kaas, Estuar Coast Shelf Sci., 2000, 51, 267    |
|     |                                                                                     |

| 744 |    | 278.                                                                              |
|-----|----|-----------------------------------------------------------------------------------|
| 745 | 35 | J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber and K. Mopper, |
| 746 |    | Limnol Oceanogr., 2008, <b>53</b> , 955 969.                                      |
| 747 | 36 | C. S. Hassler, S. M. Havens, G. S. Bullerjahn, R. M. L. McKay and M. R. Twiss,    |
| 748 |    | Limnol. Oceanogr., 2009, 54, 987 1001.                                            |
| 749 | 37 | B. A. Poulin, J. N. Ryan and G. R. Aiken, Environ. Sci. Technol., 2014, 48, 10098 |
| 750 |    | 10106.                                                                            |
| 751 | 38 | M. Stuiver and H. A. Polach, Radiocarbon, 1977, 19, 355 363.                      |
| 752 | 39 | N. Hertkorn, M. Frommberger, M. Witt, B. P. Koch, Ph. Schmitt-Kopplin and E.      |
| 753 |    | M. Perdue, Anal Chem., 2008, 80, 8908 8919.                                       |
| 754 | 40 | E. C. Minor and B. Stephens, Org Geochem., 2008, 39, 1489 1501.                   |
| 755 | 41 | D. A. Hansell and C. A. Carlson, Oceanography, 2001, 14, 41 49.                   |
| 756 | 42 | B. R. Kruger, B. J. Dalzell and E. C. Minor, Aquat Sci., 2011, 73, 405 417.       |
| 757 | 43 | E. D. Laurentiis, M. Minella, V. Maurino, C. Minero, M. Brigante, G. Mailhot and  |
| 758 |    | D. Vione, Chemosphere, 2012, 88, 1208 1213.                                       |
| 759 | 44 | R. G. M. Spencer, K. D. Butler and G. R. Aiken, J. Geophys. Res., 2012, 117,      |
| 760 |    | G03001.                                                                           |
| 761 | 45 | O. M. Kvalheim, D. W. Aksnes, T. Brekke, M. O. Eide and E. Sletten, Anal          |
| 762 |    | <i>Chem.</i> , 1985, <b>57</b> , 2858 2864.                                       |
| 763 | 46 | O. D. Sanni, M. S. Wagner, D. Briggs, D. G. Castner and J. C. Vickerman, Surf     |
| 764 |    | Interface Anal., 2002, <b>33</b> , 715 728.                                       |
| 765 | 47 | A. C. Stenson, W. M. Landing, A. G. Marshall and W. T. Cooper, Analyt Chem.,      |
|     |    |                                                                                   |

| 766 | 2002, <b>74</b> , 4397 4409.                                                        |
|-----|-------------------------------------------------------------------------------------|
| 767 | 48 W. C. Hockaday, J. M. Purcell, A. G. Marshall, J. A. Baldock and P. G. Hatcher,  |
| 768 | Limnol. Oceanogr.: Methods, 2009, 7 81 95.                                          |
| 769 | 49 S. Kim, R.W. Kramer and P.G. Hatcher, Analyt. Chem., 2003, 75, 5336 5344.        |
| 770 | 50 N, Hertkorn, R. Benner, M. Frommberger, Ph. Schmitt-Kopplin, M. Witt, K.         |
| 771 | Kaiser, A. Kettrup and J. I. Hedges, Geochim Cosmochim Acta, 2006, 70, 2990         |
| 772 | 3010.                                                                               |
| 773 | 51 P. K. Zigah, E. C. Minor, H. A. N. Abdulla, J. P. Werne and P. G. Hatcher,       |
| 774 | Geochim Cosmochim Acta, 2014, <b>127</b> , 264 284.                                 |
| 775 | 52 B. Lam, A. Baer, M. Alaee, B. Lefebvre, A. Moser, A. Williams and A. J. Simpson, |
| 776 | Environ Sci Technol., 2007, <b>41</b> , 8240 8247.                                  |
| 777 | 53 Y. Sugiyama, P. G. Hatcher, R. L. Sleighter, T. Suzuki, C. Wada, T. Kumagai, O.  |
| 778 | Mitamura, T. Katano, S. Nakano, Y. Tanaka, V. V. Drucker , V. A. Fialkov and M.     |
| 779 | Sugiyama, Limnol., 2014, <b>151</b> , 127 139.                                      |
| 780 | 54 I. Dubinenkov, R. Flerus, P. Schmitt-Kopplin, G. Kattner and B. P. Koch,         |
| 781 | Biogeochem., 2015, <b>123</b> , 1 14.                                               |
| 782 | 55 B. P. Koch, KU. Ludwichowski, G. Kattner, T. Dittmar and M. Witt, Mar. Chem.,    |
| 783 | 2008, 111, 233 241.                                                                 |
|     |                                                                                     |
|     |                                                                                     |
|     |                                                                                     |
|     |                                                                                     |

Table 1

Sampling information, DOC concentration, stable carbon ( $\delta^{13}$ C) and radiocarbon signatures of 'init' DOM, CDOM and DOC recoveries (% CDOM and % DOC of 'eR' to 'init' samples) and UV-Visible spectrophotometry indices for 'init' and 'eR' samples of both C18 and SDB-XC extractions.

| Sample                   |                          | СМ    | СМ    | EM      | EM    | NM      | NM      | SM      | SM    | WM    | WM    | BR    | ONT    |
|--------------------------|--------------------------|-------|-------|---------|-------|---------|---------|---------|-------|-------|-------|-------|--------|
| Water depth              | Vater depth m            |       | 258   | 248     | 240   | 213     | 216     | 398     | 386   | 171   | 171   | 19    | 20     |
| Sample deptl             | ample depth m            |       | 190   | 5       | 210   | 5       | 150     | 5       | 340   | 5     | 127   | 4     | 5      |
| 'init' DOC μ             | init' DOC µM             |       | 89.5  | 89.8    | 87.8  | 88.2    | 87.8    | 87.8    | 86.0  | 87.8  | 91.0  | 92.8  | 108.6  |
| 'init' $\delta^{13}$ C ‰ | init' $\delta^{13}$ C ‰* |       |       | -26.1   | -25.9 |         |         | -25.9   | -26.0 | -26.0 | -29.0 |       | -28.2  |
| 'init' $\Delta^{14}$ C % | nit' $\Delta^{14}$ C ‰*  |       |       | 44.6    | 49.5  |         |         | 40.0    | 47.5  | 57.4  | 156.9 | )     | -18.5  |
| CDOM                     | XC                       | 30.9  | 25.5  | 28.0    | 31.6  | 31.4    | 34.0    | 30.8    | 24.0  | 35.6  | 34.2  | 28.8  | 36.4   |
| Recovery %               | C18                      | 19.0  | 27.0  | 24.2    | 26.2  | 26.6    | 24.2    | 22.5    | 19.9  | 19.1  | 28.5  | 23.7  | 31.8   |
| DOC                      | XC                       | 23.1  | 22.9  | 21.6    | 22.5  | 22.2    | 22.3    | 22.2    | 23.1  | 23.2  | 54.8  | 26.0  | 25.7   |
| Recovery %               | C18                      | 11.8  | 20.1  | 15.8    | 17.5  | 18.2    | 17.7    | 14.7    | 17.1  | 11.0  | 36.3  | 21.3  | 19.6   |
|                          | 'init'                   | 15.5  | 12.2  | 12.2    | 17.5  | 12.3    | 12.7    | 10.2    | 8.80  | 15.5  | 15.2  | 9.08  | 9.91   |
| E2/E3                    | XC<br>'eR'               | 8.91  | 9.40  | 9.40    | 8.98  | 8.91    | 8.29    | 9.08    | 9.10  | 8.77  | 8.57  | 7.55  | 7.21   |
|                          | C18<br>'eR'              | 7.13  | 7.24  | 7.25    | 7.28  | 7.28    | 7.41    | 7.44    | 7.13  | 7.12  | 6.61  | 6.14  | 5.82   |
|                          | 'init'                   | 3.02  | 2.98  | 2.81    | 2.83  | 3.00    | 3.02    | 2.90    | 3.12  | 3.16  | 3.10  | 3.50  | 3.83   |
| SUVA254<br>L/(m*mg)      | XC<br>'eR'               | 3.55  | 3.01  | 3.38    | 3.47  | 3.81    | 4.07    | 3.73    | 3.26  | 4.02  | 1.66  | 3.63  | 4.83   |
| 2,(                      | C18<br>'eR'              | 3.89  | 3.36  | 3.59    | 3.41  | 3.65    | 3.50    | 3.82    | 3.34  | 4.32  | 1.92  | 3.62  | 4.72   |
|                          | 'init'                   | 0.022 | 0.022 | 2 0.022 | 0.023 | 3 0.022 | 2 0.021 | 0.021   | 0.022 | 0.022 | 0.022 | 0.019 | 0.019  |
| Spectral                 | XC<br>'eR'               | 0.019 | 0.019 | 0.019   | 0.019 | 0.019   | 0.018   | 8 0.019 | 0.019 | 0.019 | 0.018 | 0.017 | 0.017  |
| 510pc                    | C18<br>'eR'              | 0.017 | 0.017 | 0.017   | 0.017 | 0.017   | 0.017   | 0.017   | 0.017 | 0.017 | 0.017 | 0.016 | 50.014 |

\* From Zigah 2012; -- No measurements

**Environmental Science: Processes** 

## Table 2

Elemental data from formula assignments. The subscript w indicates magnitude-averaged

values; the subscript n indicates number-averaged values as described in Minor et al. 2012.

|                  | BR surf<br>XC | BR surf<br>C18 | BR surf<br>XC<br>exclusive | BR surf<br>C18<br>exclusive | WM surf<br>XC | WM surf<br>C18 | WM surf<br>XC<br>exclusive | WM surf<br>C18<br>exclusive |
|------------------|---------------|----------------|----------------------------|-----------------------------|---------------|----------------|----------------------------|-----------------------------|
| DBE <sup>*</sup> | 13.22         | 13.10          | 18.44                      | 17.63                       | 13.40         | 13.64          | 18.46                      | 19.08                       |
| DBE/C            | 0.42          | 0.40           | 0.43                       | 0.36                        | 0.45          | 0.44           | 0.46                       | 0.40                        |
| H/C <sub>n</sub> | 1.314         | 1.353          | 1.263                      | 1.394                       | 1.273         | 1.304          | 1.206                      | 1.309                       |
| O/C <sub>n</sub> | 0.413         | 0.398          | 0.386                      | 0.338                       | 0.419         | 0.412          | 0.381                      | 0.361                       |
| N/C <sub>n</sub> | 0.156         | 0.159          | 0.222                      | 0.226                       | 0.166         | 0.162          | 0.222                      | 0.207                       |
| $P/C_n$          | 0.009         | 0.007          | 0.015                      | 0.009                       | 0.013         | 0.009          | 0.022                      | 0.010                       |
| $S/C_n$          | 0.003         | 0.003          | 0.007                      | 0.005                       | 0.003         | 0.003          | 0.008                      | 0.006                       |
| $H/C_w$          | 1.299         | 1.343          | 1.271                      | 1.418                       | 1.273         | 1.298          | 1.214                      | 1.311                       |
| O/C <sub>w</sub> | 0.431         | 0.403          | 0.387                      | 0.335                       | 0.424         | 0.419          | 0.366                      | 0.360                       |
| $N/C_w$          | 0.094         | 0.106          | 0.219                      | 0.230                       | 0.128         | 0.106          | 0.231                      | 0.205                       |
| $P/C_w$          | 0.006         | 0.005          | 0.015                      | 0.009                       | 0.013         | 0.007          | 0.028                      | 0.012                       |
| $S/C_w$          | 0.002         | 0.002          | 0.007                      | 0.005                       | 0.001         | 0.001          | 0.008                      | 0.005                       |
| FN               | 47.50         | 48.28          | 67.35                      | 68.32                       | 48.78         | 48.29          | 66.43                      | 64.25                       |
| FP               | 14.68         | 13.28          | 20.36                      | 15.38                       | 17.98         | 14.97          | 26.53                      | 16.35                       |
| FS               | 4.96          | 4.58           | 9.93                       | 8.31                        | 4.65          | 3.70           | 11.18                      | 7.83                        |
| %CHO             | 46.15         | 45.60          | 18.27                      | 18.69                       | 45.83         | 46.66          | 19.73                      | 23.25                       |
| %CHON            | 30.79         | 32.71          | 43.72                      | 48.91                       | 29.13         | 31.76          | 36.44                      | 44.89                       |
| %CHOS            | 1.55          | 1.22           | 2.80                       | 1.63                        | 0.89          | 0.60           | 1.87                       | 0.89                        |
| %CHONS           | 2.30          | 2.49           | 4.45                       | 4.90                        | 2.12          | 2.20           | 4.85                       | 5.01                        |
| %CHOP            | 0.62          | 0.63           | 1.46                       | 1.42                        | 0.45          | 0.73           | 0.95                       | 1.85                        |
| %CHONP           | 12.58         | 11.36          | 15.56                      | 11.39                       | 14.93         | 12.82          | 19.21                      | 12.11                       |
| %CHONSE          | <b>0</b> .55  | 0.36           | 1.42                       | 0.73                        | 0.76          | 0.36           | 2.07                       | 0.73                        |

\*The equation  $DBE=(C+^{13}C)-H/2+N/2+1$  was used to calculate the DBE of each molecule. Then these DBEs were number-averaged, i.e., were calculated by dividing the sum of the DBEs by the total number of assigned formulae, for the value reported here.



230x139mm (96 x 96 DPI)

Environmental Science: Processes & Impacts Accepted Manuscript

**Environmental Science: Processes** 



Fig. 2 Protocol used for sampling and extraction, including naming conventions followed in the text.



Fig. 3 Principle component analysis results based on A) normalized absorption coefficients from 200 to 800 cm-1; B) spectrophotometry indices (E2/E3, SUVA254 and spectral slope) of all samples. Black filled squares represent <GFF 'init' samples; gray filled circles represent SDB-XC SPE DOM samples; triangles represent C18 SPE DOM samples. 660x355mm (150 x 150 DPI)









211x308mm (144 x 144 DPI)







272x118mm (96 x 96 DPI)