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A new model performance better than MODIS GPP product for wetland 

ecosystems was proposed and validated. 
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Gross primary productivity (GPP) is a measure of photosynthesis and represents the primary 

conduit of carbon flux from the atmosphere to the land. The accurate estimation of GPP is 

essential for the quantification of net ecosystem carbon exchange (NEE), which is the main factor 

that determines whether the ecosystem is a carbon source or a carbon sink. This paper proposed 

and validated a new model to for the estimation of GPP for wetland ecosystems using Moderate 

Resolution Imaging Spectroradiometer (MODIS) products, including these vegetation indices, LST 

and the fraction of photosynthetically active radiation absorbed by the active vegetation (FAPAR). 

This model was validated for a study site on Chongming Island, Shanghai, China. Our results show 

that this new model can provide reliable estimates of GPP (R2 of 0.87 and RMSE of 0.009 kg C 

m-2 8d-1 (P<0.0001)) which is better than the MODIS product. Since GPP is an important 

parameter in carbon cycle, high accuracy estimation of GPP will help us understand the 

ecosystem carbon cycle. 
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Abstract: Wetland ecosystems are very important for ecological diversity and have a strong ability to 

sequester carbon. Through comparisons with field measured eddy covariance data, we evaluated the 

relationships between the light use efficiency index (LUE) and the enhanced vegetation index (EVI), 

normalized difference vegetation Index (NDVI), and land surface temperature (LST). Consequently, we 10 

have proposed a new model for the estimation of gross primary production (GPP) for wetland ecosystems 

using Moderate Resolution Imaging Spectroradiometer (MODIS) products, including these vegetation 

indices, LST and the fraction of photosynthetically active radiation absorbed by the active vegetation 

(FAPAR). This model was developed and validated for a study site on Chongming Island, Shanghai, 

China. Our results show that photosynthetically active radiation (PAR) was highly correlated with LST, 15 

with a coefficient of determination (R2) of 0.59 (p<0.001). Vegetation indices, such as EVI, NDVI and 

LST, were highly correlated with LUE. We found that the product of vegetation indices (VIs) and a 

modified form of LST (Te) can be used to estimate LUE, with an R2 of 0.82 (P<0.0001) and an RMSE of 

0.054 kg C per mol PAR. This new model can provide reliable estimates of GPP (R2 of 0.87 and RMSE 

of 0.009 kg C m-2 8d-1 (P<0.0001)). 20 

Keywords: Wetland ecosystem; MODIS; GPP; Remote sensing 

1. Introduction 

Gross Primary Production (GPP) is an important parameter in 

carbon cycle research [1-3]. GPP is a measure of photosynthesis 

and represents the primary conduit of carbon flux from the 25 

atmosphere to the land [4]. The accurate estimation of GPP is 

essential for the quantification of net ecosystem carbon exchange 

(NEE), which is the main factor that determines whether the 

ecosystem is a carbon source or a carbon sink [5].  

The eddy covariance technique measures the ecosystem-level 30 

exchange of CO2 (NEE) directly [6]. However, regional-scale 

applications of field-based measurement techniques are 

economically expensive and time-consuming. A flux tower-based 

GPP measurement technique is difficult to extend to large regions 

because of several factors, including its footprint and size, surface 35 

roughness, atmospheric stability and surface heterogeneity [7]. 

Due to the ease with which global data can be obtained, remote 

sensing is very useful for scaling up eddy covariance-estimated 

GPP to larger scales and remote sensing-based estimates of GPP 

can provide a sustained source of global GPP observations and 40 

play a vital role in global change studies [8-10]. Several 

approaches have been developed to estimate GPP using remote 

sensing technology [11-13]. These models generally can be 

divided into empirical and biogeochemical models. Empirical 

models use regression analysis to link field-measured GPP to 45 

biogeophysical parameters extracted from remote sensing data 

[14-17]. These parameters are usually environmentally related 

factors, such as temperature and rainfall, or parameters that are 

sensitive to ecosystem conditions, such as vegetation indices 

(VIs) [18]. Biogeochemical models are based on the 50 

physiological and ecological processes of plant growth and 

estimate GPP from its physical relationship with environmental 

factors [19-23]. For example, Running et al. have produced the 

global GPP product (MOD17A2) with the MODIS FPAR product 

(MOD15A2) as one of the inputs [24]. However, remote sensing-55 

estimated GPP models and their parameters depend on the type of 

ecosystem and study location. Different types of ecosystems and 

different study locations consistently have different optimal 

model parameters [25]. Therefore, the satellite-based estimation 

of GPP requires calibration and validation with ground-based 60 

measurements [26-28]. 

The current remote sensing-based GPP models have mainly 

focused on forest [5, 29], crop [30-32] and grassland ecosystems 

[12, 33]. Limited studies have been conducted on wetland 

ecosystems, which are considered to be the “kidney” of the Earth 65 

[34]. Despite the small area of the Earth’s surface occupied by 
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wetlands, wetland ecosystems are very important for ecological 

diversity [35] and have a strong ability to sequester carbon [36]. 

Therefore, it is important to model the GPP of wetland 

ecosystems.  

In this paper, we estimated the GPP of an estuarine wetland 5 

ecosystem using the light use efficiency (LUE) equation [37] at 

the Dongtan (DT) site on Chongming Island, Shanghai, China. 

The MODIS-derived VIs, land surface temperature (LST) and the 

absorbed fraction of photosynthetically active radiation (FAPAR) 

were examined for their potential usefulness for estimating GPP 10 

of estuarine wetland ecosystems. The eddy covariance-estimated 

GPP (GPPtower) was used to validate and calibrate the remote 

sensing-estimated GPP. The objectives of this study were: (1) to 

analyze the potential usefulness of parameters extracted from the 

MODIS satellite, such as VIs, LST and FAPAR, for estimating 15 

the 8-day GPP of the estuarine wetland ecosystem, (2) to derive a 

new model to estimate GPP of the estuarine wetland ecosystem 

entirely based on MODIS observations, such as the MODIS VIs, 

LST and FAPAR products, (3) to validate and calibrate the 

remote sensing-estimated GPP using the eddy covariance-20 

estimated GPP, and (4) to compare the estimation precision of 

GPP with inputting different spatial resolution MODIS 

reflectance data. 

2. Study area and data preparations 

2.1. Study area 25 

The DongTan (DT) site, which is located on Chongming Island, 

Shanghai, China (31°31.013’N, 121°58.297’E) (Fig. 1), was 

selected for this study. Chongming is an alluvial island of the 

Yangtze River and located in the Yangtze River estuary. The 

elevation ranges from 3.5 m to 4.5 m above sea level with a mean 30 

monthly temperature from 2.8 to 27.5 °C. The annual 

precipitation ranges from 606.1 to 1480.5 mm, and the main 

vegetation types include Spartina alterniflora and Scirpus 

mariqueter [38]. 

 35 

Fig. 1 Location of the DT study site (A picture of the DT site was 

provided by the Institute of Biodiversity Science, Fudan University, 

Shanghai, China.) 

 

2.2. Data preparation 40 

2.2.1. Eddy covariance data 

The eddy covariance flux tower data for the DT site was provided 

by the Institute of Biodiversity Science, Fudan University, 

Shanghai, China. These data were acquired from January 1, 2005 

to December 31, 2005 and included the air humidity, air pressure, 45 

wind speed, wind direction, PAR, NEE and GPP recorded every 

30 minutes. These eddy covariance data were processed using the 

EC_Processor software developed by the University of Toledo. 

To ensure the quality of the data, the data acquired during bad 

weather conditions, such as rain, fog and weak turbulence 50 

conditions, were excluded [38]. Those data gaps were gap-filled 

using a dynamic parameters model [40-41]. The 30-minute PAR 

and GPP data were summed to 8-day values for later analysis. 

Detailed observation instruments and data processing please see 

references 38. Those data had a good quality. Several paper had 55 

been published using those data [38-40].  

There were 45 of these 8-day eddy covariance estimated data 

points in 2005. Ten (10) of them were acquired during cloudy 

conditions, which have no matching MODIS data and thus were 

not used. Eighteen (18) observations were randomly selected 60 

from the left thirty-five ones to derive the model, and 17 

observations were used to validate the precision of the model. 

2.2.2. MODIS products 

Four MODIS land surface products were used in this study, 

including the 8-day MODIS reflectance product (MOD09A1, 500 65 

m, collection5), the 8-day MODIS land surface temperature 

(LST) and emissivity product (MOD11A2, 1000 m, collection5), 

the 8-day MODIS FAPAR product (MOD15A2, 1000 m, 

collection5) and the 8-day MODIS GPP product (MOD17A2, 

1000 m, collection5.1). To ensure the quality of the data, water, 70 

clouds, heavy aerosols, and cloud shadows were masked. The 

MOD09A1 products were used to calculate the 8-day vegetation 

indices of NDVI and EVI. The EVI, NDVI, FAPAR, LST and 

GPP data for the DT site were extracted from the 3×3 MODIS 

pixels (3km×3km) centered on the eddy covariance flux tower 75 

and the mean values were then calculated. Preliminary results [9] 

indicated that the mean values of  3×3 pixels provided better 

correlation with GPP from flux measurement.  

3. Approach 

According to the LUE equation, a satellite-based estimation of 80 

GPP can be calculated as [37]: 

 PARFAPARLUEGPP   (1) 

Where LUE is the light use efficiency, defined as the amount of 

carbon fixed in photosynthesis per unit of absorbed solar 

radiation; PAR is the incident photosynthetically active radiation; 85 

FAPAR is the fraction of photosynthetically active radiation 

absorbed by the active vegetation canopy. In this study, PAR was 

substituted with MODIS LST, and LUE was estimated from a 

new algorithm proposed by Wu et al. [44]. In addition, the 

MODIS FAPAR product was also included in our approach, 90 

making our model entirely based on MODIS observations. 

The model proposed by Wu et al. [44] to estimate LUE is as 

follows: 
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 bTVIaLUE immm  )ln( ,  (2) 

 )/exp( max, LSTLSTT im   (3) 

Where a and b are coefficients that need to be calibrated; LSTi is 

the mean ith month temperature and LSTmax is the maximum 5 

monthly temperature of the site for the experimental years. 

However, this model was developed for boreal forests. Due to the 

differences between wetland ecosystems and boreal forests 

ecosystems, the relationship between LUE and VI×Tm may also 

differ. Thus, we proposed a new method to estimate wetland 10 

ecosystem GPP that is based on the work of Wu et al. [44]. The 

steps of this method were described in detail in section 3.1-3.4. 

3.1 Regression and related analyses 

Using 18 randomly selected test samples, linear regression 

analysis was used to analyze the efficacy of LST for evaluating 15 

PAR, and nonlinear regression analysis was used to analyze the 

efficacy of LST, EVI and NDVI for estimating LUE. Nonlinear 

regression analysis was also used to evaluate the relationships 

between field LUE and the values of Tm, EVI×Tm and NDVI×

Tm. Field LUE was estimated as:  20 

 )/( PARFAPARGPPLUE   (4) 

Where PAR is field PAR; FAPAR is the MODIS Leaf Area 

Index - FPAR production (MOD15A2); GPP is the field GPP. 

3.2 PAR, LUE and GPP estimations 

Using linear regression analysis, a linear model for PAR 25 

estimation from the MODIS LST product was built. Through 

nonlinear regression analysis, exponential relationships were 

found between LUE and the VI, Tm and VI×Tm terms. Thus, a 

new model to estimate LUE was built as follows: 

  )(exp ,ieie TVIbaLUE   (5) 30 

 )/exp( max, LSTLSTT iie   (6) 

Where VIi is the 8-day vegetation index data; a and b are 

coefficients that need to be calibrated; Te is the 8-day Tm; LSTi is 

the mean ith 8-day temperature and LSTmax is the maximum 8-

day temperature of the site for the experimental years. 35 

Subsequently, GPP was estimated using the estimated LUE and 

PAR and the MODIS FAPAR product according to equation (1). 

3.3 Validation and Comparison with MODIS GPP 

Seventeen independent field-measured GPP data points were 

used to validate the precision of the model using linear regression 40 

analysis. A comparison with the standard MODIS GPP was also 

conducted. 

3.4 Test of scaling effect 

Four MODIS products were used in this study. The spatial 

resolution of MOD09A1 is 500 m, while the spatial resolutions of 45 

the other data are 1 km. To evaluate the influence of this 

difference on the estimation of GPP, the 500 m MOD09A1 

product was upscaled to 1 km using the pixel aggregate 

resampling method. Then, the 1 km vegetation index was 

calculated and used to estimate LUE and GPP. Linear regression 50 

analysis was also used to evaluate the relationship between the 

estimated GPP and the field-measured GPP, and the GPP 

estimated using the 500 m MOD09A1 data was also compared 

with field-measured GPP. The influence of the spatial difference 

was then evaluated by comparing the difference in the 55 

coefficients of determination (R2).  

4. Results 

4.1. Estimation of PAR 

The results of the linear regression analysis demonstrate that LST 

has a strong and significant relationship with PAR, with an R2 60 

equal to 0.588 and an RMSE equal to 3.32 MJ m-2 8d-1 (P<0.001) 

(Fig. 2). 

 
Fig. 2 The relationship between the eddy covariance estimated PAR and 

LST for the DT site 65 

4.2. Estimation of LUE using VI×Tm 

4.2.1. The relationship between LUE and VI 

Previous studies by Wu et al. [44] and Gelybó et al. [45] have 

shown that EVI and NDVI have significant correlations with 

LUE in North American forest ecosystems.  In this study, we 70 

found that both EVI and NDVI have strong and significant 

exponential relationships with the LUE of the estuarine wetland 

ecosystem. An R2 equal to 0.76 and 0.73 with RMSE equal to 

0.002 and 0.003 kg C mol-1 PAR (P<0.0001) were found (Fig. 3).  
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Fig. 3 The relationship between the eddy covariance-estimated LUE and 

VIs for the DT site: (a) EVI and (b) NDVI 

4.2.2. The relationship between LUE and temperature 

Air temperature is an important environmental variable that can 5 

affect vegetation growth [43-44]. Vegetation can grow within a 

suitable temperature range. Temperatures that are too high or too 

low will lead to a decline in the growth rate of vegetation [9]. 

Therefore, temperature also has an important influence on LUE 

and GPP. 10 

However, because air temperature cannot be directly observed by 

remote sensing, LST products, such as the MOD11A2 product of 

the MODIS sensor, are usually used in place of air temperature. 

The preliminary work of Wu et al. [44] revealed that air 

temperature has a highly non-linear relationship with MODIS 15 

LST. In the previous studies, LST has been used to estimate GPP 

and LUE [24, 46]. The results of the nonlinear regression analysis 

show that LST has a strong and significant relationship with LUE 

for the estuarine wetland ecosystem, with an R2 equal to 0.64 and 

an RMSE of 0.003 kg C mol-1 PAR (P<0.0001) (Fig. 4a).  20 

However, the MODIS LST tends to overestimate air temperatures 

below 25 °C [44]. Therefore, Wu et al. [44] defined a parameter 

named (Eq. 3) to improve sensitivity at high temperatures. 

For this purpose, we used the 8-day Tm data calculated by 

equation (5). To prove that the 8-day Tm can also be used to 25 

estimate LUE, nonlinear regression analysis was used to evaluate 

the relationship between the 8-day Tm and LUE. The results of 

this nonlinear regression analysis indicate that the 8-day Tm has a 

better correlation with LUE than LST (Fig. 4 b). 

 30 

Fig. 4 The relationship between the eddy covariance-estimated LUE and 

temperature for the DT site: (a) LST and (b) Te 

4.2.3 Estimation of LUE using VI×Te 

Based on the determined relationships between LUE and both the 

VIs and the temperature, a new model was developed that 35 

incorporates both VI and Te to estimate the 8-day LUE (Fig. 5). 

Strong correlations between LUE and both EVI×Te and NDVI×

Te were found, with an R2 of 0.82 and 0.80 and RMSE equal to 

0.002 kg C mol-1 PAR (P<0.0001),respectively. 

imT ,
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Fig. 5 The estimation of LUE using (a) EVI×Te and (b) NDVI×Te 

4.3.  Estimation of GPP using LUE×FAPAR×PAR 

Using the estimated LUE and PAR and the MODIS FAPAR 

product, the GPP of the estuarine wetland ecosystem was 5 

estimated. Very strong and significant correlations between the 

eddy covariance-estimated GPP and the estimated GPPs using the 

MODIS FAPAR product, and the PAR and LUE values estimated 

using either EVI×Te or NDVI×Te, were found, with an R2 of 

0.87 and 0.84 and RMSE equal to 0.009 kg C m-2 8d-1 (P<0.0001, 10 

Fig. 6), respectively. 

 

Fig. 6 The estimation of GPP using FAPAR and (a) estimated LUE by 

EVI×Te or (b) estimated LUE by NDVI×Te 

4.4. Comparison with MODIS GPP 15 

A comparison with the standard MODIS GPP product was also 

conducted. The result showed that MOD17A2 GPP have a good 

relationship with eddy covariance flux tower measured GPP with 

R2 equal to 0.818, and RMSE equal to 0.009 kg C m-2 8d-1 

(P<0.0001) (Fig.7). However, GPP estimated using FAPAR, PAR 20 

and LUE by EVI×Tm and NDVI×Tm had comparatively better 

results than MODIS GPP.  
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Fig. 7 Relationship between the eddy covariance estimated GPP and 

MOD17A2 GPP for DT site 

4.5 Test of scaling effect 

Using linear regression analysis, the GPPs estimated using either 5 

500 m or 1000 m MODIS reflectance data were compared to 

evaluate the effects of scaling. The results show that the 1000 m 

vegetation index had a lower capability for estimating GPP, with 

an R2 equal to 0.667 and 0.663 and RMSE equal to 0.017 and 

0.011 kg C m-2 8d-1 (P<0.0003, Fig. 8) when using either EVI×10 

Te or NDVI×Te, respectively. 

 

Fig. 8 The estimation of GPP using 1 km MODIS reflectance and (a) 

LUE estimated by EVI×Te or (b) LUE estimated by NDVI×Te 

5. Discussion 15 

5.1. Model improvement 

The algorithm proposed by Wu et al. [44] for a forest ecosystem 

was improved upon in this paper to estimate the GPP of a wetland 

ecosystem. Due to the differences between wetlands and forest 

ecosystems, the model proposed by Wu et al. [44] was improved 20 

in the following aspects: (1) the GPP of the wetland ecosystem 

was estimated with an 8-day temporal resolution; (2) exponential 

relationships between VIs and the LUE of the wetland ecosystem 

were determined, while the relationship for the forest was linear; 

(3) an exponential relationship between LUE and VI, Te was 25 

discovered, while the relationship for the forest was logarithmic. 

Using 18 randomly selected test samples, we found that both VIs 

and VI × Te have exponential relationships with LUE by 

performing nonlinear regression analyses. Using 17 independent 

field-measured GPP data points, the ability of this method to 30 

estimate GPP with a high precision was verified. 

The differences mentioned above are mainly attributed to the 

differences in ecosystem types. However, there is a need of 

further research for this differences. Our work demonstrates that 

LUE has a strong relationship with VI and Te, but this 35 

relationship will change with the ecosystem type. Therefore, 

when applying this method to other ecosystems, this LUE 

estimation model should be rebuilt.  

5.2. Limitations of the model 

A new model was developed to estimate the GPP for an estuarine 40 

wetland ecosystem using the MODIS VIs, LST and FAPAR 

products. The linear correlation analysis demonstrated that this 

model produces GPP values that are very similar to eddy 

covariance-estimated GPP values. However, there are still some 

factors that may affect the precision of this method and should be 45 

considered in future applications.  

First, the eddy covariance-estimated GPP represents the footprint 

of the tower, which is variable depending on the local 

environmental situation and land cover [47]. There is a need to 

translate between the size of the footprint and the pixel size of 50 

image data. The methods currently in use assume that the eddy 

covariance flux tower-measured GPP is equal to the central or 

mean values of 3×3 pixels. Relying on this assumption, an 

assessment of accuracy is possible because of the 

representativeness of both measured and estimated values for 55 

whole ecosystem productivities, comprising the contributions of 

all photosynthesizing plants (trees, shrubs, and grasses). The 

validity of this basic assumption is, however, questionable in 

heterogeneous forest areas, where the spatial scale of the 

variability in GPP is on the order of few hundred meters [45]. 60 

Considering the species diversity and land fragmentation of 

wetland ecosystems, the problem of heterogeneity for wetland 

ecosystems is also a serious factor for remote sensing models. 

However, on Chongming Island, the main vegetation types only 

include Spartina alterniflora and Scirpus mariqueter, which are 65 

zonally distributed along the beach [39-41]. Due to the single 

species and homogeneous land cover around the DT site, this 

issue was not discussed here. However, this is a topic on which 
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future research should focus. 

Second, cloudy weather can lead to the overestimation of PAR 

and GPP. More than eight cloudy days will lead to missing 8-day 

MODIS products. In this situation, optical remote sensing reveals 

its limitation. Less than eight cloudy days will result in an 5 

overestimation of PAR when using the MODIS LST product. The 

MODIS LST pixels contain the average LST values of clear-sky 

LSTs for an 8-day period. Thus, the PAR estimated using 

MODIS LST data is the total PAR for an 8-day period. If there 

are some cloudy days, the real PAR will be less than estimated 10 

PAR. Linear regression analysis was also used to evaluate the 

relationship between the estimated PAR and the field-measured 

PAR. The results revealed that the MODIS LST can be used to 

estimate PAR, with an R2 equal to 0.68 and an RMSE equal to 

2.0 MJ m-2 8d-1 (P<0.0001, Fig. 9a). However, the results also 15 

show that PAR will be overestimated when using the MODIS 

LST product if the PAR falls below 30 MJ m-2 8d-1.  The GPP 

estimated using the estimated PAR was also compared with the 

GPP estimated using field-measured PAR by performing a linear 

regression analysis. The results showed that the GPP estimated 20 

using the estimated PAR was overestimated, with an R2 equal to 

0.973 and an RMSE equal to 0.004kg C m2 8d-1 (P<0.0001, Fig. 

9b). 

 
Fig. 9 The relationships between (a) the eddy covariance-estimated PAR 25 

and estimated PAR, (b) the GPP estimated using the field-measured PAR 

and the estimated PAR, for the DT site 

Third, the estimated GPP using method proposed by this paper is 

underestimated which was showed in Fig. 6. This underestimate 

is mainly caused by the underestimation of the temperature by the 30 

MODIS LST product. The underestimation of temperature is also 

influenced by the underestimation of LUE. To evaluate the 

influence of the underestimates of temperature and LUE, we 

compared the MODIS LST and the estimated LUE with the field-

measured temperature and LUE by performing linear regression 35 

analyses. The results show that the use of the MODIS LST 

product and the LUE estimated using EVI×Te will cause the 

model to underestimate LUE, with an R2 equal to 0.8 and 0.754 

and an RMSE equal to 3.523 °C and 0.002 kg C mol-1 PAR, 

respectively (Fig. 10). 40 

 
Fig. 10 Comparisons between (a) MODIS LST and (b) LUE estimated by 

EVI×Te with field temperature and LUE, respectively. 

Finally, the proposed method was validated for the estimation of 

the GPP of a homogeneous estuarine wetland ecosystem. 45 

However, only one eddy covariance tower data point was 

included in this validation study. More eddy covariance data 

should be tested to verify the suitability of this model, and its 

usefulness for heterogeneous wetland ecosystems and other 

ecosystem (e.g., crops, grasslands and forests) requires further 50 

validation as well. Moreover, impacts of the MODIS observation 

footprint and the vegetation bidirectional reflectance distribution 

function (BRDF) were no considered. Zhang et al. have found 

that footprint have an important influence on NDVI  and EVI 
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which were also used in this new model [48]. So this is a topic on 

which future research should focus. 

6. Conclusions 

A new method for the estimation of the GPP of an estuarine 

wetland ecosystem using the MODIS VIs, LST and FAPAR 5 

products was developed and validated for a study site located on 

Chongming Island, Shanghai, China. A linear regression analysis 

that was performed to  compare the modeled data with field-

measured eddy covariance data indicates that this new model 

provides accurate estimates of GPP, with an R2 equal to 0.87 and 10 

an RMSE equal to 0.009 kg C m-2 8d-1 (P<0.0001). This 

performance is better than that of the standard MODIS GPP 

product. In addition, using nonlinear regression analysis, we also 

found that vegetation indices, such as EVI, NDVI and 

temperature, have strong and significant correlations with LUE. 15 

The proposed model can be applied to estimate the GPP for an 

estuarine wetland ecosystem. However, due to the limitation of 

field-measured GPP included in this study, more field-measured 

data should be compared to analyze the stability and applicability 

of this model, especially in other ecosystems. 20 
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