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Environmental impact statement 

 

To reach a more realistic assessment of effects of dispersant application on nematodes 

and copepods, the present study used outdoor intertidal mesocosms. The application of 

chemical dispersants is an effective means of accelerating the dispersion of oil from the sea 

surface into the water column. Use of dispersant of third generation didn’t provide protection 

of benthic organisms, even when oil and dispersants are mixed, no benefit was observed. It is 

not worthy to use this third generation dispersants for oil spill in nearshore areas.  
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 2

Abstract 24 

 25 

Dispersant application is used as a response technique to minimize the environmental risk of 26 

an oil spill. In nearshore areas, dispersant application is a controversial countermeasure: 27 

environmental benefits are counteracted by the toxicity of dispersant use. The effects of the 28 

use of chemical dispersant on meiobenthic organisms and nematodes were investigated in a 29 

mesocosm experiment. A 20 days experiment was performed in four experimental sets of 30 

mesocosms. In three of them, sediments were contaminated, respectively by oil (500 mg Kg
-

31 

1
), dispersed oil (oil + 5% dispersant), and dispersant alone, whereas in the last set sediments 32 

were kept undisturbed and used as reference (Re). Our results showed that meiobenthic 33 

response to oil contamination was rapid, for copepods and nematodes. One-way ANOVA 34 

showed a significant decrease of the abundance of copepods. In the case of nematods, 35 

univariate and multivariate analyses indicated a clear decrease of the abundance of the species 36 

after only 20 days of pollutant exposure and thus, reducing Shannon-Wiener diversity and 37 

Pielou’s evenness. In contrast, Sphaerolaimus  gracilis and Sabateria sp. became more 38 

frequent within disturbed assemblages and appeared to be resistant and/or opportunistic 39 

species at these kinds of toxicants. Moreover, responses of copepods and nematodes to the 40 

treatment seemed to be the same irrespective of whether only oil or oil + dispersant was 41 

perform. Main toxicities of dispersed oil come from not by “composition of newly formed oil 42 

and oil spill dispersant mixture” but by the “quantities of increased dispersed oil droplet”.  43 

 44 

Keywords: Crude oil; dispersant; sediment; mesocosm; nematodes; copepods. 45 

46 
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 3

1. Introduction 47 

Oil spills cause serious environmental disasters, often leading to significant, short and 48 

long-term impacts on the environment and socioeconomic activity of impacted area. 
1,2

 49 

Dispersants are designed to chemically disperse an oil slick so that the oil enters the water 50 

column, minimizing opportunities to strand on shorelines. 
3
 Dispersants may enhance oil 51 

bioavailability by creating more surface area in terms of multiple small oil droplets, allowing 52 

for increased biodegradation of the oil. 
4,5

  53 

Dispersants are known to be an appropriate solution for offshore spills. 
3
 At coastal 54 

areas, many studies have generated conflicting results related with the use of dispersants. 
6-9

 55 

Many factors can contribute to these seemingly conflicting results; dosage and toxicity of 56 

dispersants differ, species within a community vary broadly in their response to contaminants, 57 

and the bioavailability of contaminants differs with sedimentary conditions. 
10

  58 

In European Atlantic coast, the minimum permitted water depth to spray dispersant is 59 

10 m. 
11

 This restriction of minimum water depths was derived from studies on the dilution of 60 

dispersed oil in shallow water and took into consideration the ecological sensitivity of 61 

nearshore areas as they are nurseries for many aquatic species. However, a field study 62 

conducted by Baca et al. 
12

 suggests that in nearshore tropical ecosystems dispersant use 63 

minimizes the environmental damages arising from an oil spill.  64 

The first step towards the assessment of advantages and potential risks of dispersed oil 65 

in these sensitive regions is to gain the knowledge of responses of susceptible benthic 66 

assemblages like meiofauna that serve as link between primary producers and higher trophic 67 

levels. This study aims to assess the toxicity of chemically dispersed oil at levels similar to 68 

those encountered in oil spill scenario. To simulate current oil dispersant application, our 69 

study uses a “third generation” dispersant, which is the most recent of formulation and is 70 

considered less toxic and more concentrated in tensio-active components than earlier ones. 71 
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 4

Third generation dispersants are the most commonly used nowadays. While most 72 

experimental studies assess the toxicity of the dispersant itself or the dispersed oil Water-73 

Accommodated Fraction (WAF), 
5,13,14 

for pelagic organisms, our experimental approach give 74 

more consideration to benthic organisms. These organisms are ubiquitous in the marine 75 

environment and comprise an important link in the food chain, feeding on microalgae and 76 

bacteria and in turn being preyed upon by macrobenthic predators such as polychaetes, crabs 77 

and fishes. 
15,16

 They will be expected to be highly susceptible to sediment-associated 78 

pollutants because they live and feed in the sediments. Effects of contaminants on them are 79 

likely to be transmitted via the food chain and moreover bioaccumulation in them could be 80 

passed to higher trophic levels. 
17

  81 

Benthic nematodes are also well suited to bioassays because they are small, abundant, 82 

easily maintained, sediment-bound throughout their life history, quick to reproduce (in the 83 

order of weeks, 
15,16,18

 and sensitive to various toxicants. 
19-21

 84 

To reach a more realistic assessment of effects of dispersant application on nematodes 85 

and copepods, the present study used outdoor intertidal mesocosms which simulate as closely 86 

as possible, real-life conditions. We suppose that the use of dispersants didn’t provide 87 

protection of benthic organisms. Findings of this study are interesting as they could help to 88 

establish the third-generation dispersant use policies in near shore areas.   89 

  90 

2. Methods 91 

 92 

2.1. Implementation of the intertidal mesocosm approach 93 

Sediments were collected on the 9
th

 June 2010 during low tide from an intertidal 94 

mudflat (46°15'20.23''N 1°08'33.78''W: Esnandes, France) and transferred to the experimental 95 

station of the FREDD (Fédération en Environnement pour le Développement Durable: CNRS, 96 
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 5

Université de La Rochelle, IFREMER) at the Marais de Lauzières (46°12'13.65"N 97 

1°11'42.97"W, France).  98 

Sediments were mixed for 30 minutes with a cement mixer (BETOMIX 160 L) before being 99 

introduced in PVC trays (H, W, L: 5 x 40 x 60 cm). These trays were randomly deployed into 100 

twelve benthoscosm devices. The latter were composed of two tanks (H, W, L: 40 x 60 x 80 101 

cm), two evacuation tubes, a hose (16 mm Ø), a pump (Eheim compact 1000 L h
-1

) and a 102 

mechanical timer (IDK PMTF 16A) allowing mimicking the tidal cycle (6 hours of low tide, 6 103 

hours of high tide, two tides per day) (Figure 1). Intertidal mesocosms were filled with natural 104 

seawater from a pond of the experimental station. 105 

 106 

2.2. Experimental design  107 

Experimental design was composed of four treatments and was performed in triplicate. 108 

The levels of treatment were randomly assigned to intertidal mesocosm devices. Thus, three 109 

of the twelve intertidal mesocosm devices were qualified as references (Re). The latter ones 110 

contained contaminated sediment with dispersant (d), with oil (Oil) or with oil + dispersant 111 

(Oil + d). 112 

 113 

 2.3. Contamination proceeding 114 

 115 

The concentrations used in the experiment simulated a range of sediment oil pollution 116 

comparable to the one of Amoco Cadiz oil spill (1978). 
22

 Four treatments were added 117 

progressively in a cement mixer and mixed during 30 minutes to ensure uniform mixing in 118 

this order: references (only 50 kg of sediment), dispersant (1.25 g of dispersant + 50 kg of 119 

sediment), oil (25 g of oil + 50 kg of sediment) then oil + dispersant (25 g of oil + 1.25 g of 120 

dispersant + 50 kg of sediment). The sediment (50 kg) of each treatment was divided into 121 

Page 6 of 28Environmental Science: Processes & Impacts

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



 6

three equal portions for three replicates per treatment. After each treatment, the cement mixer 122 

was cleaned properly. Three PVC trays prior to random introduction to the intertidal 123 

mesocosm devices.   124 

Brut Arabian Light (BAL) oil was selected for this study. Its composition was 125 

evaluated by the CEDRE (CEntre de Documentation de Recherche et d'Expérimentations sur 126 

les pollutions accidentelles des eaux), certified according to ISO 9001 and ISO 14001. The oil 127 

was composed of 54% saturated hydrocarbons, 36% aromatic hydrocarbons, and 10% polar 128 

compounds. Details of oil PAHs composition is as described by Milinkovitch et al. 
23

. The oil 129 

dispersant used in the current study was a third generation commercial formulation (Finasol; 130 

TOTAL Fluides, Paris, France). Its efficiency and acute toxicity was assessed by CEDRE 131 

using standard testing and approval procedures (NF.T.90-345 and NF.T.90-349, respectively).  132 

2.4. Sampling 133 

Temperature and salinity were measured starting from the three reference intertidal 134 

mesocosm with mean values of 19 ± 1.2°C and 31.01 ± 2.05 psu, respectively. Next, 135 

temperature was controlled every four days in each of the twelve intertidal mesocosms. No 136 

difference was observed between treatments within sampling dates. Temperature varied in 137 

relation to time with mean of 18.9 ± 2.5°C.  138 

At the end of 20 days, three samples of sediment were collected per intertidal mesocosm 139 

device (n = 9), meiofauna were collecting using a 10 cm
2
 hand-cores to a depth of 5 cm.  140 

Sediment was preserved with 4% formalin.  141 

  142 

2.5. Sample processing 143 

Meiofaunal taxa, defined here as metazoans that pass through a 1 mm mesh sieve and 144 

are retained on a 40 µm mesh, 
24

 were sieved following the resuspension–decantation 145 

methodology, 
25

 and stained with Rose-Bengal (0.2 g 1
-1

) for easy counting under a stereo 146 
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 7

dissecting microscope. During this step, nematodes (one hundred individuals per replicate) 147 

were randomly picked out and placed in 21% glycerol, evaporated to anhydrous glycerol, and 148 

then mounted on slides,
 26

 for microscopic identification. Nematodes were identified at 149 

species level using the pictorial keys of Platt and Warwick, 
27,28

 and the NeMys online 150 

identification key.
 29

  151 

 152 

2.6. Data analyses 153 

 A majority of the data analysis followed standard community analysis methods 154 

described by Clarke and Warwick, 
30

 using the PRIMER 5.0 software package. For 155 

nematodes of every intertidal mesocosm, five univariate indices were considered: nematode 156 

abundance (I), number of species (S), diversity (Shannon-Wiener index, H’), species richness 157 

(Margalef’s, d) and evenness (Pielou’s, J’). One-way ANOVAs were used to test for overall 158 

differences between these indices and the abundance of copepods and the Tukey HSD 159 

multiple comparisons test was used in pairwise comparisons of treatments. When required, 160 

data were transformed (log (x + 1)) to achieve homogeneity of variances and normality of 161 

residuals.  An alpha level of 0.05 was assumed. 162 

Three multivariate analyses were also applied. First, pairwise analysis of similarities 163 

(ANOSIM) was carried out to determine if there were significant differences between 164 

nematode assemblages from different intertidal mesocosms. Second, non-parametric Multi-165 

Dimensional Scaling (MDS) ordination was performed based on measures of Bray-Curtis 166 

similarity in order to visualize the variability in species composition between treatments. 167 

Third, SIMPER (similarity percentages) was used to determine the contribution of every 168 

species towards dissimilarity between treatments.  169 

 170 

 171 
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 8

3. Results 172 

 173 

3.1. Univariate indices 174 

One-way ANOVA showed a significant decrease in abundances of copepods (Fig. 175 

2A) and nematodes (Fig. 2B) in contaminated intertidal mesocosms comparing to reference 176 

mesocosm. No significant difference between oil and oil + dispersant treatment was 177 

recorded.  178 

A total of 13 nematode species were recorded in all the intertidal mesocosms (Table 179 

3). Copepod abundance and nematode univariate measures relative to the 4 different 180 

treatments are shown respectively in Figure 2 and Figure 3. ANOVA showed significant 181 

differences between the treatments. According to multiple comparisons tests, contaminated 182 

mesocosms presented significant lower values than reference ones; univariate measures 183 

didn’t present significant differences between oil and oil + dispersant treatments with the 184 

exception of H’ and J’ which vary significantly between all treatments. 185 

3.4. Multivariate analyses 186 

The highest number of genera and species was observed in reference treatment (Table 187 

3). ANOSIM results (Table 1) revealed a significant effect of d, Oil and Oil + d on structure 188 

of nematode assemblages. All treatments were significantly different from the reference and 189 

from each other but there was no difference between Oil and Oil + d. Based on this analysis, 190 

three groups were discernibly distinguished: Re, d and oil (with and without dispersant). This 191 

lack of significant difference between oil and oil + dispersant is also visible in the MDS 192 

analysis (Fig. 5) which showed a clear separation between contaminated and reference 193 

mesocosms, suggesting the influence of the contaminant treatments on nematode community 194 

structure.  195 
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 9

The species contributing to about 70% of the dissimilarity between reference and 196 

contaminated intertidal mesocosms indicated by SIMPER are given in Table 4. The reference 197 

community was dominated by Daptonema oxycerca, Chromadora macrolaima, 198 

Sphaerolaimus gracilis and Sabateria sp. (Table 4). The treatment d was dominated by S. 199 

gracilis, D. oxycerca and Sabateria sp. (Table 4). Further in the dispersed oil intertidal 200 

mesocosms (Oil and Oil + d), S. gracilis and Sabatieria sp. have constitute the most frequent 201 

species (Table 4). Increasing numbers of S. gracilis, Sabatieria sp. and D. oxycerca and 202 

decreasing number of C. macrolaima and A. paraspinosus were responsible for significant 203 

difference between Re and d (40.43%). Mechanical and chemical dispersion of the crude oil 204 

led to an increase in the abundances of S. gracilis and Sabatieria sp., and a decrease in the 205 

abundance of D. oxycerca and C. macrolaima causing significant differences between 206 

reference and the treatments Oil (59.53%) and Oil + d (56.85%). 207 

 208 

4. Discussion 209 

The impact of oil, oil + dispersant and dispersant on meiofauna using simulation 210 

systems of intertidal mudflat was investigated. After 20 days of exposure, copepod 211 

abundances resulted reduced by half in all the mesocosms treated with contaminants, with no 212 

differences between mixture of sediment and oil and chemical dispersion of the crude oil (ie. 213 

Oil and Oil + d). The nematode abundance decreased upon the addition of dispersant, oil and 214 

oil + dispersant to 71.95%, 32.54 %and 31.28%, respectively. These results are supported by 215 

several previous studies, 
19,29,31-33

 which proved that among aquatic invertebrates, crustaceans 216 

are sensitive to crude oil. As well, this is consistent with the findings of Jung et al. 
34

, who 217 

recorded that the abundance of copepods decreased rapidly upon the addition of crude oil at 218 

concentrations over than 1000 ppm in 10 L outdoor microcosms which were manipulated over 219 

an exposure period of 8 days. These authors found that contaminated sediments reduced 220 
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 10

significantly the abundance of many groups of crustaceans such as gammarids, ostracods, 221 

tanaids and copepods. Among meiobenthic fauna, harpacticoid copepods are particularly 222 

sensitive to hydrocarbons. 
19,35-40

 223 

In the current mudflat experiment, the abundance of copepods exposed to only dispersant 224 

decreased. However, despite the possible toxicity of dispersant alone on copepods, their 225 

combination with oil didn’t enhance the negative effects of oil on their abundance.  226 

In comparison with reference mesocosm, the one treated with dispersant alone 227 

presented increased abundances of the predator/omnivore S. gracilis and the two non-228 

selective deposit feeders D. oxycerca and Sabateria sp. The mesocosms treated with oil and 229 

oil + dispersant were characterised by increased abundances of S. gracilis and Sabateria sp. as 230 

well, but also by the decrease of D. oxycerca. S. gracilis is a predator which forages 231 

exclusively on other nematodes in non stressed conditions. However, when dead nematodes 232 

become more available for the high amounts of pollutants in the sediments, it could change its 233 

preferences by feeding as a scavenger. 
41
 Genera such as Daptonema and Sabatieria are often 234 

considered as very tolerant to various kinds of toxicants. 
41,42

 The enhance of opportunistic 235 

non-selective deposit feeder species may be also a consequence of the increase in bacteria 236 

abundance in sediments, 
43-45

 an event which generally occurs after oil spills, 
46

 or seepages.
47

 237 

In treatments oil and oil + dispersant, the presence of D. oxycerca became less remarkable 238 

than its equivalent belonging to the same feeding group, Sabatieria sp.  239 

The results of this study demonstrated that chemically dispersed oil did not have more 240 

negative toxic effect after 20 days than the mixture of sediment and oil on nematode 241 

assemblages. No bibliographic data were accessible for free-living marine nematodes. 242 

However, analogous facts were observed for diatoms. 
9
 Indeed, they concluded that the 243 

diatoms were found to be much more sensitive to dispersants than to the water accommodated 244 

fraction (WAF), and more sensitive to the chemically enhanced WAF (CEWAF) than to 245 
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 11

either the WAF itself or the dispersants. They observed that the exposure to dispersants and 246 

CEWAF caused membrane damage, while exposure to WAF did not. The observed toxicity 247 

bore no relationship to PAH concentrations in the water column or to total petroleum 248 

hydrocarbon (TPH), suggesting that an undescribed component of the oil was causing 249 

toxicity. 
9
 Rico Martinez et al.  

48
 observed that Corexit 9500A and oil are similar in their 250 

toxicity. 251 

The copepod and nematode results suggest independent rather than synergistic 252 

interaction toxicity between oil and dispersants (Fig. 2). Main toxicities of dispersed oil come 253 

from not by “composition of newly formed oil and oil spill dispersant mixture” but by the 254 

“quantities of increased dispersed oil droplet”. In contrast, Rico Martinez et al. 
48

 showed that 255 

when Corexit 9500A and oil are mixed, toxicity to B. manjavacas increases up to 52-fold.  256 

The application of chemical dispersants can be an effective means of accelerating the 257 

dispersion of oil from the sea surface into the water column. 
11

 This in turn helps to accelerate 258 

dilution and biodegradation of the oil, 
49

 and can reduce the environmental and economic 259 

impact of spilled oil in offshore. 260 

The dispersant showed toxic effects both for copepods and nematodes therefore results 261 

support the first hypothesis. Use of dispersants didn’t provide protection of benthic 262 

organisms. Even when oil and dispersants are mixed, no benefit was observed. The 263 

experience clearly showed that dispersant is toxic for benthic organisms in nearshore areas. It 264 

is not worthy to use this third generation dispersants for oil spill. 265 

An experimental approach taking into account other kinds of crude oil and other 266 

components of the benthic ecosystem would provide supplementary information. From this, 267 

further intertidal mesocosm experimentations are needed to evaluate the bioremediation 268 

potential vs. dispersants and petroleum compounds at the so-called “small food web” 269 

(bacteria, protists, and meiofauna).  270 
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Table 1  ANOSIM results (R statistic and significance level with p < 0.05) of pairwise tests 442 

for pairwise differences between treatments and control using square-root-transformed 443 

nematode abundance data. 444 

  445 

Groups   Re, Oil Re, Oil + d Re, d Oil, Oil + d Oil, d Oil + d, d446 
    447 

 448 

R statistic  0.968  0.991  0.716 0.561  0.614 0.907 449 

 450 

Significance level  0.100  0.100  0.100 0.100  0.100 0.100 451 
 452 

Data are the mean of two independent experiments. Significance level of sample statistic: 0.1%   453 
Re: reference, d: dispersant, Oil: oil, Oil + dispersant: Oil + d. 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 
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 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 
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Table 2  Average dissimilarity between treatments. 490 
  491 

Average dissimilarity (%)  Re  d  Oil + d  Oil492 

    493 

 494 

Re     -  -  -   - 495 

 496 

d     40.43  -  -   - 497 

 498 

Oil + d    56.85  34.07  -   - 499 

 500 

Oil     59.53  43.52  24.81   - 501 
 502 

Re: reference, d: dispersant, Oil: oil, Oil + dispersant: Oil + d. 503 
 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

Page 21 of 28 Environmental Science: Processes & Impacts

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



 21

Table 3  Proportion (%) ± standard deviation of nematode species identified in reference (Re) 529 

and contaminated benthocosms (d: dispersant, Oil + dispersant: oil + dispersant, oil:  Oil). 530 

Species accounting for ~ 70% of overall dissimilarity between treatment groups are ranked in 531 

order of importance of their contribution to this dissimilarity. 532 
  533 

Average dissimilarity (%)  Re  d  Oil + d  Oil534 

    535 

 536 

Anoplostoma viviparum  1.56 ± 3.06 0  0.22 ± 0.63  0 537 

 538 

Anticoma sp.    0.22 ± 0.63 0  0   0 539 

 540 

Axonola mus paraspinosus  7.33 ± 4.67 2.22 ± 1.81 7.44 ± 0.83 4.44 ± 4.19 541 

 542 

Chromadora macrolaima  15.22 ± 8.64 2.78 ± 2.20 4.33 ± 2.16 0.78 ± 1.13 543 

 544 

Daptonema hirsutum   8.78 ± 4.73 6.22 ± 1.69 3.11 ± 0.99 3.44 ± 4.03 545 

 546 

Daptonema oxycerca   23.33 ± 7.06 25.22 ± 7.33 3 ± 1.05 7.33 ± 5.21 547 

 548 

Gamphionema sp.   2.78 ± 2.70 1.78 ± 1.69 6.89 ± 2.08 2.11 ± 1.85 549 

 550 
Paramonohystera sp.   3 ± 2.11 0  0.22 ± 0.42 0.44 ± 1.26 551 

 552 
Praeacanthonchus punctatus 3.22 ± 1.81 1.22 ± 0.92 0.33 ± 0.67 1.67 ± 1.63 553 

 554 
Ptycholaimellus jacobi  5.89 ± 3.96 3.78 ± 1.87 1 ± 1.15 0.67 ± 0.82 555 

 556 
Sabatieria sp.    10.22 ± 5.79 20.89 ± 4.48 26.56 ± 4.03 18.44 ± 1.95 557 

 558 
Sphaerolaimus gracilis  11.33 ±3.20 31.78 ± 7.48 44.67 ± 8.25 57.67 ± 4.76 559 

 560 
Terschellingia longicaudata  7.11 ± 4.41 4.11 ± 3.51 2.22 ± 2.30 5.90 ± 3.20 561 
 562 

Re: reference, d: dispersant, Oil: oil, Oil + dispersant: Oil + d. 563 
 564 

 565 

 566 
 567 

 568 

 569 

 570 

 571 

 572 
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Table 4  Species responsible for differences between control and treated microcosms based 573 

on similarity percentages (SIMPER) analysis of square-root transformed data. (+): more 574 

abundant; (-): less abundant. Species accounting for ~ 70% of overall dissimilarity between 575 

treatment groups are ranked in order of importance of their contribution to this dissimilarity. 576 
  577 

Average dissimilarity (%)  Re  d  Oil + d  Oil578 

    579 

 580 

Axonolaimus paraspinosus  8.78  -  +   - 581 

 582 
Chromadora macrolaima  15.22  -  -   - 583 

 584 

Daptonema oxycerca   23.33  +  -   + 585 

 586 

Ptycholaimellus jacobi  5.89  -  -   - 587 

 588 

Sabatieria sp    10.22  +  +   + 589 

 590 

Sphaerolaimus gracilis  11.33  +  +   + 591 

 592 

Terschellingia longicaudata  7.11  -  -   - 593 
 594 

Re: reference, d: dispersant, Oil: oil, Oil + dispersant: Oil + d. 595 
 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 
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List of figures: 620 

 621 

Fig. 1 Experimental tray deployed in intertidal mesocosm device equipped with tidal cycle 622 

system. 623 

 624 

Fig. 2  Mean (± SE) of a) copepod, b) nematode abundances (ind. 10 cm
-2

) observed in 625 

benthocosms, exposed to different treatments (C: reference, d: dispersant, oil: Oil, oil + 626 

dispersant: Oil + d) 
a, b, c, d

 : Different letter showed significant differences (p < 0.05).  627 

 628 

Fig. 3 Mean (± SE) of univariate indices values  for nematode assemblages observed in 629 

benthocosms, exposed to different treatments (C: reference, d: dispersant, oil: Oil, oil + 630 

dispersant : Oil + d). a) S = number of species, b) Margalef’s d = species richness, c) H' = 631 

Shannon-Wiener index, d) Pielou’s J’ = evenness,
 a, b, c, d

 : Different letter showed significant 632 

differences (p < 0.05).  633 

 634 

Fig. 4 Non-metric MDS ordination of square-root transformed nematode species abundance 635 

from reference (C) and contaminated benthocoms (d: dispersant, oil: Oil, oil + dispersant: oil 636 

+ d). 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 
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