Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

1	Response surface methodology approach for optimization of simultaneous
2	dyes and metal ions ultrasound-assisted adsorption onto Mn doped Fe ₃ O ₄ -NPs
3	loaded on AC: Kinetic and isotherm study
4	
5	Arash Asfaram ^a , Mehrorang Ghaedi ^{*a} , Alireza Goudarzi ^b , Maryam Rajabi ^c
6	
7	^b Chemistry Department, Yasouj University, Yasouj /3918-/4831, Iran.
8	^c Department of Polymer Engineering, Golestan University, Gorgan, 49188-88309, Iran
9	Chemistry Department, Faculty of Science, Semnan University, Semnan 55195-565, Iran
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25 26	
20 27	
28	
29	
30	
31	
32	
33	
34	
35	
30 27	
37 38	
39	
40	
41	

Dalton Transactions Accepted Manuscript

^{*} Corresponding author at: Tel.: +98 741 2223048; fax: +98 741 2223048.

E-mail address: m_ghaedi@mail.yu.ac.ir; m_ghaedi@yahoo.com (M. Ghaedi)

Dalton Transactions Accepted Manuscript

42 Abstract

In the present work, the usefulness of ultrasonic power as dispersion and mixing tool to 43 accelerate the adsorption of Safranin O (SO), Methylene blue (MB), Pb²⁺ ions and Cr³⁺ ions onto 44 novel composite of Fe₃O₄-NPs-AC as adsorbent was investigated. This new material extensively 45 were characterized and analyzed by different techniques such as XRD, FESEM, Raman 46 spectroscopy and FT-IR. The Central Composite Design (CCD) based on designed runs reveal 47 that adsorbent mass, sonication time, MB concentration, SO concentration, Pb^{2+} ions and Cr^{3+} 48 ions concentration and some of their interactions have significant contribution on the target 49 compounds removal percentages. The combination of response surface methodology and 50 Design-Expert software used to qualify and estimates the influence and magnitude of each term 51 52 contribution on response. The optimization over following investigated interval of effective variables, adsorbent mass (0.01-0.03 g), sonication time (2-6 min), initial dyes concentration (5-53 25 mg L^{-1}), initial metal ions concentration (20-60 mg L^{-1}) reveal that fixing the experimental 54 variables at 0.025 g of Mn-Fe₃O₄-NPs-AC, 3 min sonication time, 20 mg L⁻¹ of MB, 10 mg L⁻¹ 55 of SO, 38 mg L^{-1} of Pb²⁺ ions and 42 mg L^{-1} of Cr³⁺ ions at room temperature lead to 56 achievement of best characteristics performance. Conduction of 32 experiments according to 57 limitation of CCD and their subsequent analysis of variance (ANOVA) gives useful information 58 about significant and also approximate contribution of each term (main and interaction of 59 variables) in empirical equation on expected response. The results indicate that the R^2 values are 60 more than 0.988 and adjusted R^2 are in a reasonable agreement with R^2 . Under the optimal 61 conditions, the MB, SO, Pb^{2+} ions and Cr^{3+} ions removal efficiency reached 99.54%, 98.87%, 62 80.25% and 99.54% after 3 min, while their equilibrium data with high performance can be 63 represented with Langmuir isotherm and a pseudo second-order kinetic model. The maximum 64 adsorption capacity in single component system, 229.4 mg g⁻¹ for MB, 159.7 mg g⁻¹ for SO, 65 139.5 mg g⁻¹ for Pb²⁺ ions and 267.4 mg g⁻¹ for Cr^{3+} ions support high efficiency of Mn-Fe₃O₄-66 NPs-AC as new adsorbent. 67

- 71
- 72

<sup>Keywords: Adsorption, Dyes, Heavy metals, Mn-Fe₃O₄-NPs-AC, Nanoparticles, Response
surface methodology, Ultrasound-assisted removal.</sup>

Environmental pollution as greatest ecosystem problem seriously damage the human health and other organism life forms.¹ Main attention and hazards are devoted to the presence of dyes and heavy metals that subsequently generate very serious environmental problems. These expected limitations and hazards is concerned to their toxic effects, non-biodegradability, accumulation in living tissues which possible their simple arrival to the human and animal bodies through food consumption.²⁻⁴

Lead source including battery, mining, lead smelting, metal plating, paper and pulp, 80 metallurgical finishing and metal processing into the environment.⁵ Cr³⁺ ions act as useful and 81 essential element for humans, while its high content is toxic.^{6, 7} Chromium is utilized in 82 industries like electroplating, leather tanning, metal finishing, and nuclear power plant and textile 83 and chromate preparation manufacturers. Chromium is considerably carcinogenic and causes 84 problems such as chromosomal abnormality and bioaccumulation into flora and fauna.^{8, 9} Dve 85 present in wastewater come from textile, leather, paper, and plastics consume, while methylene 86 blue (MB; Fig. 1, thiazine cationic dye) has extensive application in industry, biology and 87 chemistry.^{10, 11} 88

Safranin-O (SO, reddish brown powder, Fig. 1) also is a cationic (azine) dye belong to synthetic
dyes¹² with high dissolubility in water and extensively applied in food products for flavoring and
coloring candies and cookies in addition to tannin, cotton, fibers, wool, silk, leather and paper
coloring and treatment.¹³

All above mention hazards related to dyes and understudy metal ions encourage the researchers
to design and develop novel method for their efficient and quantitative removal by a simple, low
cost and fast procedure. A method that applicable for their simultaneous efficient removal in
short time with low consumption of reagents is highly recommended.

97 These wide application make emphasis on researchers to efficiently conduct process for removal 98 of SO and MB. The more common treatment techniques that have been used to reduce the 99 heavy-metal and dyes content in wastewaters to permissible concentrations include adsorption, 100 biosorption,¹⁴⁻¹⁶ chemical precipitation,¹⁷ electrokinetic coagulation,¹⁸ reverse osmosis,¹⁹ ion 101 exchange,²⁰ filtration and membrane,²¹ ozonation,²² fungal decolorization,²³ and adsorption ²⁴⁻³² 102 processes.

Dalton Transactions Accepted Manuscript

103 Among them, adsorption based on their unique offer-mentioned properties has talent to be as 104 best promising technologies for environment cleaning from heavy metals and dyes.^{33, 34}

105 Combination of unique properties of adsorption with distinct ability and prominent properties of nano-scale materials cause achievement of simultaneous adsorption and removal of dyes and 106 107 pollutants. These protocols can be accomplished with application of mathematical models to relevance and evaluate the statistical significance of factors and their interaction^{29, 35-37} that 108 109 permits development of low cost and short time clean up systems. Multivariate designs composed of different stages such as responses analysis (qualitative or quantitative) and lateral 110 estimation and express of its dependency to factors (sole and interaction) using at least 111 experiments. 112

113 This procedure is superior to one way classification and optimization in term of requirement of 114 large number of experiments and serious time reduction, while impossible to exactly give idea 115 about variables interactions.³⁸ These problems simply can be resolved with at least possible 116 number of experiments namely response surface methodology (RSM) in different branches.³⁶

The purpose of this study was to investigate the adsorption characteristics of dyes and heavy metal ions by Mn doped Fe_3O_4 -NPs loaded on AC. The effects of experimental parameters such as adsorbent mass, sonication time and initial concentration of target compounds on their adsorption were analyzed using RSM. The isotherm and kinetic parameters were also evaluated using the adsorption measurements. The maximum capacity (Q_{max}) of adsorbent was comparable to other adsorbents.

123

124 **2.** Experimental

125 2.1. Instruments and reagents

126 Ammonium iron (III) sulfate (NH₄ Fe (SO₄)₂.12H₂O), iron (II) sulfate (FeSO₄. 7H₂O), Manganese sulfate (MnSO₄, 2H₂O) were purchased from Sigma company (St. Loius, MO, USA). 127 128 Sulfuric acid (ZnSO₄. 2H₂O), Lead (II) nitrate (Pb(NO₃)₂. 2H₂O), Chromium (III) nitrate (Cr (NO₃)₃, 9H₂O), HCl, sodium hydroxide (NaOH), MB and SO (Merck, Dermasdat, Germany) 129 130 used as received and their solutions were prepared by dissolving their appropriate amount in double distilled water. In all stages, the pH was adjusted using pH/Ion meter model-686 131 (Metrohm, Switzerland, Swiss). Absorbance spectra of MB, SO (Fig. 1) were taken in a wide 132 range of wavelength (λ) from 400 to 750 nm, using UV–Visible spectrophotometer model V-530 133

134 (Jasco, Japan) with a fixed slit width of 2 nm and scan speed of 1000 nm/min. Heavy metal ions analysis was carried out by using flame atomic absorption spectrophotometer (FAAS) Varian 135 136 model AA 240 (USA). The Fe₃O₄ nanoparticles were characterized by FESEM (Hitachi, S4160, Japan), XRD (PW 1800, Philips, Germany) and A Fourier transform infrared (FT-IR) spectrum 137 138 was recorded using a Perkin Elmer-Spectrum-RX-IFT-IR spectrometer in the range of 400-4000 cm⁻¹. Raman spectra were recorded in the backscattering geometry in the range 200–2000 cm⁻¹ 139 140 using a Handheld Raman Analyzer Raman spectrometer (model-™FIRSTGUARD, RIGAKU). Particle size distribution of the samples was determined using a particle size Qudix, ScatterO 141 Scope (I) system (Korea) at 25 °C. An ultrasonic bath with heating system (Tecno-GAZ SPA 142 Ultra Sonic System, Parma, Italy) at 40 kHz of frequency and 130 W of power was used for the 143 ultrasound-assisted adsorption procedure. A HERMLE bench centrifuge (2206A, Germany) was 144 used to accelerate the phase separation. 145

146

147 2.2. Synthesis of Mn doped Fe_3O_4 -NPs loaded on AC

The reaction solution for synthesis of Mn doped Fe₃O₄ nanoparticles was prepared as follows: 148 first 10 g of ammonium iron (III) sulfate, 5.0 g iron (II) sulfate solution and 5.0 g manganese 149 sulfate were dissolved (by 6 mL of concentrated sulfuric acid at pH=2.4) and mixed thoroughly 150 in 20 mL deionized water. Then, 130 mL distilled water and 20 g activated carbon (AC) were 151 added to above solution and 140 mL of 1.5 mol L^{-1} sodium hydroxide was added drop-by-drop 152 during 70 minutes along with strong stirring at room temperature in an Erlenmeyer flask. After 153 70 minutes, again 100 mL of 3 mol L^{-1} sodium hydroxide solution was added to the mixed 154 reaction solution drop-by-drop during 40 minutes at room temperature. The prepared reaction 155 solution was stirred strongly for 27 hours at room temperature. The Mn doped Fe₃O₄-NPs loaded 156 157 on AC were filtered and washed several times by distilled water and dried at 35 °C for 15 hours and finally characterized and used as an absorbent for adsorptions experiments. 158

159

160 2.3. USA- adsorption method

161 The simultaneous removal of dyes and under study metal ions was examined using ultrasonic 162 power combined Mn-Fe₃O₄-NPs-AC. The adsorption experiment was assisted by the ultrasonic 163 waves and the influence of variables i.e. adsorbent mass, sonication time, initial SO, MB, Pb^{2+} 164 and Cr^{3+} concentrations in quaternary system removal were examined and optimized values were found to be 0.025 g, 3 min, 20, 10, 38 and 42 mg L⁻¹, respectively, at the desired temperature (25 °C). At the end of the adsorption experiments, the sample was immediately centrifuged and the magnitude of non-adsorbed target compounds was analyzed via UV–Vis spectrophotometer and/or flame atomic absorption spectrometry, respectively.

169

170 2.4. Kinetics and adsorption isotherms

171 For this purpose 0.01, 0.015 and 0.02 g of adsorbent was contacted with 50 mL of analytes solution at optimum conditions viz. ultrasonic at 25 °C for different time intervals at pH 5.0. The 172 samples were filtered and analytes content were determined and experimental data at various 173 times were fitted to different models such as pseudo first, second-order, intraparticle diffusion 174 and elovich models. The experiments were also performed in the initial dyes and ions 175 concentrations range of 5–50 mg L^{-1} to obtain adsorption isotherms. A series of solutions with 176 different concentrations of understudy compounds were prepared by proper dilution of their 177 stock solution and 50 mL of each solution was mixed with 0.01, 0.015 and 0.02 g of Mn-Fe₃O₄-178 NPs-AC and agitated for 3 min in ultrasonic at 25 °C at pH 5.0. The samples were filtered and 179 the non-removed content of each species were quantified according to calibration curve achieved 180 at similar conditions. Finally, their equilibrium data were fitted to conventional isotherm models 181 like Langmuir, Freundlich, Temkin and Dubinin-radushkevich and the corresponding parameters 182 of each model were calculated from the respective graphs. 183

184

185 2.5. Measurements of dye uptake

The dye concentrations were determined according to calibration plots achieve at the same conditions. The dyes and ions removal percentage (R %) was calculated using the following equation:

189

190 Percent removal.
$$(\%) = \frac{C_0 - C_t}{C_0} \times 100\%$$
 (1)

191

Where $C_0 \pmod{L^{-1}}$ and $C_t \pmod{L^{-1}}$ are the dye concentration at initial and after time t respectively and the equilibrium adsorption capacity of dyes was calculated according to Eq. (2):

195

196
$$q_e = \frac{(C_0 - C_e)V}{W}$$
 (2)

197

where $C_0 (mg L^{-1})$ and $C_e (mg L^{-1})$ are the initial and equilibrium dye concentrations in solution, respectively, V (L) is the volume of the solution and W (g) is the mass of the adsorbent.

200

201 2.6. Response surface methodology (RSM)

Optimum conditions for the efficient and quantitative adsorption of target compounds onto Mn-Fe₃O₄-NPs-AC were determined by means of central composite design (CCD) under RSM as useful simultaneous optimization technique.³⁹ There are three main steps involved in this process: experimental design, modeling, and optimization. This model provides relatively few combinations of variables for the determination of complex response function.⁴⁰

A six-factor (A, B, C, D, E and F) and five-levels (- α , -1, 0, +1 and + α) CCD with minimum number of experiments, while adsorbent mass (A. g), sonication time (B, min), MB concentration (C, mg L⁻¹), SO concentration (D, mg L⁻¹), Pb²⁺ ions concentration (E, mg L⁻¹) and Cr³⁺ ions concentration (F, mg L⁻¹) are used in optimization section. The dependent variable (response variable) was the species removal percentages and each variable was coded five levels (- α , low, central, high and + α ; Table 1).

The minimum and maximum levels (Table 1) given to each factor were chosen based on preliminary experiments. Each experiment was performed in double and the average values were taken as the response (R %). Fitting and analysis of experimental data approximately follow second-order polynomial model with acceptable estimated regression coefficients. The generalized second order polynomial model proposed for the response surface analysis was given as follows:

219

220
$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \sum_{j=1}^k \beta_{ij} x_i x_j + \sum_{i=1}^k \beta_{ii} x_i^2 + \varepsilon$$
 (3)

221

where y is the predicted response; X_i and X_j are the coded values of independent variables; and $\beta_0, \beta_i, \beta_{ii}$ and β_{ij} are the regression coefficients for intercept, linear, quadratic and interaction terms, respectively. ε represents the random error and k is the number of factors. In this experiment, k=6. Data were processed for Eq. (3). Design-Expert program including ANOVA (Analysis of Variance) based on well-known F and P-value give very constructive and useful information about main effect and interactions between variables and also their contribution on the response.

The goodness of fit of the quadratic model was expressed by the coefficient of determination R^2 , and its statistical significance was checked by the Fisher's F-test in the same program. In the present study a total of 32 runs were carried out to estimate the coefficients and lateral generated mathematical model was validated by conducting experiments at optimal values of variables predicted by response optimization.

The optimum values of selected variables were obtained by solving the regression equation and by evaluating the response surface plots. The response surface plots are used for analysis of different interaction between independent variables while keeping the value of the six variables as constant. Such three dimensional plots give accurate geometrical representation and provide useful information about the behavior of the system.

239

240 **3.** Results and discussion

241 3.1. Characterization of Mn doped Fe_3O_4 nanoparticles

FE-SEM image was used to determine the morphology and the particle size of the prepared Mn doped Fe_3O_4 -NPs (Fig. 2a) that suggest essentially spherical shaped particles with the approximately size of 40 nm. The particles are almost uniform in the shape and the size.

The particle size frequency of the sample was measured by using particle size analysis technique 245 and shown in Fig. 2b. According to the obtained results the average size of particles was 124 nm. 246 247 Fig. 3a shows the XRD pattern of the prepared Fe₃O₄ nanoparticles. The six peaks observed in diffractogram at 2θ = 30.1, 35.3, 43.1, 56.9, 62.10, and 70.5° are related to (220), (311), (400), 248 (511), (440), and (620) lattice planes of magnetite (Fe₃O₄) and/or maghemite (γ -Fe₂O₃), 249 respectively (JCPDS No.19-0652 and 04-0755), Because XRD patterns of maghemite (γ -Fe₂O₃) 250 and magnetite (Fe₃O₄) are practically identical,⁴¹ X-ray diffraction alone cannot be used to 251 distinguish between the two phases. Therefore, we employed Raman spectrophotometry 252 technique to distinguish between these two phases. In the XRD pattern, no characteristic peaks of 253 254 impurity phases such as Fe(OH)₂ and/or Fe(OH)₃ were detected.

Raman spectroscopy can effectively distinguish between maghemite and magnetite 255 nanoparticles. Raman spectrum of the prepared sample was shown in Figure 3b. Raman features 256 257 of Fe₃O₄ are sample specific, depending on non-stoichiometry, cation distribution, defects, and also on the experimental conditions. Nevertheless, the Raman spectra of magnetite are distinct 258 from those obtained from maghemite.⁴² Mandal et al ⁴³ reported the presence of distinct peaks at 259 283 cm⁻¹,490 and 668 cm⁻¹ for undoped Fe₃O₄ nanoparticles, which correspond to the E_{α} , $T_{2\alpha}$ 260 and Ag modes, respectively. Besides, in the published reports, in the Raman spectra the 261 characteristic peaks of the Fe₃O₄ appeared at 668, 540, 450-500, 350 and 306 cm⁻¹, 42 whereas y-262 Fe₂O₃ shows broad bands around 700 and 500 cm⁻¹ and α -Fe₂O₃ shows the resonant peaks at 225, 263 245, 291, 410, 611 and 1318 cm⁻¹, ⁴²⁻⁴⁵ 264

In our study, the Raman spectrum of the prepared sample (Fig. 3b) shows three peaks at 438, 455, and 479 cm⁻¹. The results were compared with the different published results and assigned as T_{2g} mode of symmetry of Fe₃O₄, while the peaks at 500, and 700 cm⁻¹ belonging to γ -Fe₂O₃ as well as the peaks related to α -Fe₂O₃ were not observed in our results.⁴²⁻⁴⁵ Therefore, the Raman analysis confirmed that the chemical composition of the prepared sample in this experiment is Fe₃O₄. The rather weak peak at 1620 cm⁻¹ is related to the δ (H₂O) mode.

The FT-IR spectrum of the prepared Mn doped Fe₃O₄-NPs (Fig. 3c) indicate strong and broad absorption bands at 530 cm⁻¹ and 431 cm⁻¹ are assigned to Fe-O stretching and bending vibration modes of Fe₃O₄, respectively.⁴⁶ The strong and broad absorption peaks about 3200-3375 cm⁻¹ and 1600 cm⁻¹ are attributed to normal polymeric O-H stretching vibration and H-O-H bending vibration of H₂O adsorbed in the Fe₃O₄ lattice,^{46, 47} respectively.

276

277 *3.2. Effect of pH*

278 Solution pH is serious effective parameters in controlling adsorption seems with important influences on the solubility and chemistry, charge and abundance of metal ions, surface charge of 279 adsorbent, dissociation and/or protonation of analytes and adsorbent functional groups.⁴⁸ Typical 280 results assigned to effect of pH on the removal efficiency (%) of Pb^{2+} ions illustrated in Fig. 4a. 281 282 Owing to the fact in pH less than 3 due to formation of positive charge simultaneously on adsorbent and metal ions and in pH higher than 7 due to formation of hydroxide complex or 283 probable precipitation as hydroxide form an expectable reduce in removal efficiency was 284 observed. Increasing pH from 2 to 5 for Pb^{2+} ions cause removal percentage raising from 40-60% 285

Dalton Transactions Accepted Manuscript

to 97.08% and the adsorption capacity increased. Result also reveal that for Cr^{3+} ions removal 286 percentage was highly pH-dependent and increases with increasing solution pH. At pH < 4.0, the 287 Cr³⁺ ions adsorption was increased slowly and reaches its maximum value at pH 4.0-5.5 and 288 subsequently reach plateau. At low pH, competition among proton and Cr^{3+} ions for the same 289 binding sites of adsorbent lead to reduce in removal percentage.²⁶ Rising the pH. lead to enhance 290 in the number of negative charge sites of adsorbent that facilitate the adsorption of cationic Cr³⁺ 291 292 ions. Fig. 4a shows the adsorption process as pH function and reveal that adsorption favored at higher pH and suggest presence of more negative charged sites available on adsorbent which 293 294 accelerate adsorption through electrostatic attraction and/or complexation, while the percentage of hydrolyzed Cr³⁺ ions increased.⁴⁹ The neutral pH was found to be optimum for the MB and 295 296 SO adsorption. At lower pH, adsorption of high content of proton on adsorbent surface leads to the generation of net positive charge, which increases electrostatic repulsive force and thus 297 decreases the adsorption of MB and SO molecules. At 5.0-7.0 pH which is the working pH in 298 this research maximum removal percentage was seen. In compromise to achieve maximum 299 removal percentage for all species pH was set at approximate 5.0. 300

301

302 *3.3. Statistical analysis*

The CCD and corresponding results of RSM experiments in the following interval of variable: A 303 (0.01-0.03 g), B (2-6 min), C (5-25 mg L⁻¹), D (5-25 mg L⁻¹), E (20-60 mg L⁻¹) and F (20-60 mg 304 L⁻¹) on removal percentages of compounds are given in Table 1. The design suggested the 305 second-order polynomial model for the responses selected on the basis of the sequential model 306 sum of squares where the additional terms were significant and the models were not aliased. The 307 "Predicted R-Squared" was close to "Adjusted R-Squared". The quality of model was justified 308 based on the R² and standard deviation values (Table S1). The ratio for the % R_{MB}, % R_{SO}, % 309 R_{Pb}^{2+} and R_{Cr}^{3+} responses were 17.65, 34.24, 16.35 and 22.21, respectively. Their value greater 310 311 than 4 confirms the adequacy of model for representation of experimental data.

The removal percentage results in second-order response surface by ANOVA (Tables 2 and 3) demonstrate that all the models were significant at the 5% confidence level (*P*-values less than 0.05). The R^2 value close to unity and lower standard deviation strongly support high performance of method in term of larger accuracy and repeatability of model for prediction of real behavior of adsorption system. The values of coefficient of determinations (R^2 = 0.989,

317 0.997, 0.991 and 0.995) obtained in the present study for R_{MB} , R_{SO} , R_{Pb}^{2+} ions and R_{Cr}^{3+} 318 responses were higher than 0.80 as minimum acceptable value.

A high R^2 value close to 1 demonstrates good agreement between the calculated and observed results within the range of experiment and also has desirable and reasonable trend with adjusted $R^{2.50}$ The data were analyzed to examine the correlation between the actual or experimental and predicted responses for dyes and ions (Fig. 4b). The data points were well distributed close to a straight line with the R^2 values of 0.989, 0.997, 0.991 and 0.995 for R_{MB} , R_{SO} , R_{Pb}^{2+} ions and R_{Cr}^{3+} , respectively (excellent relation among experimental and predicted values).⁵¹

Tables 2 and 3 gives ANOVA results for respective responses and based on well-known phenomena the highly significant regression model is justified by higher Fischer's '*F* statistics' values with '*P*' value (probability) as low as possible.⁵²

The variables denoted in ANOVA (Table 2 and 3) were the main effects, the interaction effects, and the error terms. F and p-values were used to represent the importance of these variables in the quadratic model. In addition, the sum of squares (SS), degrees of freedom (DF), and mean squares (MS) were calculated. The F-value was obtained by dividing MS by DF, whereas the MS value obtained by dividing SS by DF.⁵³

The Model F-value of 12.92, 52.78, 16.51 and 27.24 for removal of MB, SO, Pb^{2+} and Cr^{3+} ions, respectively, implies the goodness and usefulness of presented model. Moreover, the quality of fitness models was assessed by a lack-of-fit test (p > 0.05 for all responses); this test determines model accuracy to predict variation. The high reliability and precision of the response data were confirmed by values of coefficient of variation (CV %) that varied between 0.610-3.221. Adequate precision is a statistical index that indicates signal to noise ratio; values higher than 4 are acceptable. For all responses studied, this indicator is greater than 4 (Table S1).

The 'F' and 'P' values (Tables 2 and 3) using standardized main effect Pareto charts (P = 95%) and two factor interaction Pareto charts (P = 95%) (Fig. S1) reveal that the factors of A, B and the quadratic effect of A^2 are the most effective factors and thus the empirical equation are as follows:

344

345
$$y_{MB} = 126.8 + 502.4A + 1.6052 B - 0.434 C + 16.9 AC + 9.29 AF - 0.0225 CD + 0.0202 CF + 0.037 DE - 305 A^{2} + 0.0033 E^{2} + 0.004 F^{2}$$
(4)

347
$$y_{so} = 99.26 + 5666 \text{ A} + 0.455 \text{ B} - 6.8 \text{ D} + 117.1 \text{ AC} + 193.21 \text{ AD} - 0.16 \text{ BE}$$
(5)
+0.22 BF - 0.111 CD - 0.064 CE + 0.0583 CF + 0.132 DE -226549 6 A²

349
$$y_{Pb^{2+}} = -39.294 + 3802.2 \text{ A} - 13.756 \text{ B} + 1.0048 \text{ C} + 5.4 \text{ D} + 2.62 \text{ E} - 0.0185 \text{ EF} - 0.017 \text{ E}^2$$
 (6)

350

351
$$y_{Cr^{3+}} = -49.3 + 2158.6 \text{ A} + 7.84 \text{ B} + 1.93 \text{ E} + 0.832 \text{ F} - 1122 \text{ AB} + 72.7 \text{ AE} + 89 \text{ AF} + 0.89 \text{ BD} + 0.51 \text{ BE} - 0.25 \text{ DE} - 90812 \text{ A}^2 - 1.6 \text{ B}^2 - 0.03 \text{ E}^2 - 0.04 \text{ F}^2$$
(7)

352

353 *3.4. Effect of variables and response surface 3D plots*

Figs. 5 and 6 demonstrate the fitted response surface and contour plots of removal (%) across important variables. The bents nature of curves is good indication of interaction between the parameters.

According to Figs. 5 (a, b) and 6 (a), the response surface plots show the relation among initial analytes concentration and amount of adsorbent, while the initial pH and sonication time were kept constant at 5 and 4 min (the central levels), respectively. The increase in analytes removal efficiency with rising adsorbent mass (Figs. 5 and 6) is emerged from the higher available surface area of adsorbent.

It was evident that the adsorption efficiency considerably increased with an increase in adsorbent dose due to its high effective surface area for adsorption. At lower amount of adsorbent, the removal percentage significantly decreased because of high ratio of analytes molecules to vacant site of adsorbent.

Figs. 5(c) and 6(c) shows the interaction of adsorbent mass with sonication time and their relation with removal percentage. The maximum adsorption of analytes achieved in high sonication time that confirm strong association of ultrasound in mass transfer. The results show that the initial adsorption rate is very rapid because of high available surface area and vacant site of adsorbent that accelerated by enhance in mass transfer by ultrasonic power.

It may be seen from the figures (Figs. 5c and 6c) that the increase in amount of adsorbent dose leads to significant decrease in sonication time. On the other hand, percentage dye removal was increased with the amount of adsorbent for a particular sonication time.

Fig. 6(b) clearly indicates that as the adsorbent mass and sonication time increases, the adsorption efficiency improves. It could be explained by the fact that the more amounts of Mn-Fe₃O₄-NPs-AC cause an increase in the adsorbent surface as well as active surface. The active surfaces prepare some spaces for capturing Cr^{3+} ions molecules and increasing these spaces makes the Cr^{3+} get out faster.

- 379
- 380 *3.5. Optimization of dyes and ions adsorption*

In the numerical optimization, a minimum and a maximum level must be provided for each 381 382 parameter. A multiple response method or optimization of any combination of six objectives namely A, B, C, D, E and F was applied. Fig. 7 and Table S2 results illustrate the ranges of 383 parameters obtained from the model (their exact value shown by the circles). The bottom lines 384 show the recovery of dyes and ions at horizontal range. By optimizing the process parameters to 385 obtain maximum removal of MB, SO, Pb^{2+} and Cr^{3+} ions under these conditions: adsorbent mass 386 = 0.025 g, sonication time = 3 min, MB concentration = 20 mg L^{-1} , SO concentration = 10 mg L^{-1} 387 ¹, Pb^{2+} ions concentration = 38 mg L⁻¹ and Cr^{3+} ions concentration = 42 mg L⁻¹, maximum 388 removal of 99.54% for MB. 98.88% for SO. 80.25% for Pb^{2+} and 99.54% for Cr^{3+} was achieved. 389 390

391 3.6. Kinetics of dyes and ions adsorption onto $Mn-Fe_3O_4-NPs-AC$

In the present study, the appropriate kinetic model was investigated for explaining the nature of adsorption process. To investigate the mechanism of adsorption and rate controlling steps such as chemical reaction and diffusion control, conventional kinetic models including pseudo-firstorder, pseudo-second-order, intraparticle diffusion and Elovich were used.

396 The pseudo-first-order kinetic model known as the Lagergren 54 equation is given as:

397

398
$$\log(q_e - q_t) = \log q_e - (\frac{k_1}{2.303})t$$
 (8)

399

400 where q_e and q_t refer to the amount of analytes (mg g⁻¹) at equilibrium and at any time, 401 respectively and k_1 is the equilibrium rate constant of pseudo-first-order adsorption (min⁻¹). The 402 plot of log (q_e - q_t) vs. t should give a linear relationship which the value of k_1 was determined 403 from the slope of the plot (Table 4).

The results show (Table 4) that the theoretical q_e (calc) value does not agree to the experimental q_e (exp) values at all concentrations studied with poor correlation coefficient. So, further the experimental data were fitted with second order Lagergren model.

The pseudo-second-order rate equation developed by Ho and McKay assumes that the adsorption capacity of adsorbent is directly proportional to the number of active sites on its surface.⁵⁵ The pseudo-second-order rate expression is given as:

410

411
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
 (9)

412

413 where k_2 (g mg⁻¹ min⁻¹) is the equilibrium rate constant for the pseudo-second-order adsorption 414 and can be obtained from the plot of t/qt against t (Table 4).

The adsorbate species are most probably transported from the bulk of the solution into the solid phase with an intraparticle diffusion process with general applicability as rate-limiting step in many adsorption processes which can be explained by following well known equation:¹⁰

418

419
$$q_t = K_{dif} t^{1/2} + C$$
 (10)

420

421 where C is the intercept and K_{dif} is the intra-particle diffusion rate constant. The values of K_{dif} (g 422 mg⁻¹ min^{-1/2}) and C and the corresponding linear regression correlation coefficient R² are given 423 in Table 4.

The applicability of intraparticle diffusion model imply that adsorption process of the dyes was acomplex process involving both boundary layer and intraparticle diffusion.

The constant C was found to increase from 17.960 to 170.48 with increase in analytes amount from 10 to 42 mg L^{-1} at 0.01–0.02 g of Mn-Fe₃O₄-NPs-AC. A larger C value indicates a greater effect of the boundary layer.

This change in C value is belong to increase in thickness of the boundary layer and decrease the chance of the external mass transfer and subsequently prominent increase in the amount of internal mass transfer. The high value of R^2 shows suitability of this model to explain the experimental data. This may confirm that the rate-limiting step is the intraparticle diffusion process.

The Elovich equation is useful in describing adsorption on highly heterogeneous adsorbent. The
 Elovich ⁵⁶ model is given by:

436

437
$$q_t = \frac{1}{\beta} \ln(\alpha\beta) + \frac{1}{\beta} \ln t$$
(11)

438

439 The q_t is a linear function of ln (t) if the Elovich would apply where β and α would be obtained 440 from the slope and intercept of the plot of the Elovich equation, respectively.

The Elovich constants obtained from the slope and the intercept of the straight line are reported in Table 4. The low correlation coefficient of this model shows the unsuitability of it for evaluation of the adsorption process.

The kinetic constants and correlation coefficients of the pseudo-first-order, pseudo-second-order, 444 intraparticle diffusion and elovich are presented in Table 4. At all concentrations and adsorbent 445 amount, the calculated q_e values were mainly closer to the experimental data and the R^2 values 446 447 for pseudo-second-order kinetic model were larger than that of pseudo-first-order model. These two simultaneous trends reveal the pseudo-second order model is more suitable for describing 448 the adsorption behavior of dyes and ions onto Mn-Fe₃O₄-NPs-AC. Generally, the intraparticle 449 diffusion model possesses two parts that are attributed to phenomena such as initial surface 450 adsorption and subsequent intraparticle diffusion. The R² value (Table 4) for this model was near 451 from the unity, which shows that the intraparticle diffusion model is applicable. 452

453

454 *3.7. Adsorption isotherms*

Langmuir isotherm⁵⁷ is based on adsorption on homogeneous sites as monolayer with uniform strategies with no transmigration of adsorbate in the plane of the surface. The linear form of Langmuir isotherm equation is given as:

458

459
$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{m}k_{L}} + \frac{C_{e}}{Q_{m}}$$
 (12)

460

461 where C_e is the equilibrium concentration of adsorbate (mg L⁻¹); q_e is the adsorption capacity (mg 462 g⁻¹); k_L and Q_m are the Langmuir constants. The values of Langmuir constants k_L and Q_m were

Dalton Transactions Accepted Manuscript

463 calculated from the slope and intercept of the linear plot of C_e/q_e versus C_e .

The fitness of experimental data was evaluated at different levels of adsorbent dosage. The high correlation coefficient (0.993-0.999) at all adsorbent dosage and high maximum monolayer capacity (91.99-267.4 mg g⁻¹ using 0.01-2.0 g adsorbent) show the applicability of Langmuir model for interpretation of the experimental data over the whole concentration ranges.

468 The essential feature of the Langmuir isotherm can be expressed in terms of dimensionless 469 constant separation or equilibrium parameter (R_L), which is defined as:

470

471
$$R_{L} = \frac{1}{1 + K_{L}C_{0}}$$
 (13)

472

where C_0 is the initial analyte concentration (mg L⁻¹) and b is the Langmuir constant. The value of R_L calculated from different initial concentrations is reported in Table 5. The value of R_L indicates the type of the isotherm to be either unfavorable ($R_L > 1$), linear ($R_L = 1$), favorable (0 $< R_L < 1$) or irreversible ($R_L = 0$).⁵⁸ The obtained R_L values for dyes and ions between 0.009 and 0.230 suggest favorable adsorption of target compounds on Mn-Fe₃O₄-NPs-AC.

478 The following linear Freundlich ⁵⁹ equation was applied for fitting the experimental data.

479

480
$$\ln q_e = \ln K_F + \frac{1}{n} \ln C_e$$
 (14)

481

where 1/n and K_F are the Freundlich adsorption isotherm constant and its respective correlation coefficient, respectively. The intercept and slope of linear plot of ln (q_e) versus ln (C_e) give the values of K_F and 1/n, respectively. The Freundlich constants were calculated and presented in Table 5.

The correlation coefficients (0.910–0.985) and higher error value of this model show that the Freundlich model has lower efficiency compared to the Langmuir model.

- The heat of the adsorption and the adsorbent–adsorbate interaction were evaluated by using
 Temkin isotherm model:⁶⁰
- 490

491
$$q_e = B_1 \ln K_T + B_1 \ln C_e$$
 (15)

493 B_1 is the Temkin constant related to heat of the adsorption (J mol⁻¹), T is the absolute temperature 494 (K), R is the universal gas constant (8.314 J mol⁻¹ K⁻¹), K_T is the equilibrium binding constant (L 495 mg⁻¹).

496 The correlation coefficients R^2 obtained from Temkin model were comparable to that obtained 497 for Langmuir and Freundlich equations, which explain the applicability of Temkin model to the 498 adsorption of dyes and ions onto adsorbent.

In order to calculate the mean free energy value of sorption, Dubinin–Radushkevich (D-R)
isotherm has also been applied for the sorption of dyes and ions onto Mn-Fe₃O₄-NPs-AC. The DR equation can be defined by the following equation:⁶¹

502

503
$$\ln q_e = \ln Q_s - B\epsilon^2$$
 (16)

504

where *B* is the constant related to sorption energy (mol² J⁻²), Q_S is the D–R monolayer capacity (mol g⁻¹), q_e is the amount of dye and ion sorption per unit weight of Mn-Fe₃O₄-NPs-AC (mg g⁻¹), ε is the Polanyi potential which can be obtained as follows:

508

509
$$\varepsilon = \operatorname{RT} \ln \left(1 + \frac{1}{C_e}\right)$$
 (17)

510

where C_e is the equilibrium concentration of dyes and ions (mol L⁻¹), R gas constant and T the temperature (K). By plotting ln q_e versus ε^2 , it is possible to determine the value of *B* from the slope and the value of Q_s from the intercept, which is ln Q_s.

The lower R^2 values (0.845–0.981) over the whole adsorbent dosage show unsuitability of D–R model for fitting the experimental data. In this case, the D–R equation represents the poorer fit of the experimental data than other isotherm equations.

The mean free energy E (kJ mol⁻¹) of sorption can be estimated by using B values as expressed in
 the following equation:⁶²

519

$$520 \qquad \mathbf{E} = \frac{1}{\sqrt{2\mathbf{B}}} \tag{18}$$

The parameters obtained using above equations was summarized in Table 5 that suggest physical
adsorption (mean free energy value is lower than 8 kJ mol⁻¹). Since E values are in the range of
2-7 kJ mol⁻¹ at 0.01, 0.015 and 0.02 g of adsorbent, indicating that the adsorption process of dyes

and ions were probably controlled as physically.

Langmuir isotherm fits the data better than Freundlich, Temkin and D-R isotherms which justified by its higher R^2 value (>0.993) that support more abundance for occurrence of understudy compound adsorption onto Mn-Fe₃O₄-NPs-AC takes place as monolayer sorption on

a surface that is homogenous in sorption affinity.

The values of the Temkin constants and the correlation coefficient are lower than the Langmuir value. Therefore, the Temkin isotherm represents a worse fit of experimental data than the Freundlich isotherm but the Langmuir isotherm provides the best correlation for the experimental data.

As can be seen from Table 5, Mn-Fe₃O₄-NPs-AC sorbent used in this work has a relatively large sorption capacity in single component (229.4 mg g⁻¹ for MB, 159.7 mg g⁻¹ for SO, 139.5 mg g⁻¹ for Pb²⁺ ions and 267.4 mg g⁻¹ for Cr³⁺ ions) for the removal of dyes and ions from aqueous solution compared to some other sorbents reported in the literature in Table 6.

538

539 *3.8. Comparison with other methods*

The maximum sorption capacity Q_{max} (mg g⁻¹) is great criterion for judgment useful in scale-up considerations. Some studies have been conducted using various types of sorbents for MB, SO, Pb²⁺ and Cr³⁺ adsorption.^{12, 26, 30, 63-80} Table 6 presents a comparison of the sonication time and sorption capacity of Mn-Fe₃O₄-NPs-AC with that reported for other sorbents. It can be seen from Table 6 that the adsorbent show a comparable sorption capacity with the respect to other sorbents, revealing that the Mn-Fe₃O₄-NPs-AC is suitable for the removal of dyes and ions from aqueous solutions since it has a relatively high sorption capacity.

547

548 4. Conclusion

The dyes and heavy metals is commonly released into the environment through wastewaters disposed from industries. Therefore, dyes and ions remediation prior to discharge is of great importance. Application of Mn-Fe₃O₄-NPs-AC could be as an effective adsorbent for removing the MB, SO, Pb²⁺ and Cr³⁺ from contaminated water resources. This study tried to synthesize and

characterize the new class of adsorbent examine their performance on MB, SO, Pb²⁺ and Cr³⁺ removal from aqueous solution using CCD under the RSM. Several parameters such as the adsorbent mass, sonication time, initial dyes concentration and initial ions concentration were investigated. The obtained results demonstrated the empirical models were satisfactorily (p < p0.001) fitted to the experimental data. All mathematical equations developed in this process demonstrated high determination coefficients (greater than 0.988) and insignificant lack of fit (p > 0.05). The optimum removal efficiency of MB, SO, Pb²⁺ and Cr³⁺ achieved by setting the experiment with adsorbent mass at 0.025 g, sonication time at 3 min, initial MB concentration at 20 mg L⁻¹, initial SO concentration at 10 mg L⁻¹, initial Pb²⁺ concentration at 38 mg L⁻¹ and initial Cr^{3+} concentration of 42 mg L⁻¹. Results also prove that the RSM is a powerful tool for optimizing the operational conditions of dyes and ions removal efficiency using adsorbent. Conventional kinetic models were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data. Analysis of experimental equilibrium data to the Langmuir, Freundlich, and Temkin and Dubinin-Radushkevich isotherms shows that the Langmuir is the best model for the dyes and ions interpretation of equilibrium data. The obtained results demonstrated that adsorbent can promisingly be used as an efficient sorbent for dyes and heavy metals.

Dalton Transactions Accepted Manuscript

Ref 1. 1	erences P. Xu, G. Zeng, D. Huang, S. Hu, C. Feng, C. Lai, M. Zhao, C. Huang, N. Li, Z. Wei and G. Xie, <i>Colloid. Surf. A: Phys. Eng. Aspec.</i> , 2013, 419 , 147-155.
2.	T. K. Naiya, A. K. Bhattacharya and S. K. Das, J. Colloid Interface Sci., 2009, 333, 14-26.
3.	JS. Lim, SM. Kim, SY. Lee, E. A. Stach, J. N. Culver and M. T. Harris, <i>J. Colloid Interface Sci.</i> , 2010, 342 , 455-461.
4.	Y. Pang, G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, Z. Li, J. Zhang, Z. Liu and Y. Xiong, <i>Chem. Eng. J.</i> , 2011, 175 , 222-227.
5.	A. Hosseini-Bandegharaei, M. Karimzadeh, M. Sarwghadi, A. Heydarbeigi, S. H. Hosseini, M. Nedaie and H. Shoghi, <i>Chem. Eng. Res. Des.</i> , 2014, 92 , 581-591.
6.	M. N. Sahmoune, K. Louhab and A. Boukhiar, <i>Environ. Prog. Sustain. Energy</i> , 2011, 30 , 284-293.
7.	G. Qin, M. J. McGuire, N. K. Blute, C. Seidel and L. Fong, <i>Environ. Sci. Technol.</i> , 2005, 39 , 6321-6327.
8.	S. Sharma, B. Petrusevski and G. Amy, J. Water. Sup: ResTechnol.—AQUA, 2008, 57, 541-553.
9.	S. Rengaraj, KH. Yeon and SH. Moon, J. Hazard. Mater., 2001, 87, 273-287.
10.	M. Ghaedi, A. G. Nasab, S. Khodadoust, M. Rajabi and S. Azizian, <i>J. Ind. Eng. Chem.</i> , 2014, 20 , 2317-2324.
11.	M. Ghaedi and S. N. Kokhdan, Spectrochim. Acta, Part A., 2015, 136, 141-148.
12.	S. Kaur, S. Rani, R. Mahajan, M. Asif and V. K. Gupta, J. Ind. Eng. Chem., 2015, 22, 19-27.
13.	V. Garg, R. Gupta, A. B. Yadav and R. Kumar, Bioresour. Technol., 2003, 89, 121-124.
14.	R. Tabaraki, A. Nateghi and S. Ahmady-Asbchin, Int. Biodeterior. Biodegrad., 2014, 93, 145-152.
15.]	M. El Haddad, R. Slimani, R. Mamouni, M. R. Laamari, S. Rafqah and S. Lazar, J. Taiwan Inst. Chem. Eng., 2013, 44, 13-18.
16. <u>.</u>	A. Gundogdu, D. Ozdes, C. Duran, V. N. Bulut, M. Soylak and H. B. Senturk, <i>Chem. Eng. J.</i> , 2009, 153 , 62-69.
17.	YC. Lee, E. J. Kim, JW. Yang and HJ. Shin, J. Hazard. Mater., 2011, 192, 62-70.

631 632	18. A. Wang, J. Qu, H. Liu and J. Ge, Chemosphere, 2004, 55, 1189-1196.
633 634	19. H. Li, Y. Lin, Y. Luo, P. Yu and L. Hou, J. Hazard. Mater., 2011, 192, 490-499.
635 636 637	20. CH. Liu, JS. Wu, HC. Chiu, SY. Suen and K. H. Chu, Water Res., 2007, 41, 1491- 1500.
638 639 640	21. E. Alventosa-deLara, S. Barredo-Damas, M. Alcaina-Miranda and M. Iborra-Clar, <i>J. Hazard. Mater.</i> , 2012, 209 , 492-500.
641 642	22. G. Moussavi and M. Mahmoudi, Chem. Eng. J., 2009, 152, 1-7.
643 644	23. Y. Fu and T. Viraraghavan, Bioresour. Technol., 2001, 79, 251-262.
645 646 647	24. X. Ma, L. Li, L. Yang, C. Su, K. Wang, S. Yuan and J. Zhou, J. Hazard. Mater., 2012, 209, 467-477.
648 649	25. F. Ji, C. Li, B. Tang, J. Xu, G. Lu and P. Liu, Chem. Eng. J., 2012, 209, 325-333.
650 651 652	26. S. Yang, L. Li, Z. Pei, C. Li, J. Lv, J. Xie, B. Wen and S. Zhang, <i>Colloids Surf. A: Physicochem. Eng. Asp.</i> , 2014, 457 , 100-106.
653 654	27. V. K. Gupta and I. Ali, J. Colloid Interface Sci., 2004, 271, 321-328.
655 656 657	28. M. Ghaedi, A. Ghaedi, F. Abdi, M. Roosta, A. Vafaei and A. Asghari, <i>Ecotoxicol. Environ. Saf.</i> , 2013, 96 , 110-117.
658 659 660	29. M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati and M. K. Purkait, Spectrochim. Acta, Part A., 2015, 135, 479-490.
661 662 663	30. M. Ghaedi, M. Pakniat, Z. Mahmoudi, S. Hajati, R. Sahraei and A. Daneshfar, <i>Spectrochim. Acta, Part A.</i> , 2014, 123 , 402-409.
664 665 666	31. M. Ghaedi, P. Ghobadzadeh, S. N. Kokhdan and M. Soylak, Arab. J. Sci. Eng., 2013, 38, 1691-1699.
667 668	32. A. Sari and M. Soylak, J. Serb. Chem. Soc., 2007, 72, 485-494.
669 670	33. H. Gad, H. Omar, M. Khalil and M. Hassan, J. Am. Sci., 2013, 9, 95-106.
671 672	34. K. Rout, M. Mohapatra and S. Anand, <i>Dalton Trans.</i> , 2012, 41 , 3302-3312.
673 674 675	35. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi and V. Kumar Gupta, <i>RSC Adv.</i> , 2015, 5, 18438-18450.

676 677 678	36. A. M. Ghaedi, M. Ghaedi, A. Vafaei, N. Iravani, M. Keshavarz, M. Rad, I. Tyagi, S. Agarwal and V. K. Gupta, J. Mol. Liq., 2015, 206, 195-206.
679 680 681	37. A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi and A. A. Bazrafshan, <i>Spectrochim. Acta, Part A.</i> , 2015, 145 , 203-212.
682 683 684	38. M. Ghaedi, S. Hajati, A. Goudarzi and A. A. Bazrafshan, <i>Spectrochim. Acta, Part A.</i> , 2015, 145 , 203-212.
685 686 687	39. A. Kicsi, C. Cojocaru, M. Macoveanu and D. Bilba, J. Environ. Prot. and Ecol., 2010, 11, 614-622.
688 689	40. C. Toles, W. Marshall and M. Johns, Carbon, 1997, 35, 1407-1414.
690 691	41. D. De Faria, S. Venâncio Silva and M. De Oliveira, J. Raman Spectrosc., 1997, 28, 873-878.
692 693 694	42. C. S. Kumar, <i>Raman spectroscopy for nanomaterials characterization</i> , Springer Science & Business Media, 2012.
695 696	43. M. Mandal, S. Kundu, S. K. Ghosh, S. Panigrahi, T. K. Sau, S. Yusuf and T. Pal, J. Colloid Interface Sci., 2005, 286, 187-194.
698 699	44. L. Slavov, M. Abrashev, T. Merodiiska, C. Gelev, R. Vandenberghe, I. Markova-Deneva and I. Nedkov, <i>J. Magn. Magn. Mater.</i> , 2010, 322 , 1904-1911.
700 701 702	45. K. Song, Y. Lee, M. R. Jo, K. M. Nam and YM. Kang, Nanotechnology, 2012, 23, 505401.
702 703 704	46. Y. Wang, L. Wang, T. Tian, X. Hu, C. Yang and Q. Xu, Analyst, 2012, 137, 2400-2405.
705 706	47. A. Goudarzi, A. D. Namghi and CS. Ha, RSC Adv., 2014, 4, 59764-59771.
707 708 709	48. H. L. Vasconcelos, T. P. Camargo, N. S. Gonçalves, A. Neves, M. C. Laranjeira and V. T. Fávere, <i>React. Funct. Polym.</i> , 2008, 68 , 572-579.
710 711 712	49. V. C. G. D. Santos, A. d. P. A. Salvado, D. C. Dragunski, D. N. C. Peraro, C. R. T. Tarley and J. Caetano, <i>Quim. Nova</i> , 2012, 35 , 1606-1611.
713 714 715	50. M. Y. Noordin, V. C. Venkatesh, S. Sharif, S. Elting and A. Abdullah, J. Mater. Process. Technol., 2004, 145, 46-58.
713 716 717	51. S. Hajati, M. Ghaedi and H. Mazaheri, Desalin. Water Treat., 2014, 1-15.
718 719	52. A. I. Khuri and S. Mukhopadhyay, WIREs: Comp. Stats., 2010, 2, 128-149.
720 721	53. P. Sudamalla, P. Saravanan and M. Matheswaran, <i>Environ. Res.</i> , 2012, 22, 1-7.

725

727

729

731

733

735

737

739

741

744

747

749

752

755

757

759

762

764

Dalton Transactions

- 722 54. S. Lagergren, K. Svenska Vetenskapsakad. Handl., 1898, 24, 1-39.
- 724 55. Y.-S. Ho and G. McKay, *Proc. Saf. Environ. Protect.*, 1998, **76**, 183-191.
- 56. M. Ghaedi, A. Ansari and R. Sahraei, *Spectrochim. Acta, Part A.*, 2013, **114**, 687-694.
- 728 57. I. Langmuir, J. Am. Chem. Soc., 1916, **38**, 2221-2295.
- 58. A. A. Khan, R. Ahmad, A. Khan and P. K. Mondal, *Arab. J. Chem.*, 2013, **6**, 361-368.
- 732 59. H. Freundlich, Z. Phys. Chem., 1906, 57, 385-471.
- 60. M. Temkin and V. Pyzhev, *Acta Physicochim. U. R. S. S.*, 1940, **12**, 217-222.
- 61. M. Dubinin and L. Radushkevich, *Chem. Zentr.*, 1947, **1**, 875-889.
- 62. E. Akar, A. Altinişik and Y. Seki, *Ecol. Eng.*, 2013, **52**, 19-27.
- 63. M. Peydayesh and A. Rahbar-Kelishami, J. Ind. Eng. Chem., 2015, 21, 1014-1019.
- 64. M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei and A. Asghari, *Ultrason. Sonochem.*, 2014,
 21, 242-252.
- 65. M. Ghaedi, S. Heidarpour, S. Nasiri Kokhdan, R. Sahraie, A. Daneshfar and B. Brazesh,
 Powder Technol., 2012, 228, 18-25.
- 66. L. Ai, C. Zhang and Z. Chen, J. Hazard. Mater., 2011, **192**, 1515-1524.
- 67. L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng and J. Jiang, J. Hazard. Mater., 2011,
 198, 282-290.
- 68. M. Ghaedi, A. Ghaedi, M. Hossainpour, A. Ansari, M. Habibi and A. Asghari, *J. Ind. Eng. Chem.*, 2014, 20, 1641-1649.
- 69. M. El Haddad, A. Regti, R. Slimani and S. Lazar, J. Ind. Eng. Chem., 2014, 20, 717-724.
- 758 70. S. Shariati, M. Faraji, Y. Yamini and A. A. Rajabi, *Desalination*, 2011, 270, 160-165.
- 760 71. N. K. Rotte, S. Yerramala, J. Boniface and V. V. Srikanth, *Chem. Eng. J.*, 2014, 258, 412761 419.
- 763 72. N. Rahman and U. Haseen, Ind. Eng. Chem. Res., 2014, 53, 8198-8207.
- 765 73. A. M. Awwad and A. M. Farhan, Am. J. Chem., 2012, 2, 238-244.
- 766

- 767 74. Y.-H. Li, Q. Du, X. Peng, D. Wang, Z. Wang, Y. Xia and B. Wei, *Colloid. Surf. B:*768 *Biointerfaces*, 2011, **85**, 316-322.
- 770 75. M. Iqbal and R. Edyvean, *Mineral. Eng.*, 2004, **17**, 217-223.
- 772 76. M. Rashid and F. Khan, J. Water Process Eng., 2014, **3**, 53-61.
- 774 77. M. Deravanesiyan, M. Beheshti and A. Malekpour, J. Ind. Eng. Chem., 2015, 21, 580-586.
- 776 78. A. Demirbaş, *Energy sources*, 2005, **27**, 1449-1455.
- 778 79. S. Tahir and R. Naseem, Sep. Purif. Technol., 2007, 53, 312-321.
- 780 80. N. S. Rajurkar, A. N. Gokarn and K. Dimya, *Clean Soil, Air, Water*, 2011, **39**, 767-773.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Levels							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Facto	ors			-(χ	Low (-1)	Centra	ıl (0)	High (+	1) +α		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A: A	dsorbent n	nass (g)		0	.01	0.015	0.02		0.025	0.03		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B: So	onication t	ime (mir	1)	2		3	4		5	6		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C: M	B concent	tration (r	ng L^{-1})	5	5 10 15				20	25		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D: S0	O concent	ration (n	$\log L^{-1}$	5		10	15		20	25		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E: Pb	o ²⁺ concer	ntration ($mg L^{-1}$)	2	0	30	40		50	60		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F: Cr	³⁺ concent	tration (r	$ng L^{-1}$	2	0	30	40		50	60		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Factors						R%			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Run	А	В	С	D	Е	F	MB	SO	Pb^{2+}	Cr ³⁺		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.0150	3.00	10.00	10.00	30.00	30.00	98.43	87.72	66.00	94.41		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.0250	3.00	20.00	20.00	30.00	50.00	99.44	94.48	76.33	99.71		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0.0150	5.00	10.00	20.00	50.00	50.00	97.54	83.82	53.20	84.22		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.0150	5.00	10.00	10.00	30.00	50.00	98.39	91.07	70.00	54.64		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0.0250	5.00	10.00	10.00	50.00	50.00	98.50	90.68	61.40	98.86		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0.0200	4.00	15.00	15.00	60.00	40.00	99.08	94.34	53.67	78.85		
8 0.0300 4.00 15.00 15.00 40.00 40.00 99.00 93.81 82.50 84.81 9 0.0200 4.00 15.00 15.00 40.00 40.00 98.12 94.64 72.00 99.91 10 0.0150 3.00 20.00 20.00 50.00 93.79 69.01 56.00 42.06 11 0.0200 4.00 15.00 15.00 20.00 40.00 98.03 90.39 80.00 98.13 12 0.0250 3.00 10.00 15.00 40.00 40.00 88.64 92.04 71.60 100.0 13 0.0100 4.00 15.00 15.00 30.00 91.46 60.22 58.80 100.0 15 0.0250 5.00 10.00 20.00 30.00 98.93 87.96 62.25 100.0 16 0.0200 4.00 15.00 40.00 99.03 87.96 62.25 100.0	7	0.0250	3.00	20.00	10.00	50.00	50.00	99.33	93.82	67.40	97.29		
9 0.0200 4.00 15.00 15.00 40.00 40.00 98.12 94.64 72.00 99.91 10 0.0150 3.00 20.00 20.00 50.00 50.00 93.79 69.01 56.00 42.06 11 0.0200 4.00 15.00 15.00 20.00 40.00 98.03 90.39 80.00 98.13 12 0.0250 3.00 10.00 15.00 40.00 40.00 89.36 47.88 66.75 96.56 14 0.0150 5.00 20.00 20.00 50.00 90.09 93.27 75.33 89.36 15 0.0250 5.00 10.00 20.00 30.00 50.00 98.99 93.21 78.00 95.36 16 0.0200 4.00 15.00 40.00 40.00 98.91 94.97 72.50 99.06 17 0.0200 2.00 15.00 40.00 40.00 97.50 87.02 48.75<	8	0.0300	4.00	15.00	15.00	40.00	40.00	99.00	93.81	82.50	84.81		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	0.0200	4.00	15.00	15.00	40.00	40.00	98.12	94.64	72.00	99.91		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.0150	3.00	20.00	20.00	50.00	50.00	93.79	69.01	56.00	42.06		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.0200	4.00	15.00	15.00	20.00	40.00	98.03	90.39	80.00	98.13		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0.0250	3.00	10.00	10.00	50.00	30.00	98.64	92.04	71.60	100.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0.0100	4.00	15.00	15.00	40.00	40.00	89.36	47.88	66.75	96.56		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	0.0150	5.00	20.00	20.00	50.00	30.00	91.46	60.22	58.80	100.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.0250	5.00	10.00	20.00	30.00	50.00	96.98	93.27	75.33	89.36		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	0.0200	4.00	15.00	5.000	40.00	40.00	99.03	87.96	62.25	100.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	0.0200	4.00	15.00	15.00	40.00	60.00	98.99	93.21	78.00	95.36		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	0.0150	3.00	20.00	10.00	30.00	50.00	98.51	90.09	72.33	67.96		
200.02004.0015.0015.0040.0040.0098.0194.9772.5099.06210.02004.0015.0025.0040.0040.0097.5087.0248.7599.73220.02004.005.00015.0040.0040.0097.6893.3765.00100.0230.02004.0015.0015.0040.0040.0097.7092.9270.75100.0240.02004.0015.0015.0040.0040.0097.8592.5571.5098.91250.02503.0010.0020.0030.0030.0097.0091.5372.6797.36260.02505.0020.0010.0050.0030.0098.9790.6665.4097.78270.02505.0020.0020.0030.0030.0098.5893.8772.33100.0280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0099.1992.8668.0094.11320.02004.0015.0015.0040.0020.0098.5392.6569.5097.93	19	0.0200	2.00	15.00	15.00	40.00	40.00	97.32	95.64	69.75	100.0		
210.02004.0015.0025.0040.0040.0097.5087.0248.7599.73220.02004.005.00015.0040.0040.0097.6893.3765.00100.0230.02004.0015.0015.0040.0040.0097.7092.9270.75100.0240.02004.0015.0015.0040.0040.0097.8592.5571.5098.91250.02503.0010.0020.0030.0030.0097.0091.5372.6797.36260.02505.0020.0010.0050.0030.0098.9790.6665.4097.78270.02505.0020.0020.0030.0030.0098.5893.8772.33100.0280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0098.2292.5279.50100.0310.02006.0015.0015.0040.0020.0098.5392.6569.5097.93	20	0.0200	4.00	15.00	15.00	40.00	40.00	98.01	94.97	72.50	99.06		
220.02004.005.00015.0040.0040.0097.6893.3765.00100.0230.02004.0015.0015.0040.0040.0097.7092.9270.75100.0240.02004.0015.0015.0040.0040.0097.8592.5571.5098.91250.02503.0010.0020.0030.0030.0097.0091.5372.6797.36260.02505.0020.0010.0050.0030.0098.9790.6665.4097.78270.02505.0020.0010.0030.0030.0098.5893.8772.33100.0280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0099.1992.8668.0094.11320.02004.0015.0015.0040.0020.0098.5392.6569.5097.93	21	0.0200	4.00	15.00	25.00	40.00	40.00	97.50	87.02	48.75	99.73		
230.02004.0015.0015.0040.0040.0097.7092.9270.75100.0240.02004.0015.0015.0040.0040.0097.8592.5571.5098.91250.02503.0010.0020.0030.0030.0097.0091.5372.6797.36260.02505.0020.0010.0050.0030.0098.9790.6665.4097.78270.02505.0020.0020.0030.0030.0098.5893.8772.33100.0280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0099.1992.8668.0094.11320.02004.0015.0015.0040.0020.0098.5392.6569.5097.93	22	0.0200	4.00	5.000	15.00	40.00	40.00	97.68	93.37	65.00	100.0		
240.02004.0015.0015.0040.0040.0097.8592.5571.5098.91250.02503.0010.0020.0030.0030.0097.0091.5372.6797.36260.02505.0020.0010.0050.0030.0098.9790.6665.4097.78270.02505.0020.0020.0030.0030.0098.5893.8772.33100.0280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0098.2292.5279.50100.0310.02006.0015.0015.0040.0020.0098.5392.6569.5097.93	23	0.0200	4.00	15.00	15.00	40.00	40.00	97.70	92.92	70.75	100.0		
250.02503.0010.0020.0030.0030.0097.0091.5372.6797.36260.02505.0020.0010.0050.0030.0098.9790.6665.4097.78270.02505.0020.0020.0030.0030.0098.5893.8772.33100.0280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0098.2292.5279.50100.0310.02006.0015.0015.0040.0020.0098.5392.6569.5097.93	24	0.0200	4.00	15.00	15.00	40.00	40.00	97.85	92.55	71.50	98.91		
260.02505.0020.0010.0050.0030.0098.9790.6665.4097.78270.02505.0020.0020.0030.0030.0098.5893.8772.33100.0280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0098.2292.5279.50100.0310.02006.0015.0015.0040.0020.0098.5392.6569.5097.93	25	0.0250	3.00	10.00	20.00	30.00	30.00	97.00	91.53	72.67	97.36		
270.02505.0020.0020.0030.0030.0098.5893.8772.33100.0280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0098.2292.5279.50100.0310.02006.0015.0015.0040.0020.0098.5392.6569.5097.93	26	0.0250	5.00	20.00	10.00	50.00	30.00	98.97	90.66	65.40	97.78		
280.01505.0020.0010.0030.0030.0098.2890.9970.0098.28290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0098.2292.5279.50100.0310.02006.0015.0015.0040.0040.0099.1992.8668.0094.11320.02004.0015.0015.0040.0020.0098.5392.6569.5097.93	27	0.0250	5.00	20.00	20.00	30.00	30.00	98.58	93.87	72.33	100.0		
290.01503.0010.0020.0050.0030.0098.8391.2458.8062.15300.02004.0025.0015.0040.0040.0098.2292.5279.50100.0310.02006.0015.0015.0040.0040.0099.1992.8668.0094.11320.02004.0015.0015.0040.0020.0098.5392.6569.5097.93	28	0.0150	5.00	20.00	10.00	30.00	30.00	98.28	90.99	70.00	98.28		
300.02004.0025.0015.0040.0040.0098.2292.5279.50100.0310.02006.0015.0015.0040.0040.0099.1992.8668.0094.11320.02004.0015.0015.0040.0020.0098.5392.6569.5097.93	29	0.0150	3.00	10.00	20.00	50.00	30.00	98.83	91.24	58.80	62.15		
310.02006.0015.0015.0040.0040.0099.1992.8668.0094.11320.02004.0015.0015.0040.0020.0098.5392.6569.5097.93	30	0.0200	4.00	25.00	15.00	40.00	40.00	98.22	92.52	79.50	100.0		
<u>32</u> 0.0200 4.00 15.00 15.00 40.00 20.00 98.53 92.65 69.50 97.93	31	0.0200	6.00	15.00	15.00	40.00	40.00	99.19	92.86	68.00	94.11		
	32	0.0200	4.00	15.00	15.00	40.00	20.00	98.53	92.65	69.50	97.93		

813	Table. 1. Ex	perimental	factors and	levels in the	e central com	posite design.
-----	--------------	------------	-------------	---------------	---------------	----------------

815

Response			R% M	IB		R% SO						
Source	SS^{a}	Df ^b	MS ^c	F-value	P-value	SS	Df	MS	F-value	P-value		
Model	123.7145	27	4.582019	12.91716	0.00145	3484.166	27	129.0432	52.78445	0.0007490		
A	46.544	1	46.54400	131.2121	0.0003315	1054.908	1	1054.908	431.5046	< 0.0001		
В	4.119943	1	4.119943	11.61452	0.02708	30.55118	1	30.55118	12.4968	0.02412		
С	5.98407	1	5.984070	16.86967	0.01477	0.358729	1	0.358729	0.146736	0.7212		
D	1.178884	1	1.178884	3.323389	0.1424	59.80826	1	59.80826	24.46426	0.007783		
E	0.552322	1	0.552322	1.557049	0.2802	7.773372	1	7.773372	3.179657	0.1491		
F	0.106585	1	0.106585	0.300473	0.6127	0.15794	1	0.15794	0.064604	0.8119		
AB	0.181894	1	0.181894	0.512778	0.5135	6.964241	1	6.964241	2.848686	0.1667		
AC	2.845478	1	2.845478	8.02168	0.04724	137.1348	1	137.1348	56.09428	0.001700		
AD	0.889477	1	0.889477	2.507523	0.1885	124.4292	1	124.4292	50.89709	0.002041		
AE	0.498979	1	0.498979	1.406669	0.3012	1.287371	1	1.287371	0.526592	0.5082		
AF	3.455367	1	3.455367	9.741016	0.03549	0.340547	1	0.340547	0.139299	0.7279		
BC	0.145271	1	0.145271	0.409534	0.5570	0.679027	1	0.679027	0.277752	0.6261		
BD	0.112723	1	0.112723	0.317778	0.6030	17.68462	1	17.68462	7.233803	0.05468		
BE	0.095114	1	0.095114	0.268136	0.6319	42.62158	1	42.62158	17.43413	0.01397		
BF	1.227527	1	1.227527	3.460517	0.1364	25.30154	1	25.30154	10.34946	0.03237		
CD	5.060833	1	5.060833	14.26698	0.01948	122.7055	1	122.7055	50.19203	0.002096		
CE	2.70921	1	2.709210	7.637525	0.05066	155.7337	1	155.7337	63.70206	0.001336		
CF	5.429844	1	5.429844	15.30726	0.01736	45.31502	1	45.31502	18.53587	0.01259		
DE	17.77095	1	17.77095	50.09802	0.002103	232.0418	1	232.0418	94.91548	0.000621		
DF	1.140118	1	1.140118	3.214104	0.1475	0.404426	1	0.404426	0.165428	0.7050		
EF	1.675489	1	1.675489	4.723367	0.09545	0.168039	1	0.168039	0.068736	0.8061		
A^2	16.90845	1	16.90845	47.66656	0.002308	933.1771	1	933.1771	381.7112	< 0.0001		
\mathbf{B}^2	0.494916	1	0.494916	1.395215	0.3030	0.368976	1	0.368976	0.150928	0.7174		
C^2	0.145903	1	0.145903	0.411316	0.5562	0.56262	1	0.56262	0.230137	0.6565		
D^2	1.942125	1	1.942125	5.47504	0.07939	1.846224	1	1.846224	0.755188	0.4339		
E^2	3.214546	1	3.214546	9.062118	0.03954	2.341387	1	2.341387	0.957732	0.3832		
F^2	4.248818	1	4.248818	11.97783	0.02580	0.592826	1	0.592826	0.242492	0.6482		
Residual	1.418894	4	0.354724			9.778881	4	2.44472				
Lack of Fit	0.966104	1	0.966104	6.401005	0.08542	3.759919	1	3.759919	1.874037	0.2645		
Pure Error	0.45279	3	0.150930			6.018962	3	2.006321				
Cor Total	125.1334	31				3493.945	31					

Table, 2. Analysis of variance (ANOVA) for removal dves 817

818 819 820 ^a Sums of Squares

^b Degrees of Freedom

° Mean Square

Response			R% Pt	o^{2+}		R% Cr ³⁺					
Source	SS	Df	MS	F-value	P-value	SS	P-value				
Model	2171.03	27	80.40852	16.51447	0.007185	5722.358	27	211.9392	27.2431	0.002737	
А	124.0313	1	124.0313	25.47381	0.007246	69.0228	1	69.0228	8.872333	0.04079	
В	57.78125	1	57.78125	11.86724	0.02618	61.73938	1	61.73938	7.936107	0.04797	
С	78.125	1	78.125	16.04548	0.01605	0.000	1	0.000	0.000	1.0000	
D	91.125	1	91.125	18.71545	0.01239	0.03753	1	0.03753	0.004824	0.9480	
E	346.7222	1	346.7222	71.21056	0.001080	185.8963	1	185.8963	23.89549	0.008112	
F	36.125	1	36.125	7.41943	0.05278	353.0382	1	353.0382	45.38026	0.002530	
AB	9.61	1	9.61	1.973722	0.2328	503.4645	1	503.4645	64.71636	0.001296	
AC	4.694444	1	4.694444	0.964155	0.3817	3.5072	1	3.5072	0.450823	0.5387	
AD	10.95704	1	10.95704	2.25038	0.2080	27.92378	1	27.92378	3.58938	0.1311	
AE	23.14815	1	23.14815	4.754217	0.09470	70.37897	1	70.37897	9.046658	0.03964	
AF	0.017778	1	0.017778	0.003651	0.9547	316.8255	1	316.8255	40.7254	0.003094	
BC	29.45333	1	29.45333	6.049189	0.06973	2.781847	1	2.781847	0.357584	0.5821	
BD	2.56	1	2.56	0.525778	0.5085	317.1275	1	317.1275	40.76422	0.003088	
BE	14.69444	1	14.69444	3.017977	0.1573	416.8157	1	416.8157	53.57835	0.001853	
BF	34.00333	1	34.00333	6.983678	0.05742	1.091994	1	1.091994	0.140367	0.7269	
CD	0.444444	1	0.444444	0.091281	0.7776	2.341538	1	2.341538	0.300986	0.6124	
CE	1.21	1	1.21	0.248512	0.6443	33.37007	1	33.37007	4.289457	0.1071	
CF	16.72454	1	16.72454	3.434921	0.1375	22.5629	1	22.5629	2.900281	0.1638	
DE	0.668981	1	0.668981	0.137397	0.7297	820.5987	1	820.5987	105.4814	0.0005068	
DF	0.001111	1	0.001111	0.000228	0.9887	0.355958	1	0.355958	0.045756	0.8411	
EF	54.76	1	54.76	11.24673	0.02847	25.07777	1	25.07777	3.223548	0.1470	
A^2	2.104395	1	2.104395	0.432205	0.5468	149.941	1	149.941	19.27373	0.01178	
B^2	0.055153	1	0.055153	0.011327	0.9204	70.09208	1	70.09208	9.009781	0.03988	
C^2	0.162729	1	0.162729	0.033422	0.8638	0.100438	1	0.100438	0.01291	0.9150	
D^2	592.3135	1	592.3135	121.6506	0.0003841	0.017479	1	0.017479	0.002247	0.9645	
E^2	82.0044	1	82.0044	16.84224	0.01481	231.2544	1	231.2544	29.72591	0.005499	
F^2	0.073335	1	0.073335	0.015062	0.9082	415.504	1	415.504	53.40974	0.001864	
Residual	19.47589	4	4.868972			31.11822	4	7.779555			
Lack of Fit	6.179014	1	6.179014	1.39409	0.3228	23.31108	1	23.31108	8.957605	0.05800	
Pure Error	13.29688	3	4.432292			7.807137	3	2.602379			
Cor Total	2190.506	31				5753.476	31				

821 **Table. 3.** Analysis of variance (ANOVA) for removal ions.

Manuscript

Dalton Transactions Accepted

824 exp	perimental	conditior	IS.												
	Model	Firs	t-order- ki	netic	Secon	d-order-ki	netic		Intrap	article dif	fusion		Elovich		
F	arameters	\mathbf{k}_1	qe (calc)	R^2	\mathbf{k}_2	$q_{e(calc)}$	R^2		K _{dif}	С	R^2	β	α	R^2	qe (exp)
MB	0.010 g	0.00990	19.110	0.987	1.071800	100.000	0.999	_	1.113	78.830	0.994	5.585	3811.010	0.980	97.470
(20 mg L^{-1})	0.015 g	0.00806	10.105	0.924	0.017500	67.560	0.999		0.640	55.420	0.988	3.300	386.720	0.941	66.360
	0.020 g	0.00898	5.670	0.944	0.003600	50.500	0.999		0.336	44.160	0.992	1.746	130.370	0.957	49.920
SO	0.010 g	0.01280	20.860	0.952	0.000121	52.910	0.998	_	1.033	33.085	0.972	5.495	840.001	0.970	49.960
(10 mg L^{-1})	0.015 g	0.01330	14.880	0.966	0.000412	35.210	0.999		0.736	21.595	0.985	3.663	133.530	0.971	33.300
	0.020 g	0.00967	7.422	0.969	0.000819	25.770	0.998		0.410	17.960	0.994	2.152	49.550	0.983	24.090
Pb ²⁺	0.010 g	0.00806	34.190	0.960	0.000032	158.730	0.996	_	2.189	116.140	0.976	11.441	7313.023	0.941	153.580
(38 mg L^{-1})	0.015 g	0.00944	28.170	0.979	0.000112	108.690	0.998		1.709	76.343	0.988	9.015	4848.094	0.970	104.850
	0.020 g	0.00783	22.900	0.965	0.000225	87.719	0.997		1.305	61.877	0.986	6.770	4061.621	0.937	85.500
Cr ³⁺	0.010 g	0.00875	34.670	0.962	0.000009	208.330	0.999	_	1.976	170.480	0.996	10.398	6985.212	0.973	205.150

0.999

0.999

1.358

0.786

116.590

91.046

0.992

0.988

7.129

4.162

4383.121

1247.003

0.965

0.980

139.890

104.920

142.857

106.380

0.000028

0.000049

Table. 4. Kinetic parameters obtained from the simultaneous removal of dyes and ions by Mn-Fe₃O₄-NPs-AC under different experimental conditions.

825

 $(42 \text{ mg } \text{L}^{-1})$

0.015 g

0.020 g

0.01080

0.01100

27.580

15.330

0.950

0.957

826

827

527

828

829

830 831

832

833

834

835

836

837

838

839

840

841

842

Page 29 of 38

855

Dalton Transactions

	U	J			Dye						Ion		
			MB		• 	SO			Cr ³⁺		_	Pb^{2+}	
Isotherm	Parameters	0.01 g	0.015 g	0.02 g	0.01 g	0.015 g	0.02 g	0.01 g	0.015g	0.02 g	0.01 g	0.015 g	0.02 g
Langmuir	$Q_{max}(mg g^{-1})$	229.4	121.06	110.86	159.74	111.34	91.99	267.4	165.8	121.65	139.5	123.9	105.2
-	K_{L} (L mg ⁻¹)	0.929	0.964	2.50	0.677	1.597	1.231	0.949	2.52	1.627	0.848	0.538	0.916
	R^{2}	0.996	0.994	0.996	0.995	0.996	0.999	0.993	0.999	0.997	0.998	0.999	0.996
	R _L	0.026-	0.025-	0.009-	0.036-	0.015-	0.020-	0.026-	0.009-	0.015-	0.029-	0.044-	0.027-
		0.177	0.172	0.074	0.230	0.112	0.140	0.095	0.038	0.058	0.105	0.157	0.098
Freundlich	1/n	0.572	0.385	0.440	0.434	0.410	0.456	0.585	0.513	0.507	0.300	0.444	0.459
	$K_F (L mg^{-1})$	0.7110	5.520	6.284	5.820	5.720	5.080	8.014	7.980	6.320	6.036	5.078	5.215
	\mathbb{R}^2	0.966	0.968	0.905	0.957	0.910	0.940	0.956	0.981	0.985	0.964	0.933	0.973
Temkin	B_1	47.173	20.606	20.62	30.07	21.09	15.78	60.91	36.07	26.34	24.63	26.91	22.71
	$K_T(L mg^{-1})$	10.940	19.621	37.23	9.345	22.24	18.05	8.797	25.37	16.54	14.96	5.310	9.176
	R^2	0.989	0.987	0.985	0.988	0.961	0.994	0.990	0.996	0.994	0.996	0.991	0.993
Dubinin-	$Qs (mg g^{-1})$	134.30	86.49	80.57	109.4	84.21	66.49	182.8	125.8	87.35	115.1	90.92	77.71
radushkevich	B×10 ⁻⁸	6.23	4.5	3.2	8.12	4.42	5.3	8.14	3.46	4.65	1.1	9.19	1.8
	$E (kJ mol^{-1})$	2.833	3.333	3.952	2.500	2.481	3.071	2.478	3.801	3.279	6.742	5.270	2.333
	R^2	0.950	0.893	0.951	0.845	0.894	0.926	0.981	0.979	0.960	0.934	0.943	0.958
846													
847													
848													
849													
850													
550													
851													
352													
353													
354													

Table. 5. Isotherm constant parameters and correlation coefficients calculated for the adsorption of dyes and ions onto $Mn-Fe_3O_4-NPs-AC$ in single component system.

Adsorbent	Dye/ion	Sorption capacity	Contact time	Ref.
		$(mg g^{-1})$	(min)	
Platanus orientalis leaves powder (POLP)	MB	114.94	70	63
Gold nanoparticles loaded on activated carbon	MB	185.0	1.6	64
Ag nanoparticles loaded on activated carbon	MB	71.43	15	65
Graphene nanosheet/magnetite (Fe ₃ O ₄) composite	MB	43.83	20	66
magnetite loaded multi-wall carbon nanotube	MB	48.06	120	67
CuO-NP-AC	MB	10.55	15	68
Mn-Fe ₃ O ₄ -NPs-AC	MB	229.4	3.0	This work
Mesoporous (MCM-41)	SO	68 8	120	12
Calcined Mussel Shells (CMS)	SO	154 3	60	69
Fe_2O_4 -NPs modified with SDS	SO	769.2	10	70
MgO Decked Multi Lavered Graphene (MDMLG)	SO	137.6	120	71
NiS-NP-AC	SO	53.2	5.46	30
Mn-Fe ₃ O ₄ -NPs-AC	SO	159.7	3.0	This work
Polyacrylamide zirconium(IV) jodate	Ph ²⁺	7.01	60	72
Olive leave peuder	Pb^{2+}	110	120	72
Enteromorpha prolifera	PD Pb^{2+}	119	120	73
Dhanaraahaata ahrusaanarium	PU Dh^{2+}	134.0	720 60	74
Ziraanium(IV) jadagulnhagaligylata	PU Dh^{2+}	155.5	120	75
Mn-Fe ₂ O ₄ -NPs-AC	Pb^{2+}	139 5	3.0	70 This work
	10	159.5	5.0	THIS WORK
Graphene oxide	Cr ³⁺	92.65	120	26
Alumina nanoparticles immobilized zeolite	Cr^{3+}	1.82	240	77
Modified Lignin	Cr^{3+}	25	240	78
Bentonite clay	Cr^{3+}	49.75	15	79
Activated alumina powder (AAP)	Cr^{3+}	121.19	50	80
Mn-Fe ₃ O ₄ -NPs-AC	Cr ³⁺	267.4	3.0	This work

856	Table. 6.	Comparison t	for the remov	al of dyes	and ions by	/ different	methods and	l adsorbents

863 **Fig. 1.** UV–Vis spectra with chemical structure of MB and SO in single and quaternary solutions (initial dye concentration of 10 mg L^{-1} for each dye and 40 mg L^{-1} for each ion).

875 Fig. 2. (a) FE-SEM image of the prepared Mn doped Fe₃O₄-NPs and (b) Particle size distribution of the prepared Fe₃O₄ particles.

Fig. 4. (a) Effect of pH on the removal of MB, SO, Pb^{2+} and Cr^{3+} in the range of 2.0–10.0. (General condition: adsorbent dose: 0.02 g, ultrasonic time: 4 min, in 50 mL solution, dye concentration: 15 mg L⁻¹ for each dye, ion concentration: 40 mg L⁻¹ for each ion at room temperature (25 °C)) and (b) the experimental data versus predicted data for removal of MB, SO, Pb²⁺ and Cr³⁺.

- 900
- 901
- 902
- 903
- 904
- 905
- 906

Fig. 5. Response surfaces for the dyes removal (a) A-C (MB), (b) A-B (MB) and (c) A-D (SO).

Desirability = 1.00000

Fig. 7. Profiles for predicated values and desirability function for removal percentage of MB,
SO, Pb²⁺ and Cr³⁺.

1344x401mm (72 x 72 DPI)