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Influence of substituents on cation-anion contacts in 
imidazolium perrhenates 

Robert M. Reich,a,† Mirza Cokoja,a,* Iulius I. E. Markovits,a,† Christian J. 
Münchmeyer,a,† Marlene Kaposi,a Alexander Pöthig,a Wolfgang A. Herrmanna and 
Fritz E. Kühna,* 

A series of imidazolium perrhenates with different substituents at the imidazolium ring were 
synthesised and characterised, including single crystal X-ray diffraction. The effect of the 
substitution pattern on the state of aggregation of the compounds, the charge delocalisation and 
the ion pairing interaction via hydrogen bonds was studied. Particularly the substitution at the 
C2 position of the imidazolium ring was shown to be crucial to fine-tune the ion contacts. 
Fluorinated substituents appear to exhibit enhanced interionic interactions. The ability to tune 
the degree of contacts of the perrhenate anion allows for adjusting the nucleophilicity of this 
anion. 
 

Introduction 

Ionic compounds containing an organic cation and weakly 
coordinating anions have received considerable attention in 
recent years. The possibility to permute different ions and to 
provide the organic cation with functional groups opens the 
door to a plethora of tailor-made materials with tuneable 
properties. The most prominent representatives of this class of 
compounds are ionic liquids (IL),1 which have found 
applications as solvents or reaction media with unique 
properties, such as high polarity and concomitant 
hydrophobicity.2-5 Small variations on the cationic structure 
results in a significant change of physicochemical behaviour of 
the ILs.6-11 Therefore, an understanding of the influence of 
different substitution patterns on the physicochemical 
properties is essential to get an insight in the rational design of 
functional ionic compounds.12-15 
Various studies focused on the influence of the alkylation of the 
wing tip groups in imidazolium-based ILs12,16-21 and on 
methylation of the C2 position at the imidazolium cation.12, 22-25 
Additionally, Strassner et al. showed that different substitution 
patterns on the imidazolium moiety lead to a significant change 
of the electron density distribution on the cation and therefore 
provide insight on the interaction sites between anion and 
cation.26,27 Theoretical studies by Ludwig et al. show that the 
C2 position of the imidazolium cation possesses a strong 
positive partial charge, which can be reduced by methylation of 
the C2 position.22 Therefore, changing the substitution pattern 
on this position has a strong influence not only on the distance 
between cation and anion, but also on the electronic structure of 
the entire compound. These effects are particularly well studied 
for imidazolium-based ionic compounds.28 Studies performed 

by the groups of Ludwig22 and Hunt23,24 show that the 
interaction strength between anion and cation can be controlled 
by the substitution of the hydrogen atom on the C2 position. 
The methylation of the C2 position leads to an equal 
distribution of the positive charge on the imidazolium ring, thus 
weakening the strong partial positive charge that acts as 
dominant binding site to the anion. 
Recently we have reported the epoxidation of olefins with 
hydrogen peroxide as oxidant using imidazolium perrhenate 
([ReO4]

–) ILs as promoters, showing that the cation has a major 
impact on the reactivity of these ILs.29 The principle of the 
activity of the perrhenate anion is based on weak ion 
interactions allowing for activation of H2O2 by hydrogen 
bonding to [ReO4]

– and subsequent oxygen transfer to an olefin. 
Consequently, when cations such as K+ and [NH4]

+ are used, 
which are able to form strong interactions to the anion, the 
activity of the perrhenate ion is significantly lower. Principally, 
in imidazolium perrhenates the cation-anion interactions 
primarily involve H–O contacts, where the proton is located at 
the C2 position of the imidazolium ring. Accordingly, 
substitution of the proton at the C2 position by alkyl groups 
should delocalise the positive charge over the cation and 
decrease the ion pairing, rendering the anion less sterically 
encumbered and thus more nucleophilic. This would be 
beneficial for the epoxidation reaction. For this work, a series 
of imidazolium perrhenates was synthesised and the influence 
of the substitution of different alkyl groups at the C2 ring 
position was studied. Additionally, the influence of the wing tip 
groups at the nitrogen atoms was examined via single crystal X-
ray analysis combined with Hirshfeld surface analysis and by 
DFT calculations on the distribution of charge density. 
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Results and Discussion 

Synthesis and characterisation 

All imidazolium perrhenates were synthesised according to a 
recently published procedure.29 As shown in Scheme 1, the 
substituents at the nitrogen atoms and at the C2 position were 
varied. Benzyl (Bn) and 2’,3’,4’,5’,6’-pentafluorobenzyl (BnF) 
wing tips were chosen as they usually lead to imidazolium 
compounds exhibiting melting points well above room 
temperature (see the Experimental Section for details) and 
could therefore be crystallised. 

 
Scheme  1. Overview  of  the  synthesised  ionic  compounds  (Bn  =  benzyl,  BnF  = 

2’,3’,4’,5’,6’‐pentafluorobenzyl)). 

It is noteworthy that the substitution pattern significantly 
influences the melting points (Figure 1). It is known that these 
changes are indicators for higher interionic interactions.22-24 
Studies of Ludwig et al. show that methylation of an 
imidazolium cation leads to a decrease of long range van-der-
Waals interactions, which therefore should affect the anion-
cation interaction.22 However, an increase of the Coulomb 
interaction enhances the interionic interactions. These interionic 
interactions lead, on a macroscopic level, to the observed 
melting points.12 Since the melting points also depend on the 
packing of the ions, which correlates to their symmetry, cations 
with high symmetry have higher melting points.30,31 This 
behaviour is observed for compounds 2, 3 and 4, where the 
symmetry increases from Et < iPr < Me. 
Fluorination leads to a distinct increase in melting points 
compared to the alkylated compounds (c.f. compounds 5–8 and 
1–4). It implies that fluorination also enhances the Coulomb 
interactions, leading to stronger anion-cation contacts. The 
dibenzyl compounds 9–11 confirm the tendency that a 
fluorination as such increases the melting points and therefore 
the interionic interactions. The similar melting points of the 
half-fluorinated compound 10 with the highly symmetric 
dibenzyl compound 9 underlines this fact as it is known that 
high symmetry leads to increased melting points. Therefore the 
fully fluorinated and highly symmetric compound 11 exhibits a 
very high melting point. Hence, these observations have 
prompted us to examine the X-ray single crystal structures of 

compounds 1–11 in more detail in order to elucidate, in which 
way the nature and strength of the ion contacts is influenced by 
substitution of the C2 proton. To gain more and quantifiable 
insights in the cation-anion interactions spectroscopic methods, 
DFT calculations and Hirshfeld surface analysis were 
additionally applied. 

 
Figure 1. Illustration of melting points of compounds 1–11. 

Spectroscopic Studies 
1H- and 13C-NMR spectra of compounds 1–8 indicate a 
changed electron density upon alkylation on the C2 position. As 
it is known that upfield resonance shifts are an indicator for a 
higher electron density,12 the upfield shifts of the backbone 
protons after alkylation suggest a change in the O–H contact 
between the cation and [ReO4]

–, which appears to donate more 
electron density to the backbone protons (Table 1). The 
simultaneous downfield shift of the C2 carbon (Table 1) was 
also observed by Wasserscheid et al. by the examination of the 
C2 position in different NTf2-based ionic liquids.12 It was 
argued that the ability of the anion to push electron density to 
the C2 carbon decreased upon methylation due to the 
rearrangement of the anion in solution. In the cases described 
here, NMR studies corroborate these findings, showing that 
alkylation leads to a possible reorientation of the anion and 
cation. As result, the anion is located closer towards the 
backbone protons. 

Table 1. 1H- and 13C-NMR studies of compounds 1–8.[a] 

Entry Compounds 
1H-NMR [ppm] 13C-NMR [ppm] 

Backbone-H C2 position C 
1 1 7.78/7.71 136.7 
2 2 7.70/7.65 144.6 
3 3 7.72/7.69 148.0 
4 4 7.71/7.69 149.3 
5 5 7.77/7.73 137.7 
6 6 7.66/7.63 145.2 
7 7 7.69/7.62 148.4 
8 8 7.68/7.58 149.6 

[a] NMR sample preparation: 50.0 mg of sample and 0.4 ml of DMSO-d6 
were used. 
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Conclusion 

Substitution at the imidazolium ring has an impact on the 
interaction between the cation and the perrhenate anion. The 
contacts are based on donor-acceptor interactions, as seen from 
the molecular structures obtained from X-ray single crystal 
diffraction. Varying the substitution pattern on the imidazolium 
ring leads to different ion contacts and hence -strengths, being 
most pronounced for the alkylation of the C2 position of the 
ring and for fluorinated N-substituents. The type of interaction 
largely depends on the substituent at the C2 position between 
the nitrogen ring atoms, as can be deduced from solution state 
NMR spectra. Apparently, the acidic BnF group allows donor-
acceptor contacts, as shown by DFT and X-ray diffraction 
studies. This is also indicated by a downfield shift of the 
methylene bridge from 2 to 6 in 1H NMR spectroscopy. 
Further, Hirshfeld surface analysis shows that fluorination leads 
to a stronger anion-cation interaction due to a distinct increase 
of OF and OC contacts, which can also be seen on a 
macroscopic level. Noteworthy, DFT calculations have shown 
that the introduction of a second benzyl group on the N atoms 
has the same effect on the distribution of the positive charge 
density at the imidazolium ring as alkylation at the C2 position 
in methyl-benzyl substituted cations.  
These results show that at least two effects play a role for the 
interaction between anion and cation. Alkylation on the C2-
position is able to reduce the interactions between anion and 
cation resulting in an elongation of the shortest donor-acceptor 
contacts. However, steric demanding substituents force the 
anion to locate on the backbone protons and reduce these 
shortest contacts. It has, however, to be noted that this effect 
can only be qualitatively explained by molecular structures in 
the solid state, since the changing positions of the anion in 
dependence of the substituent at the ring can be a consequence 
of different packing in the unit cell. Nevertheless, indications 
for the influence of the substituents on the nature and strength 
of the anion-cation interaction can be found via a combination 
of solid state analysis methods (single crystal X-ray diffraction, 
Hirshfeld surface analysis, melting points) together with NMR 
spectroscopy and DFT studies of the charge density distribution 
at the cations. With all these methods at hand, at least the origin 
of the most relevant imidazolium-perrhenate interactions can be 
localised to a certain extent.  
This study of the interionic contacts in imidazolium perrhenates 
shows that in principle the design of the imidazolium ring has a 
significant influence on the Coulomb interactions with the 
perrhenate anion. Considering the reactivity of perrhenate as a 
nucleophilic agent, a rationalisation of these effects on the ion 
pairing strength would allow for the synthesis of tailor-made 
ionic compounds. Further comprehensive studies of a more 
detailed localisation of the most relevant ion contacts and a 
quantification of their strengths requires another set of analysis 
techniques, which is currently underway in our laboratories. 
 
 

Experimental Section 

General remarks. All syntheses were carried out under air, if 
not stated otherwise. 1,2-Dimethylimidazole was purchased 
from Acros Organics. 2-Ethylimidazole and 2-isopropyl-
imidazole were purchased from Sigma Aldrich. 2,3,4,5,6-
Pentafluoro-benzyl bromide and benzyl bromide were 
purchased from ABCR. All chemicals were used as received 
without further purification. The imidazolium bromide35,37-46 
and the imidazolium perrhenate salts29 were synthesised 
according to literature procedures. 
1H-, 13C- and 19F-NMR spectra were recorded on a 400 MHz 
Bruker Advance DPX-400 spectrometer. 1H- and 13C-NMR 
spectra were calibrated to the corresponding solvent signals 
(CDCl3: 7.26 ppm for 1H, 77.16 ppm for 13C; DMSO: 2.50 ppm 
for 1H, 39.52 ppm for 13C). The 19F-NMR spectra were 
calibrated by an internal method of the NMR. Microanalysis 
was performed at the Mikroanalytisches Labor of the 
Technische Universität München in Garching. The melting 
points were determined with a MPH-H2 melting point meter 
from Schorpp Gerätetechnik. 
 
X-ray single crystal diffraction. Data were collected on an X-
ray single crystal diffractometer equipped with a CCD detector 
(APEX II, κ-CCD), a fine focused sealed tube equipped with a 
graphite monochromator by using the APEXII software 
package.47 The measurements were performed on single 
crystals coated with perfluorinated ether. The crystals were 
fixed on the top of a glass fiber and transferred to the 
diffractometer. Crystals were frozen under a stream of cold 
nitrogen. A matrix scan was used to determine the initial lattice 
parameters. Reflections were merged and corrected for Lorenz 
and polarisation effects, scan speed, and background using 
SAINT.48 Absorption corrections, including odd and even 
ordered spherical harmonics were performed using SADABS.48 
Space group assignments were based upon systematic absences, 
E statistics, and successful refinement of the structures. 
Structures were solved by direct methods with the aid of 
successive difference Fourier maps,49 and were refined against 
all data using the APEX 2 software in conjunction with 
SHELXL-201449,50 and SHELXLE.51 Methyl hydrogen atoms 
were refined as part of rigid rotating groups, with a C–H 
distance of 0.98 Å and Uiso(H) = 1.5·Ueq(C). Other H atoms 
were placed in calculated positions and refined using a riding 
model, with methylene and aromatic C–H distances of 0.99 and 
0.95 Å, respectively, and Uiso(H) = 1.2·Ueq(C). If not mentioned 
otherwise, non-hydrogen atoms were refined with anisotropic 
displacement parameters. Full-matrix least-squares refinements 
were carried out by minimizing Σw(Fo

2-Fc
2)2 with SHELXL-97 

weighting scheme.49,50 Neutral atom scattering factors for all 
atoms and anomalous dispersion corrections for the non-
hydrogen atoms were taken from International Tables for 
Crystallography.52 Images of the crystal structures were 
generated by PLATON.53 The Hirshfeld surface analysis was 
carried out with the program Crystal Explorer.33,54-58 
Crystallographic data for the structures of compounds 1–11 
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have been deposited with the Cambridge Crystallographic Data 
Centre (1: 1030631, 2: 1030632, 3: 1030633, 4: 1030634, 5: 
1030635, 6: 1030636, 7: 1030637, 8: 1030638, 9: 1030639, 10: 
1030640, 11: 1030641). Copies of the data can be obtained free 
of charge from the CCDC, 12 Union Road, Cambridge CB2 
1EZ, U.K. (fax +44 1223 336 033; e-mail 
deposit@ccdc.cam.ac.uk). 
 
Computational details. All calculations have been performed 
with Gaussian03.59 The level of theory contains the hybrid DFT 
functional B3LYP60,61 and the double zeta 6–31G*62 basis set 
for all atoms. 

Characterisation data of imidazolium perrhenates 

1-Benzyl-3-methylimidazolium perrhenate (1): white solid, 
85 % yield, m.p.: 71 °C. 1H-NMR (DMSO-d6, 400 MHz, RT, 
ppm): δ = 9.17 (s, 1H), 7.76 (s, 1H), 7.69 (s, 1H), 7.41 (m, 5H), 
5.40 (s, 2H), 3.85 (s, 3H); 13C-NMR (DMSO-d6, 100.28 MHz, 
RT, ppm) δ = 136.7, 134.9, 129.2, 128.4, 124.1, 122.5, 52.1, 
36.0; IR (ATR, diamond crystal, neat): v = 899 (Re=O 
asymmetric); elemental analysis calcd (%) for C11H13N2O4Re 
(423.44): C 31.20, H 3.09, N 6.62, O 15.11, Re 43.97; found: C 
31.73, H 3.11, N 6.60, Re 44.03. 
1-Benzyl-2,3-dimethylimidazolium perrhenate (2): white solid; 
76 % yield, m.p.: 112 °C. 1H-NMR (CDCl3, 400 MHz, RT, 
ppm): δ = 7.43 (m, 3H), 7.28 (d, 3J = 2.00 Hz, 2H), 7.25 (d, 3J = 
2.00 Hz, 1H), 7.12 (d, 3J = 2.00, 1H), 5.32 (s, 2H), 3.90 (s, 3H), 
2.70 (s, 3H); 13C-NMR (100.28 MHz, DMSO-d6, RT, ppm) δ = 
144.7, 134.7, 129.2, 128.7, 127.8, 122.8, 121.3, 50.7, 35.0, 9.5; 
IR (ATR, diamond crystal, neat): v = 897 (Re=O asymmetric); 
elemental analysis calcd. (%) for C12H15N2O4Re (437.47): C 
32.95, H 3.46, N 6.40, O 14.63, Re 42.56; found: C 33.10, H 
3.49, N 6.40, Re 42.75. 
1-Benzyl-2-ethyl-3-methylimidazolium perrhenate (3): white 
solid, 90 %, yield m.p.: 91 °C. 1H-NMR (CDCl3, 400 MHz, RT, 
ppm): δ = 7.42-7.36 (m, 3H), 7.33 (d, 3J = 2.00 Hz, 1H), 7.27 
(m, 1H), 7.25 (m, 1H), 7.21 (d, 3J = 2.00 Hz, 1H), 5.32 (s, 2H), 
3.87 (s, 3H), 3.09 (q, 3J = 7.60 Hz, 2H), 1.13 (t, 3J = 8.00, 3H); 
13C-NMR (100.28 MHz, CDCl3, RT, ppm) δ = 148.3, 132.9, 
129.7, 129.5, 128.1, 123.0, 121.7, 53.8, 52.4, 35.5, 17.3, 10.9; 
IR (ATR, diamond crystal, neat): v = 897 (Re=O asymmetric); 
elemental analysis calcd. (%) for C13H17N2O4Re (451.49): C 
34.58, H 3.79, N 6.20, O 14.17, Re 41.24; found: C 34.60, H 
3.69, N 6.10, Re 41.17. 
1-Benzyl-2-isopropyl-3-methylimidazolium perrhenate (4): 
white solid, 93 % yield, m.p.: 99 °C. 1H-NMR (CDCl3, 400 
MHz, RT, ppm): δ = 7.41-7.33 (m, 4H), 7.23-7.20 (m, 3H), 
5.39 (s, 2H), 3.94 (s, 3H), 3.59 (sp, 3J = 2.00 Hz, 1H), 1.37(d, 
3J = 7.20 Hz, 6H); 13C-NMR (100.28 MHz, CDCl3, RT, ppm) δ 
= 149.9, 133.2, 129.7, 129.4, 127.7, 124.0, 122.2, 52.7, 36.5, 
25.6, 18.7; IR (ATR, diamond crystal, neat): v = 897 (Re=O 
asymmetric); elemental analysis calcd. (%) for C14H19N2O4Re 
(465.52): C 36.12, H 4.11, N 6.02, O 13.75, Re 40.00; found: C 
36.34, H 4.07, N 5.93, Re 39.85. 
1-Methyl-3-(2’,3’,4’,5’,6’-pentafluorobenzyl)-imidazolium 
perrhenate (5): white solid, 95 % yield, m.p.: 122 °C. 1H-NMR 

(DMSO-d6, 400 MHz, RT, ppm): δ = 9.18 (s, 1H), 7.77-7.69 
(m, 2H), 5.62 (s, 2H), 3.85 (s, 3H); 13C-NMR (DMSO-d6, 
100.28 MHz, RT, ppm) δ = 137.3, 124.1, 122.7, 36.1; 19F-NMR 
(DMSO-d6, 376.46 MHz, RT, ppm) δ =-141.3, -152.9, -161,7; 
IR (ATR, diamond crystal, neat): v = 895 (Re=O asymmetric); 
elemental analysis calcd. (%) for C11H8F5N2O4Re (513.39): C 
25.73, H 1.57, F 18.50, N 5.46, O 12.47, Re 36.27; found: C 
25.66, H 1.70, F 18.00, N 5.58, Re 36.04. 
1,2-Dimethyl-3-(2’,3’,4’,5’,6’-pentafluorobenzyl)imidazolium 
perrhenate (6): white solid, 94 % yield, m.p.: 186 °C. 1H-NMR 
(CDCl3, 400 MHz, RT, ppm): δ = 7.31 (d, 3J = 2.00 Hz, 1H), 
7.28 (d, 3J = 2.00 Hz, 1H), 5.49 (s, 2H), 3.89 (s, 3H), 2.81 (s, 
3H); 13C-NMR (100.28 MHz, DMSO-d6, RT, ppm) δ = 145.4, 
122.8, 122.4, 39.2, 35.0, 9.4; 19F-NMR (376.46 MHz, DMSO-
d6, RT, ppm) δ = -158.7, -149.0, -140.4; IR (ATR, diamond 
crystal, neat): v = 904 (Re=O asymmetric); elemental analysis 
calcd. (%) for C12H10F5N2O4Re (527.42): C 27.33, H 1.91, N 
5.31, F 18.01, O 12.13, Re 35.31; found: C 27.32, H 1.81, N 
5.32, F 18.10, Re 35.62. 
2-Ethyl-1-methyl-3-(2’,3’,4’,5’,6’-pentafluorobenzyl)imid-
azolium perrhenate (7): white solid, 96 % yield, m.p.: 119 °C. 
1H-NMR (DMSO-d6, 400 MHz, RT, ppm): δ = 7.69 (d, 3J = 
2.00 Hz, 1H), 7.63 (d, 3J = 2.00 Hz, 1H), 5.63 (s, 2H), 3.83 (s, 
3H), 3.11 (q, 3J = 7.60 Hz, 2H), 1.16 (t, 3J = 7.60 Hz, 3H); 13C-
NMR (100.28 MHz, DMSO-d6, RT, ppm) δ = 148.4, 123.2, 
121.3, 34.7, 16.2, 10.4; 19F-NMR (376.46 MHz, DMSO-d6, 
RT, ppm) δ = -161.5, -152.6, -141.3; IR (ATR, diamond 
crystal, neat): v = 905 (Re=O asymmetric); elemental analysis 
calcd. (%) for C13H12F5N2O4Re (541.44): C 28.84, H 2.23, N 
5.17, F 17.54, O 11.82, Re 34.39; found: C 29.00, H 2.40, N 
5.16, F 17.56, Re 34.49. 
2-Isopropyl-1-methyl-3-(2’,3’,4’,5’,6’-pentafluorobenzyl)-
imidazolium perrhenate (8): white solid, 90 % yield, m.p.: 
164 °C. 1H-NMR (DMSO-d6, 400 MHz, RT, ppm): δ = 7.68 (d, 
3J = 2.00 Hz, 1H), 7.59 (d, 3J = 2.00 Hz, 1H), 5.68 (s, 2H), 3.70 
(sp, 3J = 7.20 Hz, 1H), 1.39 (d, 3J = 7.60 Hz, 6H); 13C-NMR 
(100.28 MHz, DMSO-d6, RT, ppm) δ = 149.6, 124.2, 121.3, 
36.2, 24.3, 18.0; 19F-NMR (376.46 MHz, DMSO-d6, RT, ppm) 
δ = -161.4, -152.6, -141.4; IR (ATR, diamond crystal, neat): v = 
904 (Re=O asymmetric); elemental analysis calcd. (%) for 
C14H14F5N2O4Re (555.47): C 30.27, H 2.54, N 5.04, F 17.10, O 
11.52, Re 33.52; found: C 30.39, H 2.62, N 5.02, F 16.90, Re 
33.38. 
1,3-Dibenzylimidazolium perrhenate (9): white solid, 80 % 
yield, m.p.: 101 °C. 1H-NMR (CDCl3, 400 MHz, RT, ppm): δ = 
10.89 (s, 1H), 7.46 (m, 4H), 7.37 (m, 6H), 7.19 (s, 2H), 5.55 (s, 
4H); 13C-NMR (CDCl3, 100 MHz, RT, ppm): δ = 137.5, 132.9, 
129.8, 129.7, 129.3, 121.9, 53.73; IR (ATR, diamond crystal, 
neat): v = 904 (Re=O asymmetric);elemental analysis calcd (%) 
for C17H17N2O4Re (499.53): C 40.87, H 3.43, N 5.61, O 12.81, 
Re 37.28; found: C 41.18, H 3.36, N 5.56, Re 37.28. 
1-Benzyl-3-(2’,3’,4’,5’,6’-pentafluorobenzyl)imidazolium 
perrhenate (10): white solid, 91 % yield, m.p.: 102 °C. 1H-
NMR (DMSO-d6, 400 MHz, RT, ppm): δ = 9.47 (s, 1H), 7.87 
(dd, 3J = 1.8 Hz, 1H),7.83 (dd, 3J = 1.8 Hz, 1H), 7.44 (m, 5H), 
5.68 (s, 2H), 5.45 (s, 2H); 13C-NMR (DMSO-d6, 100.28 MHz, 
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RT, ppm): δ = 136.9, 134.6, 129.0, 128.8, 128.3, 123.1, 122.8, 
52.1; 19F-NMR (DMSO-d6, 376.46 MHz, RT, ppm): δ = -
161.23, -152.4, -140.90; IR (ATR, diamond crystal, neat): v = 
905 (Re=O asymmetric); elemental analysis calcd. (%) for 
C17H12F5N2O4Re (589.49): C 34.64, H 2.05, F 16.11, N 4.75, O 
10.86, Re 31.59; found: C 34.49, H 2.05, N 4.78, 31.11. 
1,3-Di(2’,3’,4’,5’,6’-pentafluorobenzyl)imidazolium-
perrhenate (11): white solid, 92 % yield, m.p.: 176 °C. 1H-
NMR (D2O, 400 MHz, RT, ppm): δ = 9.26 (s, 1H), 7.58 (s, 
2H), 5.62 (s, 4H); 13C-NMR (D2O, 100.28 MHz, RT, ppm): δ = 
122.0, 120.4, 40.0; 19F-NMR (DMSO-d6, 376.46 MHz, RT, 
ppm): δ = -161.6, -151.9, -142.7; IR (ATR, diamond crystal, 
neat): v = 904 (Re=O asymmetric); elemental analysis calcd. 
(%) for C17H7F10N2O4Re (679.44): C 30.05, H 1.04, F 27.96, N 
4.12, O 9.42, Re 27.41; found: C 30.20, H 0.92, F 28.01, N 
3.97, Re 27.34. 
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