
Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

4

Mechanistic Insight to Selective Catalytic Reduction

of NO by NH₃ over Low-valent Titanium-porphyrin:

A DFT Study

5	Phornphimon Maitarad, ^a Jittima Meeprasert, ^b Liyi Shi, ^a Jumras Limtrakul, ^c Dengsong
6	$Zhang^a*$ and $Supawadee\ Namuangruk^b*$
7	
8	^a Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444
9	P. R. China
10	^b National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Pahonyothin Road
11	Klong Luang, Pathum Thani 12120, Thailand
12	^c Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong 21210, Thailand
13	*Phone: +86-21-66137152. E-mail: dszhang@shu.edu.cn (D.Z.)
14	*Phone: +66- 25647100 ext 6595. E-mail: supawadee@nanotec.or.th (S.N.)
15	
16	
17	

ABSTRACT

In this work, the reaction mechanism of ammonia selective catalytic reduction (NH ₃ -SCR) of
nitric oxide over a low-valance Ti-porphyrin catalyst was studied by density functional theory
(DFT) calculations for both low- and high-spin states. The reaction proceeds via (i) NH ₃
complexation with the Ti-porphyrin complex, and its subsequent oxidation to NH2, with a
large activation barrier of 32–34 kcal/mol because of the difficulty of N-H bond dissociation.
(ii) Bonding between NO and the NH2 ligand forms an NH2NO intermediate by an
Eley-Rideal-type mechanism. Calculated activation energies for this step are 4.34 and 10.22
kcal/mol for the low- and high-spin states, respectively. (iii) Formation of NHNOH by
rearrangement of the NH ₂ NO intermediate. Spin crossings in steps (ii) and (iii) play an
important role in the overall reaction by providing a mechanism with a smaller activation
energy of 17.05 kcal/mol, compared with 28.02 kcal/mol for the un-catalyzed reaction.
(iv) In the final step, decomposition of NHNOH results in formation of N_2 and H_2O
molecules, with a small energy barrier of approximately 7-9 kcal/mol. For pairwise pathway
comparisons, Ti-porphyrin in the triplet state offers 8.43 kcal/mol greater stability than the
singlet does, and the reaction is more likely to proceed through a high-spin pathway because
of its lower relative energies compared to low spin. The obtained activation energies for
$\mbox{NH}_3\mbox{-SCR}$ of NO are comparable with theoretical results for the reduction of NO over V_2O_5
and Fe-zeolite systems. Thus, Ti-porphyrin has potential as an alternative catalyst for
NH ₃ -SCR of nitric oxide.

Keywords: NH₃-SCR; Reaction mechanism; De-NOx, Density Functional Theory.

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

1. Introduction

Ammonia selective catalytic reduction (NH₃-SCR) of NO, is widely used to remove NO gas from stationary plant and diesel vehicles because of its high efficiency and economy of operation. Commercial catalysts available for NH₃-SCR of NO, the V₂O₅-WO₃(MoO₃)/TiO₂ catalyst systems perform best over the range of 300-400 °C. However, high-temperature operation of vanadium oxide-based catalysts has some drawbacks, including toxicity of vanadia species that are created, significant conversion of SO₂ to SO₃, and generation of N₂O₃ a greenhouse gas. 1-5 Consequently, there is strong interest in the development of NH₃-SCR catalysts that avoid the problems associated with existing commercial catalyst systems. Porphyrin is an interesting compound because it readily self assembles into ordered monolayers. The molecule possesses two axial coordination sites that may function as centers of catalytic activity, or sensor functionality. Furthermore, porphyrin is well suited for anchoring to a solid substrate to form metal-porphyrin assemblies that feature in several useful applications, 6-10 including photovoltaic materials, field-responsive materials, and catalytic materials. Metal-porphyrins are potential catalysts for many commercially important redox reactions. 11-17 Yamamoto et al. reported that a non-metal porphyrin derivative-modified TiO₂ catalyst for photo-assisted selective catalytic reduction (photo-SCR) of nitric oxide, achieved an NO conversion of 79 % with N₂ selectivity of 100 %. ¹⁸ However, it is unclear how the porphyrin moiety and TiO₂ interact to activate NH₃ in the reaction. We recently published a theoretical study demonstrating the potential for low-valance Ti-porphyrin as catalyst for N₂O decomposition. 19 We are interested in extending our theoretical study of the Ti-porphyrin catalyst to another decomposition of the NO_x family, namely, the NH3-SCR of NO, for which several reaction mechanisms have been proposed. ²⁰⁻²⁴ A proposed mechanism for the molecular gas-phase NH₃-SCR of NO suggests that the NH₂NO intermediate rearranges to NHNOH before decomposition occurs.²⁵ This intermediate step is absent from previous theoretical reports. DFT calculations suggest that the NH₃-SCR of NO comprises four consecutive elementary steps (Scheme 1): (1) NH₃ oxidation; NH₃ adsorbs to a Lewis acid site on the Ti-metal center and an NH₂ species is generated, (2) NH₂NO formation; an NO molecule attaches to the NH₂ to form an NH₂NO intermediate, (3) NHNOH formation; NH₂NO rearranges to form NHNOH. This step is absent from previous reports.²⁶⁻²⁸ (4) NHNOH decomposition; the NHNOH decomposes to N₂ and H₂O molecules. Therefore, in this work, we investigate the use of low-valance Ti-porphyrin as catalyst for the NH₃-SCR of NO, and elucidate the intermediates, transition states, and the energy barriers along the potential-energy surface of the Lewis-acid-based reaction. The low- and high-spin states of the catalyst are considered throughout the reaction. The reaction mechanism and calculated energy barriers obtained from this catalyst are discussed and compared with those of two other potential catalysts: V₂O₅ and Fe-zeolite.

2. Model and Method

The catalytically active center of Ti-porphyrin is represented as a 34-atom single cluster (Fig. 1). The catalyst model contains a Ti atom coordinated by shells of porphyrin nitrogen atoms. The low-valance Ti(II)-porphyrin complex has no charge. We applied the M06-L density functional, which is specifically designed for transition metal complexes. This functional has been demonstrated to provide reasonable estimates of the energetic and electronic properties of transition metal complexes, and for organometallic and inorganometallic catalysts in particular.²⁹ The 6-31G(d,p) basis set was used for the N, C, O, and H atoms, and the LANL2DZ effective core potential was applied to describe the Ti core electrons. We previously used this model and method to investigate N₂O decomposition over

- 88 Ti-porphyrin. 19 All calculations were carried out using the Gaussian 09 program package. 30
- All atoms in the system were fully relaxed during the geometry optimizations. We confirmed
- 90 that the saddle point had only one imaginary vibration frequency at the transition state.
- 91 Additionally, we compared activation energy barriers corrected with Zero-point energy
- 92 (E_{a-ZPE}) at 298 K, with the uncorrected energies.
- For the reaction energy profiles, the relative energy was calculated by:

$$\Delta E = E_{complex} - (E_{catalvst} + E_{adsorbate})$$
 (1)

- where $E_{complex}$, $E_{catalyst}$, and $E_{adsorbate}$ are the total energies of the Ti-porphyrin-gas complex,
- the Ti-porphyrin intermediate, and small gas molecules (e.g., NO, NH₃, and N₂), respectively.
- 97 For the reaction pathways calculated for low- and high-spin states, we examined the
- 98 possibilities of spin crossing or intersystem crossing.

100

3. Results and Discussion

- Our proposed reaction mechanism for NH₃-SCR of NO over Ti-porphyrin comprises four
- 102 consecutive elementary steps (Scheme 1): (1) NH₃ oxidation, (2) NH₂NO (nitrosamine)
- formation, (3) NHNOH formation, and (4) NHNOH decomposition to H₂O and N₂;
- 104 **Step1**: NH₃ oxidation

105
$$[Cat] + NH_3 \rightarrow [Cat] \cdots NH_3$$

106
$$[Cat] \cdots NH_3 \rightarrow H[Cat] - NH_2$$

107 **Step 2**: NH₂NO formation

108
$$H[Cat]-NH_2 + NO \rightarrow H[Cat]-NH_2\cdots NO$$

109
$$H[Cat]-NH_2\cdots NO \rightarrow H[Cat]-NH_2-NO$$

- **Step 3**: NHNOH formation
- $H[Cat]-NH_2-NO \rightarrow H[Cat]-NHNOH$
- 112 Step 4: NHNOH decomposition
- H[Cat]-NHNOH \rightarrow N_2 -H[Cat]- H_2O
- N_2 -H[Cat] -H₂O \rightarrow H[Cat] + N_2 + H₂O

For the Ti-Porphyrin catalyst, we found that the high-spin state structure offers 8.43 kcal/mol greater stability than that of the low-spin state. Thus, at equilibrium, the high spin state structure will be dominant. However, the difference in energy between the two states is not sufficient to disregard either of them, and thus, we studied the reaction mechanisms for both spin states. Because the details of the reaction mechanisms are similar for both states, we discuss in detail only the high spin state reaction pathway.

3.1 NH₃ Oxidation

The proposed catalytic cycle begins with oxidation of NH₃ over the low-valance Ti-porphyrin catalyst (Fig. 2). NH₃ adsorbs to the Lewis acid site of 3 Ti-porphyrin to form the 3 Ti-NH₃ adduct, with a calculated adsorption energy of -51.64 kcal/mol, and an intermolecular distance of 2.20 Å. In the transition state, 3 TS1, a hydrogen atom from the adsorbed NH₃ approaches a porphyrin nitrogen atom to a distance of 1.22 Å. Transition state 3 TS1 has one imaginary frequency at -1062i cm⁻¹, which represents the motion during N-H bond cleavage. The NH₃ oxidation process has an activation energy (E_{a1}) of 35.45 kcal/mol. We applied Zero-point energy at 298 K to correct the activation energy (E_{a-ZPE}), and found E_{a1-ZPE} to be 32.43 kcal/mol, slightly less than the uncorrected value. The high barrier energy calculated for this endothermic step results from the difficulty of N-H bond dissociation. At final product of this step, the Ti-NH₂ adduct has a bond distance of 1.92 Å.

3.2 NH₂NO formation

During the NH₃-SCR of NO, the 3 TiH-NH₂ intermediate interacts with doublet state NO to form the key intermediate, 4 TiH-NH₂NO (Fig. 3). NO adsorbs to 3 TiH-NH₂ with an adsorption energy of -6.04 kcal/mol. The H₂N···NO intermolecular distance is 2.43 Å. In this second transition state (4 TS2), the ON···NH₂ intermolecular distance is 1.69 Å. The 4 TS2 energy barrier (E_{a2}) is just 9.20 kcal/mol ($E_{a2-ZPE} = 10.22$ kcal/mol). Finally, a new N-N bond forms with an N-N bond distance of 1.46 Å to form the H₂N-NO intermediate (4 TiH-NH₂NO). The formation of NH₂NO is a thermodynamically favorable process.

3.3 NHNOH formation

The ⁴TiH-NH₂NO structure is rather constrained because of its three-membered ring configuration (Fig. 4). Its transformation to ⁴TiH-NHNOH proceeds via a third transition state, ⁴TS3 (Scheme 1). The imaginary frequency at 1636*i* cm⁻¹ arises from vibrational motion associated with N-H cleavage and O-H formation. This step has an energy barrier (*E*_{a3}) of 31.49 kcal/mol, and a *E*_{a3-ZPE} corrected value of 28.02 kcal/mol). The TS3 structure features an NNOH four-membered ring ligated to Ti. The N–O bond is elongated from 1.26 Å in TiH-NH₂NO to 1.45 Å in transition state. The Ti active center bound to the O, N, and NH moieties with average bond distances of approximately 2 Å. In the following step, dissolution of the bridging hydrogen atom from nitrogen yields ⁴TiH-NHNOH, with a large exothermic energy of -61.67 kcal/mol. Thus, step 3 (Scheme 1) accomplishes transformation of the NH₂NO intermediate to NHNOH, after which follows a facile rearrangement and elimination of N₂ and H₂O.

3.4 NHNOH decomposition

- The final step in the NH₃-SCR of NO is decomposition of NHNOH to N₂ and H₂O (Fig. 5).
- After formation of the ⁴TiH-NHNOH intermediate, rearrangement to the ⁴TS4 transition

- state (imaginary frequency = 1060icm⁻¹) has a small activation energy (E_{a4}) of 8.53 kcal/mol 157 $(E_{a4-ZPE} = 8.79 \text{ kcal/mol})$. During this process, the NHN hydrogen atom migrates toward the 158 OH group. The HO···HNN intermolecular distance closes to 1.32 Å, suggesting the 159 formation of H₂O. Additionally, the N-N bond distance is shortened to 1.17 Å, that of free N₂ 160 gas. Thus, in the final step, the H₂O and N₂ molecules are produced over the TiH active 161 center, as suggested by the ²TiH-N₂-H₂O structure. Desorption energies for N₂ and H₂O are 162 0.02 and 20.17 kcal/mol, respectively, implying that the catalyst has high selectivity toward 163 164 N_2 .
- ⁴TiH (Scheme 1, step 4) is the final intermediate in our proposed mechanism. This species may (i) repeat the catalytic cycle, facilitating NH₃-SCR of NO by a similar reaction mechanism to that described above, or (ii) the complex may regenerate the Ti-porphyrin catalyst by reaction with oxidizing agents such as O₂, ammonia, or water, which are generally present in the NH₃-SCR system.³¹ We propose that catalytic regeneration of **TiH** proceeds via an ammonia-based redox process: TiH + NH₃ → Ti-porphyrin + NH₄.
- 171 (More details are available in supporting information, SI).
- 3.5 Full reaction pathway for NH₃-SCR of NO over singlet or triplet-spin-state
- 173 Ti-porphyrin catalyst

175

176

177

178

179

180

To elucidate the most favorable reaction route, Figure 6 shows overlaid plots of energy pathways for NH₃-SCR of NO over both low- and high-spin-state Ti-porphyrin. Because of its greater stability when compared with ¹Ti-porphyrin, all of the displayed energies are relative to the ³Ti-porphyrin total energy (Fig. 6). All of the optimized geometries for the low- and high-spin-state systems, including the parameters used, are available in SI. A pairwise potential-energy-surface comparison reveals that the high-spin-state reaction mechanism proceeds at lower relative energies until the NH₂NO TS2 transition state. Spin

crossing occurs twice. The first spin crossing occurs during the NO-⁴TiH-NH2→²TS2 transition, in which the high-spin state crosses to lower energy than the low-spin state. The second occurrence of spin crossing occurs after water desorption, during the ²TiH-H2O→⁴TiH transition; the high-spin state returns to the high-energy position after release of H₂O from the active center. Thus, spin crossing influences the transformation of the NH₂NO intermediate by significantly lowering the activation barrier for the high-spin transition state (TS3) from 28.02 to 17.05 kcal/mol. This clearly shows that transformation of the nitrosamine intermediates adopts a low-spin-state configuration. We conclude that the high-spin-state plays an important role in the NH₃-SCR of NO over Ti-porphyrin, and that spin crossing facilitates the formation of NHNOH.

3.6 Comparison of the Ti-porphyrin theoretical energy barrier with those of other candidate catalysts.

There are few literature reports of theoretical studies into Lewis acid reaction mechanisms for NH₃-SCR of NO available for comparison. DFT/PBE calculations describing the application of the V₂O₅/TiO₂ periodic model to the NH₃-SCR of NO revealed that the rate-determining step is the deprotonation of NH₃, with an energy barrier of approximately 30 kcal/mol.²⁸ An NH₂NO intermediate forms via a concerted mechanism, with the activation energy for N–N bond formation being just 5 kcal/mol, relative to the NH₂ intermediate. Furthermore, a V₂O₅ surface cluster model for the NH₃-SCR of NO mechanism has been also intensively studied by using B3LYP/6-31G(d)// B3LYP/6-311++G(2d,2p).²⁶ As with the Lewis site mechanism, NH₃ coordinates to the vanadium atom followed by dissociation and bonding of a hydrogen atom to an oxygen at the cluster surface. This results in formation of a V-NH₂ intermediate species with an energy barrier of 51.3 kcal/mol. In the next step, NO combines with the coordinated NH₂ species to form NH₂NO, with an energy barrier of only 0.1 kcal/mol. In an

alternative mechanism, the NH₂NO forms spontaneously in a conserved process, which agrees well with the energy obtained for the V_2O_5/TiO_2 model by periodic calculation. The Fe-zeolite catalyst has potential for NH₃-SCR application. The Fe-modified zeolite model (Z-[FeO]⁺) reaction mechanism was investigated at the B3LYP/TZVP level of theory.³² It is probable that NH₃ adsorbs on Z-[FeO]⁺ followed by transfer of a proton to form Z-[NH₂FeOH]⁺ with an activation barrier of 23.3 kcal/mol. Subsequently, the complex reacts with NO to form the NH₂NO intermediate, with an energy barrier of 3.4 kcal/mol, which is similar to the V_2O_5 catalytic calculation results.

Applying the cluster model with the MO6L functional reveals that the energy barriers for singlet- and triplet-state Ti-porphyrin catalyzed oxidation of NH₃ fall in the range 32–34 kcal/mol. This result is comparable with the energy barriers seen for V₂O₅/TiO₂ and Fe-zeolite catalysts. ¹Ti-porphyrin requires only 4.34 kcal/mol activation energy for the NH₂NO formation step, while ³Ti-porphyrin has an activation energy of 10.22 kcal/mol. The NH₂NO formation energy over ¹Ti-porphyrin is similar to those of V₂O₅ and Fe-Zeolite catalysts, while its formation over ³Ti-porphyrin is more endothermic. Previous calculations did not involve formation of NHNOH prior to N₂ and H₂O production. However, this is a necessary step after formation of the NH₂NO intermediate, particularly for the Ti-porphyrin catalyst because of the reduction in activation energy to 17.05 kcal/mol that occurs after spin crossing; this reduces the energy barrier for decomposition to N₂ and H₂O to 7-9 kcal/mol. Consequently, we propose, Ti-porphyrin as an alternative to commercial catalysts V₂O₅ and Fe-zeolite for NH₃-SCR of NO, based on our comparison of theoretical activation energy calculations.

Conclusion

We used DFT calculations to explore the mechanism of NH₃-SCR of NO over low- and high-spin state Ti-porphyrin using DFT calculations. The proposed reaction mechanism is an energetically favorable process, comprising four consecutive elementary steps. The activation barrier (i) for NH₃ oxidation is 32.43 kcal/mol (E_{a1-ZPE}), (ii) for formation of NH₂NO is 10.22 kcal/mol (E_{a2-ZPE}), (iii) for NHNOH formation is 17.05 kcal/mol (E_{a3-ZPE}), and (iv) for decomposition of NHNOH is 8.79 kcal/mol (E_{a4-ZPE}). The N—H bond cleavage that occurs during oxidation of NH₃ is the rate-limiting step for both singlet and triplet spin states, because it has the greatest activation barrier (32-34 kcal/mol), which is in good agreement with previous reports: 26,28,32 Adsorption of NO on the coordinated NH₂ to form the NHNOH intermediate is thermodynamically favorable, and the subsequent decomposition of NHNOH to N₂ and H₂O is a facile process. Release of N₂ from the catalyst has a very small desorption energy (less than 1 kcal/mol), suggesting that this catalyst provides good N₂ selectivity. The obtained activation energy barriers for the NH₃-SCR process are comparable to those of the commercially available V₂O₅ and Fe-zeolite catalysts, and thus low-valance Ti-porphyrin is a potential catalyst for NH₃-SCR of NO.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the National Basic Research Program of China (973 Program, 2014CB660803), the National Natural Science Foundation of China (U1462110), and the Shanghai Municipal Education Commission (14ZZ097). The authors would like to thank the National Research Council of Thailand (NRCT) and the National Nanotechnology Center for financial support through the "Flagship Clean Air Program". Finally, we thank the Nanoscale Simulation Laboratory at the National Nanotechnology Center (NANOTEC), Thailand for computing resources.

254

Supporting Information

- † Electronic supplementary information (ESI) available. See DOI: 10.1039/xxxxxxx
- 256 Notes
- 257 The authors declare no competing financial interests.

258

259 **REFERENCES**

- 260 (1) R. Q. Long and R. T. Yang, J. Am. Chem. Soc., 1999, 121, 5595-5596.
- 261 (2) S. Roy and A. Baiker, *Chem. Rev.*, 2009, 109, 4054-4091.
- 262 (3) G. Busca, L. Lietti, G. Ramis and F. Berti, *Appl. Catal. B: Environ.*, 1998, 18, 1-36.
- 263 (4) Y. Zheng, A. D. Jensen and J. E. Johnsson, *Appl. Catal. B: Environ.*, 2005, 60, 253-
- 264 264.
- 265 (5) M. Fu, C. Li, P. Lu, L. Qu, M. Zhang, Y. Zhou, M. Yu and Y. Fang, Catal. Sci.
- 266 Technol., 2014, 4, 14-25.
- 267 (6) N. U. Day, M. G. Walter and C. C. Wamser, J. Phys. Chem. C, 2015, 119, 17378–
- 268 17388.
- 269 (7) E. D. Sternberg, D. Dolphin and C. Brückner, *Tetrahedron*, 1998, 54, 4151–4202.
- 270 (8) J. H. Fuhrhop, *Langmuir*, 2014, 30, 1–12.
- 271 (9) J. S. Lindsey, New J. Chem., 1991, 15, 153-180.

- 272 (10) K. S. Suslick, N. A. Rakow, M. E. Kosal and J. H. Chou, J. Porphyrins
- 273 *Phthalocyanines*, 2000, 4, 407-413.
- 274 (11) W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L.
- 275 Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel and D. L. Officer, J. Phys. Chem.
- 276 *C. Lett.* 2007, 111, 11760-11762.
- 277 (12) J. Harvey, Coordin. Chem. Rev., 2003, 247, 1-19.
- 278 (13) F. Scandola, C. Chiorboli, A. Prodi, E. Iengo and E. Alessio, Coordin. Chem. Rev.,
- 279 2006, 250, 1471-1496.
- 280 (14) N. Cheng, C. Kemna, S. Goubert-Renaudin and A. Wieckowski, *Electrocatal.*, 2012,
- 281 3, 238-251.
- 282 (15) T. Karpuschkin, M. M. Kappes and O. Hampe, Angew. Chem. Int. Ed., 2013, 52,
- 283 10374-10377.
- 284 (16) H. Brand and J. Arnold, Coordin. Chem. Rev., 1995, 140, 137–168.
- 285 (17) J. Rochford, D. Chu, A. Hagfeldt and E. Galoppini, J. Am. Chem. Soc., 2007, 129,
- 286 4655–4665.
- 287 (18) A. Yamamoto, Y. Mizuno, K. Teramura, S. Hosokawa, T. Shishido and T. Tanaka,
- 288 Catal. Sci. Technol., 2015, 5, 556-561.
- 289 (19) P. Maitarad, S. Namuangruk, D. Zhang, L. Shi, H. Li, L. Huang, B. Boekfa and M.
- 290 Ehara, Environ. Sci. Technol., 2014, 48, 7101–7110.
- 291 (20) W. S. Kijlstra, D. S. Brands, E. K. Poels and A. Bliek, *J. Catal.*, 1997, 171, 208–218.

- 292 (21) W. S. Kijlstra, D. S. Brands, H. I. Smit, E. K. Poels and A. Bliek, *J. Catal.*, 1997,
- 293 171, 219–230.
- 294 (22) G. Marbán, T. Valdés-Solís and A. B. Fuertes, *J. Catal.*, 2004, 226, 138–155.
- 295 (23) G. Qi and R. T. Yang, J. Phys. Chem. B, 2004, 108, 15738-15747.
- 296 (24) G. Qi, R. T. Yang and R. Chang, Appl. Catal. B: Environ., 2004, 51, 93–106
- 297 (25) D. Sun, W. F. Schneider, J. B. Adams and D. Sengupta, *J. Phys. Chem. A*, 2004, 108,
- 298 9365-9374.
- 299 (26) R. Yuan, G. Fu, X. Xu and H. Wan, *Phys. Chem. Chem. Phys.*, 2011, 13, 453–460.
- 300 (27) S. Heinbuch, F. Dong, J. J. Rocca and E. R. Bernstein, J. Chem. Phys., 2010, 133,
- 301 174314-1-11.
- 302 (28) A. Vittadini, M. Casarin and A. Selloni, J. Phys. Chem. B, 2005, 109, 1652-1655.
- 303 (29) Y. Zhao and D. G. Truhlar, *Theor. Chem. Account*, 2008, 120, 215–241.
- 304 (30) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
- 305 Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
- Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
- Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
- Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J.
- J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
- 310 Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
- 311 Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
- R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
- 313 Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

314	Dapprich, A.	D. Daniels,	Ö. Farkas.	J. B. F	oresman, J.	V. Ortiz,	J. Cioslowski	, and D. J. Fox,

- 315 Gaussian, Inc., Wallingford CT, 2009.
- 316 (31) W. Song, J. Liu, H. Zheng, S. Ma, Y. Wei, A. Duan, G. Jiang, Z. Zhao and E. J. M.
- 317 Hensen, Catal. Sci. Technol., 2016, DOI: 10.1039/c5cy01597a.
- 318 (32) T. C. Brüggemann and F. J. Keil, *J. Phys. Chem. C*, 2011, 115, 23854–23870.
- 319
- 320
- 321

Table 1. Comparison of the activation energies for NH_3 -SCR of NO assuming the Lewis acid reaction mechanism, over commercial V_2O_5 , potential Fe-zeolite, and Ti-porphyrin catalysts.

	Energy (kcal/mol)					
	NH ₃ oxidation	NH ₂ NO formation	NHNOH formation	N ₂ and H ₂ O production		
V ₂ O ₅ /TiO ₂ periodic model ^a	30	5				
V ₂ O ₅ cluster model ^b	51.3	0.1				
Fe-zeolite ^c	23.3	3.4				
¹ Ti-porphyrin	33.68	4.34	17.05	7.02		
³ Ti-porphyrin	32.43	10.22	28.02	8.79		

^aVittadini, et al. (ref. 28), ^b Yuan et al. (ref. 26), ^c Brüggemann et al. (ref 32)

340	Figure Captions
341	Scheme 1: Proposed reaction mechanism for Selective Catalytic Reduction of NO by NH ₃
342	over Ti-porphyrin. Steps consist of NH ₃ oxidation (Step 1), NO insertion and NH ₂ NO
343	formation (Step 2), NHNOH formation (Step 3), and NHNOH decomposition to $\rm H_2O$ and $\rm N_2$
344	(Step 4).
345	Figure 1. Model of Ti-porphyrin catalyst (a) top view and (b).side view.
346	Figure 2. NH ₃ oxidation over high-spin-state Ti-porphyrin.
347	Figure 3. NH ₂ NO intermediate formation over high-spin-state Ti-porphyrin.
348	Figure 4. NHNOH intermediate formation over high-spin state Ti-porphyrin.
349	Figure 5. NHNOH decomposition to nitrogen and water molecules over high-spin-state
350	Ti-porphyrin.
351	Figure 6. Energy profile comparison for low-spin and high-spin reaction routes in the
352	NH ₃ -SCR of NO over a Ti-porphyrin catalyst.
353	
354	

Scheme 1: Proposed reaction mechanism for the selective catalytic reduction of NO by NH₃ over a Ti-porphyrin catalyst comprising: (Step 1) NH₃ oxidation, (Step 2) NO insertion and NH₂NO formation, (Step 3) NHNOH formation, and (Step 4) NHNOH decomposition to H₂O and N₂.

362

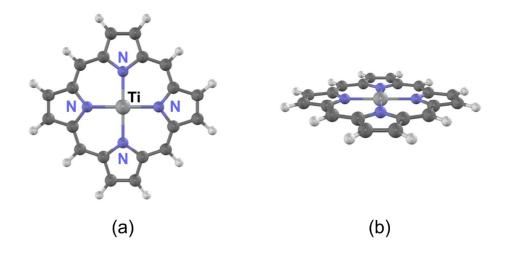


Figure 1. Model of low valance Ti-porphyrin catalyst in (a) top view and (b) side view.

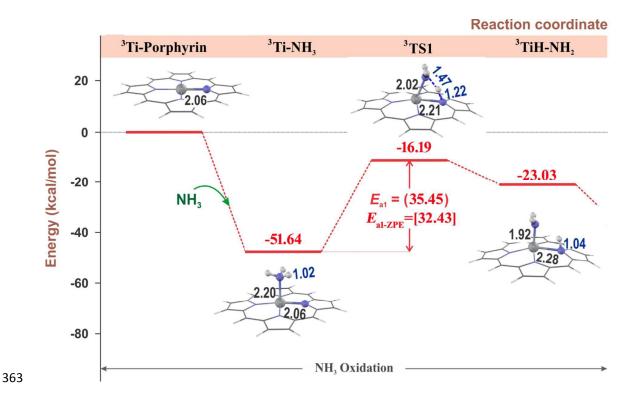


Figure 2. NH₃ oxidation over high-spin-state Ti-porphyrin.

368

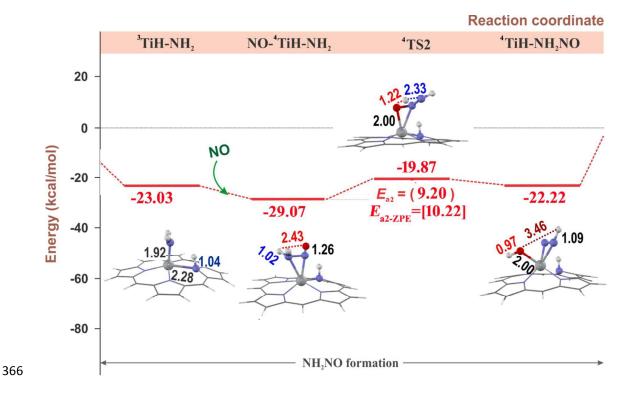


Figure 3. formation of NH₂NO intermediate over high-spin-state Ti-porphyrin.

Figure 4. NHNOH intermediate formation over high-spin-state Ti-porphyrin.

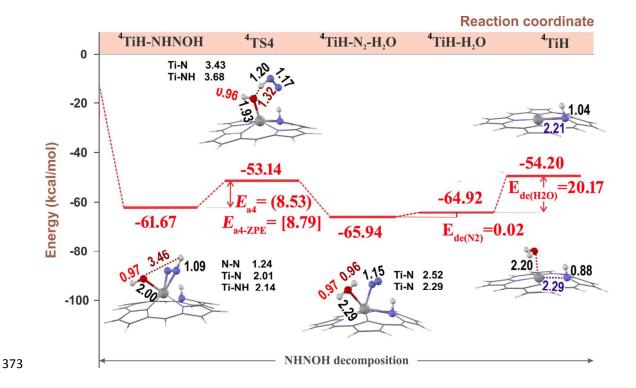
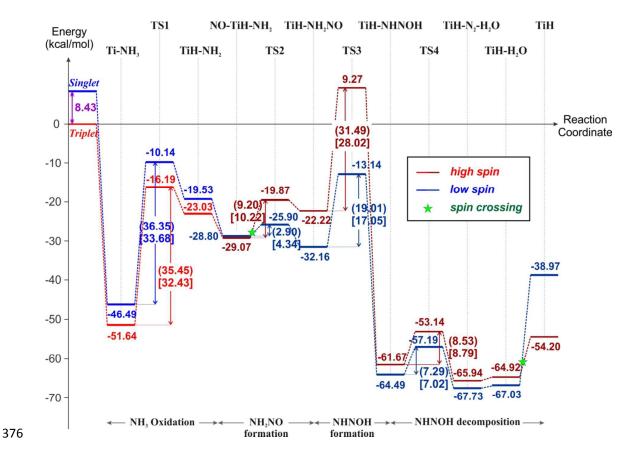



Figure 5. NHNOH decomposition to nitrogen and water over high-spin-state Ti-porphyrin.

Figure 6. Comparison of energy profiles for low-spin and high-spin reaction routes in the NH₃-SCR of NO over a Ti-porphyrin catalyst.

382 Table of content

The theoretical study shows Ti-porphyrin has potential as an alternative catalyst for NH_3 -SCR of NO.