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Abstract 

Heterogeneous photocatalysis plays a key role in the implementation of novel sustainable 

technologies, e.g. CO2 conversion into fuel, H2 production from water or organics degradation. The 

progress of photocatalysis relies on the development of tuneable photocatalysts and particularly the 

ability to build nanocomposites exhibiting synergistic properties with reduced electron-hole 

recombination rates. We report for the first time the in situ synthesis of nanocomposites of carbon 

nitride nanosheets (CNNSs) and metal-organic frameworks (MOFs) for application as 

photocatalysts. This approach leads to the ‘nano-scale mixing’ of the components, thereby 

enabling a greater performance compared to other types of 2D materials/MOF composites typically 

obtained via physical mixing. The objective is to take advantage of the complementary features of the 

materials while forming a heterojunction. The structural, chemical, photophysical and electrochemical 

properties of the nanocomposites are characterized and compared to those of the parent materials and 
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their physical mixture. The nanocomposites retain the high specific surface area and strong 

visible light absorbance of MIL-100(Fe). The intimate contact between the CNNSs and the MOF 

particles is found to promote the electron-hole separation significantly due to the formation of a 

heterojunction. Hence, more efficient photocatalytic dye degradation is achieved over the composites 

than the physical mixture. 

 

1 Introduction 

Photocatalysis, and particularly heterogeneous photocatalysis, is recognized to have a key role in 

paving the way towards sustainability. Solar light can indeed be harvested to drive reactions of 

relevance to the energy and environmental sectors. Specific examples include the conversion of CO2 

into fuel, the production of H2 from water or the degradation of organic contaminants.1-4
 Heterogeneous 

photocatalysis relies on the development of photocatalysts that combine high-efficiency, low-cost, 

long-term stability and are environmentally benign. Since the discovery of TiO2 photocatalyst,5 a 

library of other materials including heterogeneous metal oxides, metal sulfides, oxynitrides and 

oxysulfides have been investigated for photocatalytic applications.1,6 More recently, the field has been 

extended to include finely tuned photocatalysts in the form of nanocomposites, which can exhibit 

synergistic properties while opening the route for: (i) high surface area, hence enhanced 

reactant/catalysts interactions via adsorption, (ii) inhibited electron-hole recombination rates, (iii) 

uniform dispersion of photocatalytically active sites and (iv) broadening of the usable light spectrum. 

These efforts are all directed towards the common goal of addressing the limitations of ‘conventional’ 

photocatalysts in terms of efficiency, cost, robustness and sustainability. 

Carbon nitride (CN), a recently developed crystalline polymeric photocatalyst7-10 contains earth- 

abundant elements of carbon and nitrogen and can be easily synthesized via the calcination of low-

cost organic precursors like urea. It is highly stable in a wide range of pH (0-14), upon heating (up to 

Page 2 of 32Catalysis Science & Technology

C
at

al
ys

is
S

ci
en

ce
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t



 
 
 

 

550 ºC) and under photo-irradiation. CN, the band gap of which is typically ca. 2.7 eV,7 has been 

used to catalyse a number of reactions and particularly: water splitting,7,10 carbon dioxide 

reduction11-13 and degradation of contaminants in water.14,15 Its purely organic nature and facile 

synthesis represent the key strengths of the material. However, CN exhibits a relatively low surface 

area of 10 - 70 m2 g-1, depending on the synthesis method. A higher porosity and surface area would 

enable greater adsorption densities of the reactants and thereby favour photocatalytic reactions. 

On the other hand, metal-organic frameworks (MOFs) are highly porous crystalline materials formed 

through the coordination of metallic ions and organic ligands. Due to their porous structure and easily 

tuneable properties, they have been applied in gas storage/separation,16 catalysis,17,18 chemical sensing19 

and drug delivery,20 etc. More recently, research has focused on the photocatalytic properties of 

MOFs.4,21 Unlike many other photocatalysts, MOFs benefit from a high surface area, a controllable 

pore size and tuneable light harvesting capacity.4 To date, several MOFs including MOF-5,22 MOF-

253-Pt,23 UiO-66,24-26 UiO-67,27 NTU-9,28 MIL-53(Fe),29,30 MIL-88(A)(Fe),31 MIL-88B(Fe),30,32 MIL-

100(Fe),32-34 MIL-101(Fe)30,33,35 and MIL-125(Ti),36,37 etc. have been studied as photocatalysts for 

water splitting, CO2 conversion, organic transformation and contaminants degradation. Like all single-

component photocatalysts, MOFs, after light excitation, is subject to electron-hole recombination at 

significant rates. Formation of heterojunction nanocomposites has proved an effective way to address 

this issue, thereby increasing photocatalytic activity.38-40 Nevertheless, hitherto only few studies on 

MOFs-based heterojunction photocatalysts have been reported.25,26,34,35,37 For example, UiO-66/CN 

was fabricated using a thermal annealing process and exhibited enhanced photocatalytic H2 

production from aqueous solutions due to the heterojunction formed.26 In another example, 

CN/MIL-125(Ti) was reported to enhance the photocatalytic degradation of dyes in aqueous 

solutions.37 
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Herein, we report the in situ synthesis of CNNSs-MOF nanocomposites for application as 

photocatalysts. The objective of this work was to take advantage of the complementary features 

of MOFs and CN while inhibiting electron-hole recombination rates and therefore address weaknesses 

observed in the past with other MOF-based photocatalysts. MIL-100(Fe), a porous iron(III) 

carboxylate, was selected as the representative MOF as it is relatively inexpensive,41 non-toxic,41 

water-/photo-stable42 and visible light responsive.35 In fact, MIL-100(Fe) has already been used for the 

photocatalytic oxidation of benzyl alcohol,41 reduction of Cr(VI)43 and photocatalytic degradation of 

Rhodamine 6G,33 methylene blue,34 and methyl orange.43 Unlike most recent studies focusing on 

CN/MOF,26,44 the nanocomposites developed as described below were not obtained via physical 

mixing. Instead, CN was first exfoliated to form two-dimensional (2D) carbon nitride nanosheets 

(CNNSs) with graphene-like structure, which have better electron mobility and more surface active 

sites compared to the bulk material.15,45,46 Therefore, these nanosheets could be used as ‘building 

blocks’ for the formation of the nanocomposites and allowed for a homogeneous distribution of 

CNNSs at the nanoscale. The MOF crystals were then grown in-situ in the presence of the CNNSs. 

This approach is similar to that adopted earlier to build MOF/graphene oxide composites as materials 

for gas adsorption.41,47-50 Although many semiconductor/MOF nanocomposites have been reported 

so far, most of the adopted semiconductors are in the form of bulk structure or nanoparticles and 2D 

semiconductor/MOF nanocomposites are still very rare up to date. Most often the ‘mixing’ of the two 

components is at the macroscale while a ‘nano-scale mixing’ would offer greater electron transfer. For 

instance, we noticed the very recent study by Shi et al. in which a CNNSs/UiO-66 composite was 

produced and used for CO2 reduction.51 The carbon nitride nanosheet and MOF were synthesized 

separately like other similar composites. While promising results were reported, we suspect thata 

more ‘intimate’ contact between the MOF crystals and the CNNSs would lead to even greater 

performance. To the best of our knowledge, our work on CNNSs/MIL-100(Fe), presented below, is the 

first example of in-situ synthesis of 2D semiconductor/MOF nanocomposite photocatalyst. The 
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nanocomposites obtained were characterized systematically and tested for the photocatalytic 

degradation of RhB to evaluate the effect of the heterojunction structure. 

 

2 Experimental 

2.1 Material synthesis 

2.1.1 Synthesis of carbon nitride and carbon nitride nanosheets 

To synthesize carbon nitride (CN), urea (20 g, molecular biology grade, Sigma-Aldrich) was placed in 

a crucible, covered with a lid and heated at 550 °C for 4 h with a ramping rate of 5 °C min-1 using a 

muffle furnace (Carbolite CWF 1200 chamber). About 1 g of yellow powder was collected. 

The CN nanosheets, referred to as CNNSs, were prepared via liquid exfoliation. Briefly, CN powder 

(80 mg) was dispersed in ethanol (40 mL) and then exfoliated for 60 min using a probe sonicator (CL-

334, Qsonica, 500 W, 90% amplitude). The resulting suspension was separated via centrifugation at 

6,000 rpm for 5 min and the supernatant was collected. The CNNSs were obtained by centrifuging the 

supernatant at 15, 000 rpm for 15 min to remove the ethanol and then dried in a 60 °C oven. 

2.1.2 Synthesis of MIL-100(Fe) 

MIL-100(Fe) was synthesized using a modified non-hydrothermal method:51 Iron(III) chloride 

hexahydrate (FeCl3· 6H2O, ACS reagent, 97%, Sigma-Aldrich, 20 mmol, 5.40 g) and benzene-1,3,5- 

tricarboxylic acid (H3BTC, 95%, Sigma-Aldrich, 18 mmol, 3.78 g) were mixed in deionized water (12 

mL) in a 100 mL bottle with a cap. The mixture was heated at 95 ºC for 18 h without stirring. The 

product obtained was washed with ethanol/H2O (v/v=1/1) and centrifuged at 6,000 rpm for 5 min until 

the supernatant was clear. The wet sample was dried firstly at 60 °C under ambient pressure and then at 

120 ºC under vacuum overnight. About 1.20 g of sample was obtained after drying. ‘MIL’ is used to 

denote the sample obtained. 

2.1.3 Synthesis of CNNSs-MIL-100(Fe) nanocomposites 
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The synthesis of the nanocomposites followed a similar approach to that of MIL. After mixing the MIL 

precursors, a specific amount of CNNSs (6, 12, 24, 60 mg for 0.5, 1, 2 and 5 wt% CNNSs in CNNSs- 

MIL, respectively) in deionized water (12 mL) was added to the MIL precursor mixture. The same heat 

treatment, washing and drying procedures to those of MIL were then applied. The samples obtained are 

referred to as CNNSs-MIL-X wt%, where ‘X wt%’ represents the weight percent of CNNSs in the 

sample. 

2.2 Materials characterisation 

Structural and textural properties: The powder X-ray diffraction (XRD) patterns were obtained from a 

XRD diffractometer (PANalytical X'Pert PRO) in reflection mode at 40 kV and 40 mA using Cu Kα 

radiation (α1 = 1.54057 Å, α2 = 1.54433 Å, weighted average = 1.54178 Å). Nitrogen sorption analysis 

was performed using a porosity analyser (Micromeritics, 3Flex) at -196 ºC. Prior to the analysis, 

samples were dried overnight at 120 ˚C under low vacuum and then further degassed overnight at 120 

ºC (around 0.2 mbar). Finally, the samples were in-situ degassed on the sorption analyzer at 120 ºC 

for 4 h (around 0.0030 mbar). The surface areas were calculated using the Brunauer-Emmett-Teller 

method.52 The total volume of pore was determined from the volume of N2 adsorbed at P/P0 = 0.97. 

The micropore volume was calculated using the t-plot method.53 The morphology of samples was 

observed by using a JEOL 2100 Transmission Electron Microscopy (TEM). The thickness of CNNSs 

was measured over an Agilent 5400 atomic force microscope (AFM) using tapping mode. The data was 

processed using a WSxM software.54 

Chemical and thermal properties: Fourier Transform-Infrared (FT-IR) spectra in the range of 600-

4000 cm-1 were recorded using a Perkin-Elmer Spectrum 100 Spectrometer equipped with an 

attenuated total reflectance (ATR) accessory. Thermogravimetric analysis (TGA) was carried out in 

the temperature range from 25 °C to 900 °C in air (100 mL min-1) using a thermogravimetric analyser 

(NETZSCH TG 209 F1). 
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Photophysical and electrochemical properties: The UV–vis diffuse reflectance spectra (UV-vis DRS) 

within 250-800 nm were obtained on a UV–vis spectrometer (Perkin-Elmer Lambda 35) equipped 

with a Labsphere RSA-PE-20 diffuse reflectance accessory. Samples (20 mg) were diluted 100 times in 

BaSO4 (ReagentPlus®, 99%, Sigma-Aldrich) and then placed in a quartz cuvette for the measurement. 

BaSO4 was used as a standard reference and the recorded reflectance was converted using the 

Kubelka-Munk equation.55 Photoluminescence (PL) emission spectra were recorded on a Perkin-

Elmer LS55 luminescence spectrometer across 400 to 750 nm at room temperature with an excitation 

wavelength of 395 nm for MIL-based samples. The excitation and emission slit width were set both at 

5 nm and scanning rate set at 500 nm·min-1. Samples were prepared in deionized water at a 

concentration of 0.2 mg mL-1 and analysed using a 1 cm path length quartz cell. Electrochemical 

impedance spectroscopy (EIS) measurements were carried out to determine the band edge/ potentials 

of MIL and CNNSs using the Mott-Schottky approach. 

EIS measurements were made in a potentiostat/galvanostat Autolab PGSTAT 100 electrochemical 

station and a three-electrode cell: the sample-deposited fluorine-doped tin oxide (FTO, TEC-8, ~8 

Ω/sq, 3 mm) slide as the working electrode, 2 cm2 Pt sheet as the counter electrode and AgCl/Ag 

(saturated KCl) as the reference electrode. The aqueous electrolyte was Na2SO4 solution (0.2 M) de-

oxygenated by bubbling with N2 for 30 min. For electrode preparation, the FTO slide was cleaned 

with acetone and de-ionized water and then dried in 60 ºC oven. The conductive side of the FTO 

substrate was then covered fully with epoxy resin except for a 1 × 1 cm2 of working area in one end 

and another 1 × 1 cm2 for the electrical connection. The sample slurry (10 mg sample in 1 mL ethanol) 

was dropped on the working area of the FTO slide and dried at 60 ºC in an oven.  

2.3 Photocatalytic evaluation 

Dye degradation was selected as a way to test the photocatalytic performance of the nanocomposites. In 

a typical experiment, 10 mg of sample was dispersed in 50 mL of Rhodamine B (RhB, Dye content 
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97 %, Sigma-Aldrich) aqueous solution (50 mg L-1). The suspension was stirred in the dark for 2 h to 

reach the adsorption equilibrium prior to photocatalytic reaction. Hydrogen peroxide (H2O2, 30 wt%, 

Sigma-Aldrich) was added to the suspension (0.01 M, 50 mL) before turning on the light. A 150 W 

xenon arc lamp (LOT-Oriel Instruments) equipped with a 400 nm long pass filter (to remove 

ultraviolet light) and a water filter (to remove infrared light) was used as the visible light source. At 30 

minute intervals, 1 mL of the suspension was withdrawn using a syringe and filtered through a 0.2 

µm PTFE syringe filter to remove the photocatalyst. The filtrate was diluted five times with deionized 

water and then Rhodamine B concentrations were determined using a UV-vis spectrometer (Perkin-

Elmer Lambda 40) by measuring the peak intensity at 554 nm. For control studies, experiments were 

also conducted either in the dark, or without photocatalyst or without H2O2. The relative standard 

deviation for the photocatalytic tests was 4.3%.  

 

3 Results and discussion 

As illustrated in Scheme 1, CNNSs were synthesized through a two-step calcination-exfoliation 

method using urea as a precursor. The as-prepared CNNSs were then mixed with MIL-100(Fe) 

precursors for the in situ synthesis of CNNSs-MIL nanocomposites under mild conditions (95 

ºC). Prior to evaluating the photocatalytic properties of the nanocomposites, the synthesized materials 

were first characterized in order to confirm their structure and chemistry. First, the crystalline structure 

of the parent materials as well as that of the nanocomposites was analysed. As seen in Figure 1, the 

inter-layer stacking peak intensity of CNNSs at 27.5º ((002) plane) was significantly reduced, 

indicating the exfoliation of CN. The MOF sample exhibited the expected pattern for MIL-100(Fe) 

although its crystallinity is lower than the simulated patterns due to the low- temperature synthesis at 

95 ºC.56 A similar pattern was observed for the CNNSs-MIL nanocomposites. This confirmed that a 5 

wt% CNNSs loading did not prevent the formation of the MOF crystals. It is interesting to note that in 
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previous work on graphene oxide (GO)/MIL composites,41 the crystallinity of the MIL component 

was affected in the presence of more than 4 wt% GO. This was attributed to a distortion of MIL 

caused by the interactions between the oxygen functional groups of GO and the metallic sites of 

MIL. Unlike GO, the main surface functional groups of CNNSs are uncondensed amino groups.9 

It is expected that these groups exhibit weaker interactions with the iron sites. Since CN is 

exfoliated, no peak representative of CNNSs was evident in the XRD patterns of the nanocomposites 

due to its weak intensity. 

 

 

Scheme 1. Overview of the synthesis procedure of CNNSs-MIL nanocomposites. First step: 

synthesis of bulk CN via calcination of urea. Second step: exfoliation of bulk CN via sonication. Third 

step: synthesis of the MOF in the presence of dispersed CNNSs. Abbreviations: CN - bulk carbon 

nitride; CNNSs - carbon nitride nanosheets; H3BTC - benzene-1,3,5-tricarboxylic acid; MIL - MIL-

100(Fe). 
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Figure 1. XRD patterns of bulk carbon nitride (CN), carbon nitride nanosheets (CNNSs), MIL-

100(Fe), simulated MIL-100(Fe) (CCDC 640536) and the nanocomposites of CNNSs and MIL-

100(Fe) with varying contents of CNNSs. 

 

An important aspect of this study was to introduce porosity and enhance the surface area of the 

photocatalysts as a way to enable greater interactions between the reactants and the catalysts. 

Therefore, the porosity/surface area of the parent materials and nanocomposites were analysed using 

N2 sorption. The N2 isotherms of MIL, CNNSs, bulk CN and the various nanocomposites are shown 

in Figure S1. The textural parameters were calculated from the isotherms and the results are 

summarized in Table 1. The isotherms of bulk CN and CNNSs follow the type IV model, typical of 

mesoporous materials. Although no template was used to synthesise CN, irregular mesopores could 

be created via the release of the ammonia/carbon dioxide gas during the calcination of precursor 

urea. The specific surface area of CN and CNNSs were 70 m2 g-1 and 85 m2 g-1, respectively. The 
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surface area of CN was already high compared to that typically measured for CN synthesized using 

other precursors (e.g. melamine, cyanamide or dicyanamide) – usually around 10 m2 g-1.57-59 

Exfoliation led to a noticeable, albeit moderate, enhancement in porosity. This is due to the fact that 

CN synthesized from urea exhibits additional pores to those located between the layers. This is in 

contrast to CN synthesized from other precursors which typically exhibits a more condense 

structure with the porosity located purely in the interlayer space. Owing to the presence of pores in 

CN (from urea), the increase in surface area as a result of exfoliation was less pronounced. Typical 

type-I isotherms were observed for MIL as well as the nanocomposite samples. The surface area of 

MIL is found to be 1225 m2 g-1, which is in the reasonable range of reported surface area for MIL.60 

As seen in Table 1, increasing the CNNSs loading caused a decrease in the surface area and volume of 

pores of the composites compared to that of the parent MOF. Nevertheless, their surface area remained 

higher than 1000 m2 g-1. An indirect confirmation of the small decrease in porosity when building 

the nanocomposites was the minor decrease in adsorption capacity (for RhB) from 26.3% for MIL 

to 26.0% for CNNSs-MIL-1 wt%. The measured surface areas of the nanocomposites were compared 

to those of the corresponding physical mixtures. The latter were calculated taking into account the 

content of the parent materials in the composites and the surface area of the pure parent materials, e.g.: 

����,����	
��

�	��% = 0.01 × ����,����	 + 0.99 × ����,��
 

As shown in Table 1, the measured surface areas were slightly lower than the calculated ones. 

A potential explanation could be that a fraction of pores in the MOF were blocked by CNNSs. 

Another possibility is that the presence of the CNNSs in the mixture of precursors used to synthesise 

the MOFs, while not preventing, interfered with the formation of the MOF crystals. TEM was used to 

show the morphology/size of CN, CNNSs, MIL and CNNSs-MIL-1 wt% particles. The results are 

presented in Figure 2 and Figure S3. As seen from Figures 2A and 2B, the lateral size of CN 

particles largely decreased upon exfoliation. The MIL particles were clearly visible in the composite 
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(Figure 2D) but the presence of CNNSs was more difficult to detect. This is likely due to the very low 

CNNSs content in the composite. 

 

Table 1. Textural parameters of bulk carbon nitride (CN), carbon nitride nanosheets (CNNSs), 

MIL-100(Fe) and the nanocomposites of CNNSs and MIL-100(Fe) with varying contents of CNNSs. 

These parameters were derived from the N2 sorption isotherms obtained at -196 oC.  

Samples 

 

SBET 

m
2
 g

-1
 

SBET-cal
a
 

m
2 
g
-1
 

Vtot 

cm
3
 g

-1
 

Vmeso 

cm
3
 g

-1
 

Vmicro
b
 

cm
3 
g
-1
 

CNNSs 85 - 0.756 0.756 nil 

CN 70 - 0.405 0.404 nil 

MIL 1225 - 0.709 0.331 0.378 

CNNSs-MIL-0.5 wt%  1122 1219 0.620 0.249 0.371 

CNNSs-MIL-1 wt%
 1096 1213 0.554 0.170 0.384 

CNNSs-MIL-2 wt%
 1013 1202 0.524 0.210 0.314 

CNNSs-MIL-5 wt%
 1006 1168 0.515 0.212 0.303 

a Calculated BET surface area based on the hypothetical physical mixture of CNNSs and MIL. b Micropore volume was 

calculated from the t-plot method. 
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Figure 2. TEM images of: (A) carbon nitride (CN), (B) carbon nitride nanosheets (CNNSs), (C) 

MIL-100(Fe) and (D) CNNSs-MIL-1 wt% nanocomposite. 

 

The presence of CNNSs in the nanocomposites was further confirmed using FT-IR 

spectroscopy (Figure 3). As expected, the same vibrational bands were observed for CN and CNNSs, 

indicating that while the structures of the two materials were different, the exfoliation did not 

introduce any major chemical changes. The presence of CNNSs in the nanocomposites was evident 

through the band at 800 cm-1, which corresponds to the breathing mode of the triazine ring.61 
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However, this band was not visible in the spectrum of CNNSs-MIL-0.5 wt%, probably because of 

the low CNNSs content in that sample. 

 

 

Figure 3. ATR FTIR spectra of bulk carbon nitride (CN), carbon nitride nanosheets (CNNSs), 

MIL-100(Fe) and the nanocomposites of CNNSs and MIL-100(Fe) with varying content of CNNSs. 

 

Figure 4 shows the results of thermogravimetric analyses of CNNSs, MIL and their composites in air. 

CN was thermally stable up to 550 ºC, while the onset temperature was shifted to slightly lower 

temperatures for CNNSs. This was probably due to the introduction of defects/reduction of particle 

size caused by the exfoliation, which made CNNSs more prone to thermal combustion. Two-step 

weight loss were observed for MIL: (i) removal of water molecules bound to the iron trimmers 

weight loss (~10 wt%) from room temperature to 310 ºC and (ii) combustion of H3BTC ligands of 
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the MOF (~60 wt%) between 310 ºC and 400 ºC.51,56 Based on the molecular structure of MIL: 

Fe3O(H2O)2OH[C6H3(CO2)3]2· nH2O, n was determined to be 4. The theoretical content of H3BTC in 

MIL based on this molecular structure is 57.4 wt%, which is consistent with the experimental value 

from the thermogravimetric analysis (60.0 wt%). Thermogravimetric analysis was also carried out for 

the pure ligand (H3BTC) and the mixture of FeCl3·6H2O with H3BTC (H3BTC wt% = 41%), the same 

weight ratio to that used for MIL synthesis. The weight loss between 310 ºC and 400 ºC for 

FeCl3·6H2O/H3BTC mixture was 44 wt%, significantly lower than that of MIL (60 wt%). In addition, 

their TGA patterns are also different, indicating the chemical and composition changed from the 

precursors to MIL. As shown in Figure 4 and Figure S4, similar TGA patterns were found for the 

nanocomposites with different CNNSs contents. Interestingly, no mass decrease occurred for the 

nanocomposites at the temperature corresponding to the combustion of CNNSs. Although CNNSs are 

more stable than MIL, the presence of iron-containing MIL could potentially catalyse the 

decomposition of CNNSs under high temperature leading an ‘earlier’ decomposition. The 

decomposition of CN in the presence of metal ions (i.e. Ni2+) via high temperature treatment has been 

reported previously.10 
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Figure 4. TGA curves of bulk carbon nitride (CN), carbon nitride nanosheets (CNNSs), MIL-100(Fe) 

and the nanocomposite CNNSs-MIL-1 wt%. Comparison is made with the physical mixture of 

FeCl3·6H2O+H3BTC (H3BTC wt% = 41 %). The measurements were made in air. 

 

PL spectroscopy was used as a way to probe the capacity of the nanocomposites to prevent electron- 

hole recombination. The PL emission spectra of MIL and CNNSs-MIL nanocomposites were recorded 

under excitation wavelengths of 395 nm. As seen in Figure 5A, CNNSs and MIL exhibited an emission 

peak at 440 nm, 554 nm, respectively. As CNNSs were added to form the nanocomposites, the 

emission peak remained at the same wavelength but its intensity decreased significantly (Figure 5B). 

These results demonstrated that rates of electron-hole recombination in the CNNSs-MIL 

nanocomposites decreased.62 It is interesting to note that the physical mixture of CNNSs and MIL (1 

wt%) also exhibited a decreased peak intensity, indicating that the physically mixed CNNSs interacted 

with MIL particles. However, the PL intensity reduction of the physical mixture was not as 
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pronounced as that observed for the nanocomposites. This must be due to the better dispersion 

achieved via in-situ synthesis compared to that obtained via physical mixing. 

 

 

Figure 5. (A) PL spectra of MIL-100(Fe), the nanocomposites of CNNSs and MIL-100(Fe) with 

varying content of CNNSs, and physical mixture of CNNSs with MIL-100(Fe) (1 wt% of CNNSs); (B) 

Zoom-in of (A) without the spectrum of CNNSs (removed for greater clarity). 
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To understand how the formation of the nanocomposite could prevent electron-hole recombination, it 

was important to determine the electronic configuration of the materials and particularly their band 

gaps and band edge energies. For this, UV-vis DRS and electrochemical impedance 

spectroscopy (Mott-Schottky approach) were used, respectively. As seen in Figure 6, the absorption 

edge of CNNSs blue shifted by about 20 nm compared to bulk CN due to the quantum 

confinement effect.45,46 Correspondingly, CNNSs became lighter in colour compared to bulk CN. 

MIL strongly absorbed visible light (400-600 nm), as evidenced by its dark brown sample colour. The 

nanocomposites exhibited a similar absorbance pattern to that of MIL. The CNNSs-MIL-1 wt% 

showed the strongest light absorbance, while a lower (0.5 wt%) or higher loading content (2 and 5 

wt%) increased the light absorbance only slightly or even decreased the light absorbance, the trend of 

which was similar to that reported previously.35 This change of light absorbance will affect the light 

harvesting capacity of the nanocomposites, thereby affecting their photocatalytic performance. From 

the UV-Vis DRS spectra, the band gaps of CNNSs and MIL were calculated to be 2.88 eV and 1.97 

eV, respectively. The Mott- Schottky plots (Figure S5) were used to estimate the flat band potential 

and subsequently the conduction band.9,34,43,63 It was found that capacitance values had a marginal 

frequency dependence. However, deviation from ideal behaviour was expected due to the nature and 

ways of material synthesis.63 The conduction band (CB) of CNNSs and MIL were determined to be -

0.92 V and -0.24 V, respectively, at pH 7. Based on these values, the band structures of CNNSs and 

MIL were determined and a schematic diagram is shown in Figure 7. 
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Figure 6. UV-vis DRS spectra of bulk carbon nitride (CN), carbon nitride nanosheets (CNNSs), MIL-

100(Fe) and the nanocomposites of CNNSs and MIL-100(Fe) with varying contents of CNNSs. 
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Figure 7. Band structure of the nanocomposites of CNNSs and MIL. Potential inhibition of electron-

hole recombination is highlighted. A mechanism for the photocatalytic degradation of Rhodamine B 

using the nanocomposite is proposed. Abbreviations: CB - conduction band; VB - valence band. 

 

As highlighted in Figure 7, a typical type-I straddling heterojunction between CNNSs and MIL 

could be formed in the nanocomposites.40 The mechanism of organic molecules (e.g. Rhodamine B) 

degradation was proposed and is indicated on Figure 7. The various reactions involved in the process, 

along with their corresponding redox potentials, are described by Equations (1) to (13). Under visible 

light irradiation, electrons could be excited from the valence band (VB) of CNNSs to its conduction 

band (CB) and holes were simultaneously generated in the VB (Equation (1)). These electrons could 

then be easily transferred from the CB of CNNSs to that of MIL, the former being much more 

negative than the later, thereby separating electrons from holes in CNNSs. The accumulated electrons 
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in the CB of MIL could react with H2O2 and form hydroxyl radicals (OH·) (Equation (2)),64 which 

are highly efficient for degradation of organics (Equation (6)).65 The VB energy of CNNSs is very 

close to that of MIL, leading to less favourable hole transfer between their VBs.66 Therefore, the holes 

in the VB of CNNSs were separated from electrons and could also be used for degradation of 

organics directly due to their strong oxidizing capability (Equation (7)).34,67 It is however expected 

that the oxidation of organics using holes competes with the scavenging of holes by H2O2 (Equations 

(8), (10) and (12)).64 Without forming nanocomposites, both MIL and CNNSs would be prone to 

electron-hole recombination. Besides, the light absorbance and surface area of CNNSs was much 

weaker/lower than that of MIL (Figure 6 and Table 1). In other words, the formation of the CNNSs-

MIL nanocomposites allowed stronger light absorbance, higher surface area and more efficient 

electron-hole separation, which eventually led to a better photocatalytic performance. 

 

                                absorption  

recombination
   ( , )

CB VB
Semiconductor h Semiconductor e hν − ++ →←                                      (1) 

                                            2 2 2H O H e H O OH+ − •+ + → +←                                                            (2) 

@ 298 K: ( ) ( )
2 2

2 2/
 (SHE) / V 0.9881 0.0591 0.0591log 0.0591log

H O HO
E pH H O HO•

•
= − + −  (3)

  

                                                      2OH H e H O• + −+ + →←                                                               (4) 

@ 298 K: ( )
2/

 (SHE) / V 2.5384 0.0591 0.0591log
HO H O
E pH HO•

•
= − +  (5)

  

 Products
OH

RhB OHν •

•+ →  (6) 

 Products
VB

VBh
RhB hν +

++ →  (7) 
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 2 2 2 VBHO H H O h• + ++ → +←  (8) 

@ 298 K: ( ) ( )
2 2 2

2 2 2/
 (SHE) / V 1.4359 0.0591 0.0591log 0.0591log

HO H O
E pH HO H O•

•
= − + −  (9) 

 2 2 VBO H HO h+ • ++ → +←  (10) 

@ 298 K: ( )
22 2

2/
 (SHE) / V 0.0460 0.0591 0.0591log 0.0591log OO HO

E pH HO p•

•
= − − − +  (11) 

 2 2 22 2 VBO H H O h+ ++ → +←  (12) 

@ 298 K: ( )
2 2 2 2/ 2 2 (SHE) / V 0.6949 0.0591 0.0296log 0.0296logO H O OE pH p H O= − + −   (13) 

 

To evaluate the performance of the heterojunction structure formed, the nanocomposites were tested 

for the degradation of Rhodamine B (RhB). Their performances were compared to those of the parent 

materials, as well as that of the physical mixture of CNNSs and MIL. In addition, control studies were 

conducted without light or catalyst or hydrogen peroxide. The results are displayed in Figure 8A. The 

absence of light or catalyst resulted in no degradation, indicating the removal of RhB occurred by 

photocatalysis. Without H2O2, only 35% of RhB was degraded within 4 hours, while 100% 

degradation was reached after adding H2O2. As discussed above, two mechanisms of RhB 

degradation could be proposed: (i) direct reaction with holes in the VB of CNNSs and (ii) 

oxidation by OH· radicals that formed from the reaction of electrons in MIL’s CB with H2O2. The 

significant enhancement of RhB degradation after addition of H2O2 implied that the latter pathway 

was probably dominant.67 The photocatalytic degradation results in Figure 8B show that separately 

CNNSs and MIL degraded respectively only 55% and 68% of RhB after 4 h of visible light 

irradiation. In comparison, CNNSs- MIL-0.5 wt% and CNNSs-MIL-1 wt% exhibited 77% and 100% 

removal, respectively. However, the performance decreased as the CNNSs loading was increased 

Page 22 of 32Catalysis Science & Technology

C
at

al
ys

is
S

ci
en

ce
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t



 
 
 

 

beyond 1 wt%. This could be due to the presence of stacked CNNSs, which limited the homogeneous 

dispersion of the nanosheets, thereby leading to hole-electron recombination and decreasing light 

absorbance and surface area. Interestingly, the physical mixture containing 1 wt% of CNNSs 

performed better than the parent materials. However, the improvement was not as pronounced as that 

measured for the nanocomposites. This supports our hypothesis that the presence of a homogeneous 

well-mixed structure was the key. 
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Figure 8. (A) Photocatalytic degradation of RhB under different control conditions. (B) Photocatalytic 

degradation of RhB over CNNSs, MIL, the nanocomposites of CNNSs and MIL-100(Fe) with varying 

contents of CNNSs, and the physical mixture of CNNSs and MIL (1 wt% of CNNSs). Conditions for 
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(A) and (B): 10 mg catalyst in 50 mL RhB aqueous solution (50 ppm), 0.01 M H2O2, Light source: 

150 W Xe lamp equipped with 400 nm long pass filter. 

 

To verify the stability of the nanocomposites upon light irradiation, CNNSs-MIL-1 wt% was 

characterized before and after photoreaction using XRD, FTIR and TGA. As shown in Figure 9A, the 

major XRD peaks remained, but their intensities decreased significantly, indicating that the structure 

of the composites was affected. No obvious change in the FTIR spectra (Figure 9B) was detected, 

indicating the functional groups were not affected by photo-irradiation. The TGA curve (Figure 9C) of 

the exhausted sample exhibited a larger weight loss below 310 ºC compared to the freshly synthesized 

composite. This could be due to the removal of adsorbed water and/or small organic molecules 

derived from RhB degradation, or possibly come from the decomposition of the organic ligand in the 

MOF, the structure of which may have been affected after the reaction (Figure 9A). 
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Figure 9. XRD patterns (A), FTIR spectrum, (B) and TGA curves (C) of CNNSs-MIL-1 wt% before 

(BR) and after (AR) photocatalytic reaction. 
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4 Conclusions 

We have reported the in situ synthesis of carbon nitride nanosheets/metal-organic framework 

MIL-100(Fe) nanocomposites via a facile non-hydrothermal method. The CNNSs did not affect the 

MIL synthesis, while the strong light absorbance and high surface area of MIL were mainly retained 

in the nanocomposites. As a result, heterojunctions were formed in the nanocomposites exhibiting 

better electron-hole separation and therefore improved performance for dye degradation (up to 1.5 to 2 

times higher) compared to the parent materials. The good dispersion of the CNNSs within the MOF 

matrix as well as the intimate contact between the nanosheets and the MOF particles governed the 

performance of the composites and enabled a significant improvement compared to the physical 

mixture. In addition, we found that the mechanism of hydroxyl radicals degradation outperformed the 

other mechanism of hole degradation. The findings here could serve as a basis for further development 

of photocatalysts involving MOF-based heterojunction and support the importance of the in-situ 

synthesis approach when preparing such composites. 
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