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Based on a generalized form of the second law of thermodynamics, in which the temperature-
dependent energy levels of a system are appropriately included in the entropy generation, we show
that the effect reasonably appears in efficiencies of thermodynamic processes.
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I. INTRODUCTION

The equality expression of the Clausius inequality is
referred to as the entropy balance equation and its use
is nowadays common in chemical engineering and me-
chanical engineering [1–3]. The equality was originally
articulated by Clausius [4, 5] and its importance was
later recounted by Tolman and Fine [6]. Our present fo-
cus is on the entropy generation SG associated with any
irreversible processes when a system has temperature-
dependent energy levels. Thus, the total entropy change
dS is balanced by the entropy transferred with heat δQ
through the boundary with temperature T plus the gen-
erated one; dS = δQ/T + SG. The value of SG depends
on the operational path that the system experienced.

Electronic energy levels that determine electronic
properties of solids depend on temperature (e.g. [7, 8])
and its statistical mechanics has been addressed [9]. It
is well known that the bandgap in semiconductors de-
pends on temperature [10] and the Varshni relation [11]
provides the form (for a recent refined formulation, see
[12] and references therein). Indeed, the experimental
evidence of temperature-dependent energy levels in con-
ductivity and mobility has been reported [13]. Also, its
direct effect on the Peltier heat, has been discussed based
on the Helmholtz free energy ([14–16] and references cited
therein).

Thus, it is natural to expect that the temperature-
dependent energy levels in materials should contribute
to entropy generation in irreversible heat transfer and
thermodynamic cycles. We aim at presenting the explicit
formulation of the second law equality in such situations.
The inclusion of the effect leads to the rectification of
efficiencies in thermodynamic processes.

II. A GENERALIZED SECOND LAW

The generalized second law:

dS =
dU

T
− 1

T

⟨dEl

dT

⟩
dT, (1)
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emerges from the explicit inclusion of temperature-
dependent energy levels El(T ) in the partition function∑

l exp(−El(T )
kT ) in statistical mechanical ensemble the-

ory [7, 8] and it is also derived in modeling communi-
cation channels as a thermal system [17, 18]. It pro-
vides a consistent temperature irrespective of the num-
ber of particles in the system [19]. The mean value de-
noted by brackets is understood by the statistical average
with an equilibrium distribution. Since the internal en-
ergy is the ensemble average of the system microstates;
U = ⟨El(T )⟩ thus ⟨dEl/dT ⟩ ≠ d⟨El⟩/dT = dU/dT , the
quantity ⟨dEl/dT ⟩ does not represent the heat capacity.

The above relation Eq. (1) holds regardless of whether
or not a process is reversible. Therefore, in irreversible
processes, the perfect differential dU must read as a sum
of heat exchanged (δQ)irr and work exchanged (δW )irr

so that we have

dS =
(δQ)irr

T
+ SG, SG =

(δW )irr

T
− 1

T

⟨dEl

dT

⟩
dT. (2)

The entropy generated within the system must be pos-
itive SG > 0; it means that the irreversibly exchanged
work is larger than the quantity ⟨dEl/dT ⟩dT . The above
relation implies also that a system has the entropy gen-
eration solely due to the temperature-dependent energy
levels even when a process is reversibly done (i.e., un-
der no exchanged work), or when a process proceeds at
constant volume. That is, since entropy is neither pro-
duced nor extinguished at the boundary of the two con-
tacted systems, the above relation tells us that the en-
tropy change occurs also via the internal temperature
dependency in addition to the transferred entropy asso-
ciated with heat through the boundary.

In terms of the effective heat δQ′ = δQ− ⟨dEl/dT ⟩dT
[20], we can rewrite the law as the usual form dS = δQ′/T
for reversible processes, where dU is regarded as δQ =
(δQ)rev with no exchanged mechanical work.

III. APPLICATIONS

The discrimination between reversible and irreversible
flow of heat into and out of a system is essential, i.e.,
(δQ)rev ̸= (δQ)irr as the dissipated work (or lost work,
e.g. Ref. [22, 23]) is defined by (δW )diss = (δW )irr −
(δW )rev = (δQ)rev − (δQ)irr. The sign convention for
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the work here: positive when it is done on the system
(negative when performed by the system). Therefore, it
is also (δW )diss = (−(δW )rev) − (−(δW )irr).

A. Heat transfer

Heat transfer occurring in a finite temperature differ-
ence is an irreversible process. We consider the entropy
generation associated with it, say, along a conducting de-
vice. Therefore, the effective heat that the device receives
at the boundary of a higher temperature source (Th) is
given as

(δQ′
h)irr = (δQh)irr −

⟨dEl

dT

⟩
Th

(dT )h (3)

where (dT )h is a temperature difference induced by heat
transfer at the boundary of the higher temperature side.
It is measurable if we measure the Seebeck elective motive
force dVh across the device boundary and use the Seebeck
coefficient by the relation S = dVh/(dT )h. The effective
heat (δQ′

h)irr simply moves to a lower temperature side
(Tc) irreversibly. Thus, the energy balance reads;

(δQ′
h)irr + (−δQ′

h)irr = 0. (4)

Because the heat passes through and reaches the lower
temperature side with no entropy change, the entropy
balance reads

0 =
(δQ′

h)irr

Th
− (δQ′

h)irr

Tc
+ SG. (5)

From the above two balance equations, the entropy gen-
eration is provided as

SG = (δQ′
h)irr

(
1
Tc

− 1
Th

)
=

[
(δQh)irr −

⟨dEl

dT

⟩
Th

(dT )h

]
Th − Tc

ThTc
, (6)

where we have substituted Eq. (3). If no temperature
dependence exists in energy levels, we recover the usual
entropy generation SG = (Th − Tc)(δQh)irr/(ThTc) [1–
3, 22, 24].

B. Heat engine

In a context of the thermoelectric power cycle, it can
be regarded as a heat engine with electrons serving as
the working fluid. The balance equations in terms of the
effective heat for a cycle are{

0 = dU = (δQ′
h)irr + (δWh)irr + (δQ′

c)irr + (δWc)irr

0 = dS = (δQ′
h)irr

Th
− (δQ′

c)irr

Tc
+ SG.

(7)

where (δWh)irr and (δWc)irr are work done irreversibly
from the higher and lower temperature sources, respec-
tively. The total work that the system gives to the

sources during the cycle −(δW )irr becomes −(δWh)irr −
(δWc)irr and it can be expressed by Eq. (7) as

−(δW )irr = (δQ′
h)irr

(
1 − Tc

Th

)
− TcSG. (8)

If the cycle is done reversibly, the generation of entropy
is null SG = 0 and replacing the suffixes by rev, we have
the usual Carnot form (δW )rev = (δQh)rev(1 − Tc/Th)
in which (δQh)rev is heat reversibly transferred out of
the higher temperature source. We have therefore the
thermal efficiency η for this engine defined as the ratio of
the actual work and the invested effective heat:

η =
−(δW )irr

(δQ′
h)irr

= 1 − Tc

Th
− TcSG

(δQ′
h)irr

= 1 − Tc

Th
− TcSG

(δQh)irr − ⟨dEl

dT ⟩Th
(dT )h

.(9)

Since the Carnot cycle has maximum in the efficiency
among all types, we find that this expression indicates
that a relation (δQh)irr/(dT )h > ⟨dEl

dT ⟩Th
has to be sat-

isfied.

We next consider the thermodynamic efficiency ϵ (e.g.
[24]), which is different from the thermal efficiency η and
is quantified by the ratio of the practical work −(δW )irr

and its maximum that the system can give. The maxi-
mum value is equivalent to the reversible work −(δW )rev:

ϵ =
−(δW )irr

−(δW )rev
=

(δQ′
h)irr

(
1 − Tc

Th

)
− TcSG

(δQh)rev

(
1 − Tc

Th

)
=

(δQ′
h)irr

(δQh)rev
− TcThSG

(Th − Tc)(δQh)rev
.(10)

Note that the first term in the second line becomes
(δQh)irr/(δQh)rev if the energy levels of the system does
not depend on temperature (i.e. the prime mark on δQh

is dropped) and it reduces to unity as per the assumption
in many textbooks.

In practice, measuring work in reversible processes
needs infinite time and real processes involve irreversible
work (δW )irr which can be measurable in finite time. A
way out of inferring the amount of the reversible work
from the irreversible counterpart is invoking a relation
known as the Jarzynski equality [25] that holds as long
as fluctuations are not large; ⟨e−(δW )irr/kT ⟩ = e−∆F/kT ,
where ∆F is the Helmholtz free energy difference be-
tween initial and final states and k is the Boltzmann
constant. The ∆F is equivalent to the reversible work
(δW )rev done on the system during the process. The
brackets denote taking the arithmetic mean over the
number of trials after taking the statistical mean of the
factor over possible states. This equality relation was em-
ployed to derive a rectification of the second law [26, 27].
Substituting Eq. (8) into the equality and rearranging

2
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it, the reversible work can be expressed as

−(δW )rev = kTh ln
⟨
e
− (δW )irr

kTh

⟩
= kTh ln⟨exp

[
(Th − Tc)

(δQ′
h)irr

Th
− TcSG

]
⟩.

Hence, combining this with Eq. (3) we have

ϵ =
ηC(δQ′

h)irr − TcSG

kTh ln⟨exp [ηC(δQ′
h)irr]⟩

. (11)

where ηC denotes the Carnot thermal efficiency 1−Tc/Th.

C. Heat pump

Peltier devices function as a heat pump by the Peltier
effect; electrons carry heat from cold to hot junctions
(e.g. [28, 29]). In this section, we address a measure
of performance for a heat pump device, which transfers
heat from a lower temperature source to a higher one.
The coefficient of performance (COP) is a quantity of
a significant importance in a refrigerator. We find that
the expression of the COP defined below is not affected
by the existence of the temperature dependent energy
levels. The system absorbs an effective heat (δQ′

c)irr ir-
reversibly from a lower heat source with temperature Tc

and receives the irreversible work (δW )irr, then delivers
an effective heat (δQ′

h)irr irreversibly to a higher tem-
perature side with Th. Accordingly, we have the balance
equations for energy and entropy:{

0 = dU = (δQ′
c)irr + (δW )irr + (−(δQ′

h)irr)
0 = dS = (δQ′

c)irr

Tc
+ −(δQ′

h)irr

Th
+ SG.

(12)

Thus, the irreversibly received work (δW )irr =
(δQ′

h)irr − (δQ′
c)irr is

(δW )irr = −
(

1 − Th

Tc

)
(δQ′

c)irr + ThSG. (13)

Hence, the expression of the COP defined as the ratio of
the absorbed heat and the received work [24] contains no
explicit temperature-dependent energy levels:

COP =
(δQ′

c)irr

(δW )irr
=

Tc

Th − Tc

(
1 − ThSG

(δW )irr

)
. (14)

Of course, this implies that the maximum performance
Tc/(Th − Tc) attains when the cycle is done reversibly
(SG = 0).

IV. SUMMARY AND CONCLUSIONS

Temperature-dependent energy levels in materials af-
fect transport properties such as the thermoelectric coef-
ficients and this fact should be appropriately taken into
account in a rigorous way for the irreversible processes
that occur in the devices. A formulation of the second
law which is suitably reflected by this effect in materi-
als operated in a thermodynamic environment leads to
a new direction. The efficiencies of thermodynamic pro-
cesses are rectified accordingly. This study might offer
a possible theoretical ground for evaluating entropy gen-
eration in nanoengines based on temperature-dependent
energy levels.
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