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Universal Statistical Fluctuations in Thermodynamics
and Kinetics of Single Molecule Recognition†

Xiliang Zheng,a Jin Wang,ab∗

We investigated the main universal statistical distributions of the single molecular recognition. The
distributions of the single molecule binding free energy spectrum or density of states were charac-
terized in the ligand-receptor binding energy landscape. The analytical results are consistent with
the microscopic molecular simulations. The free energy distribution of different binding modes
or states for a single molecule ligand receptor pair is approximately Gaussian near the mean
and exponential at the tail. The equilibrium constant of a single molecule binding is log-normal
distributed near the mean and power law distributed near the tail. Additionally, we found that the
kinetics distribution of a single molecule ligand binding can be characterized by log-normal around
the mean and power law distribution near the tail. This distribution is caused by exploration of the
underlying inhomogeneous free energy landscape. Different ligand-receptor binding complexes
have the same universal form of distribution but differ in parameters.

1 Introduction
Understanding how two biomolecules recognize each other is
a fundamental issue of molecular biology1,2. Meanwhile, it is
also a central topic in drug design and pharmaceutical industry3.
The affinity and the specificity are two major issues related to
biomolecular binding. The former represents the binding strength
and stability of binding complexes. The latter is used to discrimi-
nate the specific binding complexes from the non-specific ones4,5

even if they have roughly the same stability (affinity). From mi-
croscopic point of view, the binding complex such as a particu-
lar ligand receptor pair can be seen as a network of atoms or
residues interacting with each other. The binding process involves
many possible binding modes or conformational states with the
corresponding binding free energy. Thus a free energy spectrum
for those binding modes or states is emerged from a particular
pair of ligand receptor binding1.00,1.00,1.00rgb]1.00,0.00,0.00,
1.00,1.00,1.00rgb]1.00,0.00,0.00the free energy of native bind-
ing mode gives the affinity of the binding. For different ligands,
we naturally have different affinities as well as free energy bind-
ing spectrums for the same receptor. Although affinity of the bind-
ing is often studied, the statistical nature of the binding free en-
ergy spectrum has not been fully explored yet6for a ligand recep-
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tor pair. It is very interesting to see how the statistical distribu-
tions for the binding free energy spectrum change with different
ligands targeting the same receptor.

In addition to the requirement of the affinity for binding,
the intrinsic specificity discriminating different modes of bind-
ing should be taken into consideration6,7.(See panel B of Figure1
). The high intrinsic specificity leads to funneled binding energy
landscape, which guarantees the stability and specificity during
the binding process.

1.00,1.00,1.00rgb]1.00,0.00,0.00Our studies in this work are
based on the folding and binding energy landscape theory7–16.
The former had been proposed and proved to be successful for
almost thirty years8–11,17,which assumed that the protein fold-
ing progresses through multiple pathways rather than a single
one towards the bottom of the funnel. The decrease in total
energy of the system with reducing conformational space natu-
rally leads to the underlying funneled energy landscape of protein
folding. For molecular recognition, the direction of spontaneous
association for the system of receptor-ligand requires lowering
the free energy with the reduction in the conformational, rota-
tional/translational entropy of the receptor, ligand and solvent
complex. Thus the binding energy landscape of the receptor-
ligand system should also be funnel-shaped, mathematically sim-
ilar to folding. For folding, because the solvent molecules in the
environment squeeze the single polypeptide chain to collapse into
molten globule intermediates, the protein is subject to the fast hy-
drophobic collapse powered by the entropy of the system. Anal-
ogously, for binding, the initial collisions or interactions between
the receptor and the ligand will inevitably strip water/solvent
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molecules from the receptor-ligand interfaces, with the release
of the solvent molecules into the environment and the increase of
the solvent entropy. Therefore, this process is likewise driven by
entropy of the system, which mostly occurs in the lock and key
model/scenario.

1.00,1.00,1.00rgb]1.00,0.00,0.00However, due to the lack of
the chain connectivity in the intermolecular binding, the number
of conformations in binding is substantially larger than in folding.
Binding funnels can therefore be more complicated. Of particu-
lar note is the configurational entropy. For binding, the slope
of the entropy is subject to be reduced under the conditions of
the geometrical constraints. The entropy has certain quantitative
differences compared to folding in regard to chain connectivity,
rotation and translation of the system of interest. In addition, the
implications of folding funnel concept for protein function are in-
herently limited. This is because stability may not be the ultimate
goal for molecular evolution. The goal should be to optimize the
function. The function is realized at the molecular level by the
binding or recognition among biomolecules. Although mathemat-
ically similar to folding funnel, the binding funnel emphasizes a
different concept6,18, the optimization of function. In fact, indi-
vidual proteins may not be funneled as evidenced by the presence
of intrinsic disordered proteins. However, the binding landscape
should still be funneled. Therefore, biology may require the bind-
ing funnel for function but not necessarily the individual fold-
ing funnel in some cases. This is to say, biology may prefer the
function rather than the stability. The molecular evolution may
bias towards binding since function is realized by the recognition.
While folding funnel may emerge from enzymatic and metabolic
proteins, the binding funnel may apply to wider systems including
signal transduction and gene regulatory proteins, which often do
not have well defined structures alone and therefore no folding
funnels.

1.00,1.00,1.00rgb]1.00,0.00,0.00Recently, there are growing
evidences of the hydrophobic interactions being a main driv-
ing force during folding and binding processes even though it is
not necessarily dominant for the binding19–22. The long-range
electrostatic interactions are also expected to contribute to the
binding process significantly while not at all in folding. For
the recognition, there exists a balance between the function of
biomolecules with more hydrophobic residues on the surface of
biomolecules (binding) and the self-stability of the biomolecules
with more hydrophobic residues located inside (folding).

1.00,1.00,1.00rgb]1.00,0.00,0.00For receptor-ligand binding,
the hydrophobic and electrostatic interactions drive the process
and lead to the energy reduction, while searching for the native
destiny requires the entropy reduction. These two trends com-
pensate to each other, leading to a possibility of the emergence
of two low free energy states: non-native unbinding state/native
binding one. This is evidenced by thermodynamic heat capacity
(peak) and kinetic measurements of many ligand-receptor (pro-
tein) binding complexes23–26. However, traps may occur and
become significant. In those cases, the free energy is not self-
averaging. The statistical fluctuations and whole distributions
of the free energy become important in characterizing the traps.
This is the focus of this study on the statistical nature of the ther-

modynamics and kinetics.
1.00,1.00,1.00rgb]1.00,0.00,0.00The binding can be charac-

terized by the extent of the roughness and the slope as well as
the size of the binding funnel. And, the binding funnel is more
relevant to the binding specificity rather than the stability (or
affinity) as in the folding. For example, a funneled binding land-
scape implies a differentiation of native binding state (mode)
from the non-native binding states (modes). Here the relative
affinity (specificity) rather than absolute affinity is closely tied up
with the degree of binding funnel. Furthermore, the interplay of
the ruggedness and the slope of the funneled energy landscape,
which depicts the stability and dynamic behavior of the individual
proteins, can also be used to characterize the intrinsic specificity
of binding16. The tendency to maximize the ratio of the slope
to the roughness of the energy landscape taking the entropy of
the system into account, can be viewed as the criterion for the
specificity of acting on the binding affinity and kinetics.

It is noteworthy to point out the effect of the intrinsic specificity
on how binding process actually occurs. Since the energy land-
scape of ligand receptor recognition can be mapped out, the ki-
netics during the binding process can then be explored on the en-
ergy landscape through analytical and microscopic methods tak-
ing global and local connectivity into account27,28. The intrinsic
specificity has been demonstrated to be the key factor determin-
ing the speed of molecular recognition16.

Fig. 1 The energy landscape of the biomolecular binding with a funnel.
panel (A) shows the binding energy landscape with a funnel-like shape
towards the native binding state. The multiple kinetic paths along the
energy landscape are shown with the arrows. The cartoon showings of
receptor(green)/ligand(yellow)complexes correspond to the different
binding states of binding. panel (B) shows the density of states of the
binding energy landscape. δE and ∆E are shown respectively.

Although the average-level description of the kinetics in the
bulk is of importance, it can occasionally miss important features
of the dynamic binding process that are critical for uncovering the
fundamental mechanisms. The progression of conformational dy-
namics of biomolecules is expected to traverse the underlying en-
ergy landscape with different local barriers, from local to global.
Naturally, there co-exists many possible time scales in the process,
thus the kinetics can be the non-exponential. In addition, for bulk
measurements on kinetics, it is often hard to determine whether
the observed non-exponential is intrinsic or resulted from the in-
homogeneity of single exponential processes. With recent ad-
vances on measurement techniques, single-molecule detections
become possible and more mature29–31. Single molecules are the
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probes with high sensitivity to the local micro-environments and
therefore provide an ideal tool to understand the delicate struc-
tures of the energy landscape of the biomolecules6,32–36. And
of late, numerous impressive single-molecule conformational dy-
namics experiments have been successfully undertaken31,37–41.
Particularly, the power law decay kinetics has been increasingly
observed in single molecule conformational dynamics30,42–48,
but how to reasonably interpret the underlying origin of this com-
plicated kinetics is nontrivial. As we know, statistical fluctuations
of single molecules are intrinsic. Fortunately, these fluctuations
can now be directly measured rather than being weighted down
by a great number of molecules in the bulk. Therefore, the av-
erage kinetic description is no longer valid and subject to be re-
placed by the probabilistic description to characterize the fluctu-
ation natures of the single molecule dynamics. In this paper, we
provide a probabilistic description of the single molecule bind-
ing kinetics of conformational dynamics through a diffusion ap-
proach along the free energy landscape from the results of the
microscopic simulations of a specific receptor-ligand pair. We find
that the single molecule binding kinetics is log-normal distributed
around the mean and power law distributed near the tail. Such
statistical behavior of the kinetics has been confirmed by single
molecule experiments30,42–47. In addition, power law kinetics
can also give clues of the density of states(DOS) of the free en-
ergy landscape being exponentially distributed27,28,35,49–53.

It is worthwhile to note that classical biochemistry and chem-
istry bulk experiments can give statistical distributions of inter-
molecular recognition from collecting statistics of different pairs
of molecules54. In this way, we explore the recognition from dif-
ferent sequences. On the other hand, we can probe the recogni-
tion also through the contact interactions for a given sequence.
For example, for single molecule binding, the recognition pro-
cess goes through different conformations for a single molecule
binding pair. The distribution of the recognition collected from
the different conformations in this way gives us the statistical in-
formation of the underlying intrinsic binding energy landscape.
When the recognition complex is large enough, one expects prob-
ing the recognition from the ensemble of different sequences and
from ensemble of different contacts or conformations for a given
sequence would be equivalent (throwing many dices at the same
time versus throwing one dice many times). In practice, for finite
size complexes, these two distributions would not have perfect
correlations. They give statistical information on the recognition
with different perspectives. In this study, we focus on the statis-
tics of conformational dynamics in a single molecule binding for
given binding pairs without changing on sequences. We leave the
discussion for its connection to the statistics of recognition for
different sequences to later study.

2 Materials and Methods

2.1 Energy function of the binding

Firstly, we can obtain the free energy based on the contact
variable as the order parameter, which can be directly delin-
eated as the contact probability during the atomic contact space
constituted by all atoms of the receptor and a small ligand

molecule: σi j (σi j=1 if d < ∆ and σi j=0 if d > ∆) where ∆

is a predefined cutoff distance about several angstrom while
1.00,1.00,1.00rgb]1.00,0.00,0.00d is the distance between two
atoms which are from the receptor and the ligand, respectively.
1.00,1.00,1.00rgb]1.00,0.00,0.00In this work, we introduce the
contact Hamiltonian to determine the energy of the system for
simplicity. The determination of the cutoff distance will certainly
have some effects on the interactions of interest. However, we
do not expect the statistical distributions of the interactions are
dependent of the predefined cutoff distance ∆ unless given an un-
reasonable large value.

Thus the energy function of a ligand-receptor system according
to the variables can be expressed as:

H = ∑
i j

Ji jσi j (1)

whereas Ji j is the interatomic coupling strength occurring be-
tween one atom of a receptor and another one of a ligand. Here,
although the form of interactions is relatively simple, we can still
obtain the general features of the system of interest via this con-
cise form.

This interaction form aforementioned has been widely applied
to many studies. Several models were derived from this form,
such as analytical models55–57, lattice simulation models58,59,
off-lattice models60,61 of protein folding and protein-structure
predictions62–64.

Naturally, the single molecule binding between the pair of
ligand and receptor explores a vast number of different values
of the coupling strength Ji j for various distances between the
atoms through contact interactions. The coupling strength Ji j

due to the multiplicity will be expected to have a statistical dis-
tribution. 1.00,1.00,1.00rgb]1.00,0.00,0.00Here, the coupling
strengths between the atomic pairs Ji j is assumed to be Gaus-
sianly distributed.

f (Ji j)∼ exp[−
(Ji j− J̄)2

2∆J2 ] (2)

where J̄ represents the average of coupling strengths and ∆J2 is
the corresponding variance. Then we can derive the energy dis-
tribution of the system by calculating < δ (E−H)> , wherein the
average is over interaction coupling strengths Ji j. It is also Gaus-
sian distributed:

f (E)∼ exp[− (E− Ē)2

2∆E2 ] (3)

where Ē means the average energy of the sys-
tem and ∆E2 = N∆J2 is the variance of the energy.
1.00,1.00,1.00rgb]1.00,0.00,0.00N means total number of
contacts. 1.00,1.00,1.00rgb]1.00,0.00,0.00The central limit
theorem can be applied to the total energy which is the sum
of the Ji j as defined in eq. 1. Since the coupling Ji j can have
different values for different types of atomic pairs and different
distances for the same type of atomic interactions, the coupling
Ji j can be taken as random variables. Due to the large number of
the possible couplings, from central limit theorems, the energy
from the large sum of random coupling variables is expected
to have a Gaussian distribution. For simplicity of the analytical

Journal Name, [year], [vol.], 1–9 | 3

Page 3 of 9 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



derivations here, we assume the Ji j is Gaussianly distributed.
However, we must notice that the final conclusion of this work
on the distribution of energy, free energy, equilibrium constant
and kinetics do not dependent on this assumption of coupling
strength being Gaussinaly distributed. This is because the
energy follows the Gaussian distribution by the central limit
theorem irrespect whether the individual component Ji j in the
sum is Gaussianly distributed or not. The distributions of other
quantities mentioned are derived from the Gaussian distribution
of the energy. Here, the independent random energy model is
applied49,50 without regard to the potential correlations between
the diverse energy states. Note that in the distribution of energy,
the native (strongest) binding state is supposed to appear in the
low end of the tail (the extreme left value) where the density
of binding states has become discrete. The association between
the receptor and the ligand occurs along the surface of the
receptor, and this binding is spontaneous. We call it the binding
complex. There are many binding modes with different ligand
binding conformations. The free energy of binding for each
binding mode can be gained. The binding mode of the lowest
free energy is defined as the native state or native binding mode.
1.00,1.00,1.00rgb]1.00,0.00,0.00All other binding modes will be
viewed as the non-native states.

2.2 Kinetics of the binding

In the kinetic study, RMSD was used as an order parameter
that portrayed the process of binding by approaching the global
minimum or native state. We can start from a general ki-
netic master equation, considering the local connectivity in re-
action coordinates or order parameters, derive a diffusion equa-
tion8,27,28,35,51–53:

∂

∂ t
P(RMSD, t) =

∂

∂RMSD
[D(RMSD)

∂P(RMSD, t)
∂RMSD

+P
∂ (F(RMSD)/κBT )

∂RMSD
]

(4)

where 1.00,1.00,1.00rgb]1.00,0.00,0.00P(RMSD,t) represents
the probability of the binding complex with a specific RMSD
at time scale t, 1.00,1.00,1.00rgb]1.00,0.00,0.00D(RMSD)
corresponds to the diffusion coefficient and
1.00,1.00,1.00rgb]1.00,0.00,0.00F(RMSD) represents the
free energy of the system of interest at the aforementioned
RMSD. 1.00,1.00,1.00rgb]1.00,0.00,0.00Here, KB is set to 1 for
simplicity. In essence, the diffusion coefficient can be viewed as
the mean time leaving the local minimum binding state or energy
site. According to the order parameter RMSD, the problem is
converted into one dimensional diffusion. The diffusion equation
is integrated to gain the mean first passage time:

τ̄ =
∫ RMSD f

RMSDi

dRMSD
∫ RMSD

RMSDi

dRMSD
′ exp[F(RMSD)−F(RMSD

′
)

κBT ]

D(RMSD)
(5)

RMSDi ∼ 1A means where the global minimum or na-
tive binding state is reached. The boundary condi-
tions of the Fokker-Planck equation are here set as a re-
flecting one for the specific RMSDi, where the system
of interest is in native state:[P(RMSD, t) ∂

∂RMSD F(RMSD) +
∂

∂RMSD P(RMSD, t)]|RMSD=RMSDi = 0, and an absorbing one while
RMSD = RMSD f , where the system of interest is in the non-

native states: P(RMSD f , t) = 0. This boundary condition is
for obtaining the off time kinetics while the reverse order of
which is for obtaining the on time kinetics. Here, we choose
an absorbing boundary condition during the calculations to fa-
cilitate to access the first passage time and its corresponding
1.00,1.00,1.00rgb]1.00,0.00,0.00FPT distribution for a specific
ligand binding with a receptor.

1.00,1.00,1.00rgb]1.00,0.00,0.00The calculations of MFPTs
can be carried out by setting the D(RMSD)=1,KB=1 of each (in-
dividual MFPT calculation for a molecular recognition complex)
for comparing with each other (MFPTs from different molecular
recognition pair complexes). The conformations or poses are gen-
erated by molecular simulations (here via molecular docking).
The RMSDs relative to the native binding state are collected from
the docking simulations registering the coordinates of each con-
formation state. The free energy profiles in terms of RMSD are
given by the docking scoring function at each conformation. It
is worthwhile to note that, although the generated conformations
have not been relaxed such as molecular dynamics or other meth-
ods and have not been evaluated by other computationally ex-
pensive force fields, due to the large number theorem and the
central limit theorem in statistics, the statistical distributions of
the large number of interactions occurring in the single molec-
ular recognition should have the same form in principal and be
independent of sampling methods and score functions. We then
use the free energy profile generated by Autodock (for the details
of the Autodock score function, See ESI† ) in RMSD to calculate
the MFPT according to the equation 5.

1.00,1.00,1.00rgb]1.00,0.00,0.00We can also get the follow-
ing relation for the mean first passage time distribution PFPT (τ)

1.00,1.00,1.00rgb]1.00,0.00,0.00

PFPT (τ) =
d

dτ
(1−Στ) =−dΣτ

dτ
(6)

1.00,1.00,1.00rgb]1.00,0.00,0.00where Στ ≡
∫ ρ f

0 dρG(ρ,τ), the
G(ρ,τ) represents the function of probability distribution for the
ligand-receptor pair binding complex at time τ. We can obtain
the PFPT (τ) by solving the P̃FPT (s), which is Laplace transforms
of PFPT (τ). 1.00,1.00,1.00rgb]1.00,0.00,0.00The results show
that for T < Tc (near or below Tc) P̃FPT (s) is approximately de-
scribed as P̃FPT (s)≈ e−csα . Then by the transform, we can obtain
PFPT (τ) ∼ τ−(1+α) (0 < α < 1), where α = T/Tc

51,53(For details,
See ESI†).

2.3 Simulations

After the universal statistical features were predicted using the
analytical models, we then initiated a microscopic investigation
of the implications of specific ligands binding to COX-2 as a sys-
tem of interest to validate the analytical predictions. Initially a
diverse set of 720 small molecules was chosen out from the NCI
Diversity set having similar molecular weights to the reference
compound SC-558, for which the three-dimensional structure of
the COX-2 complex is accessible (PDB ID: 1CX2)65,66. Each of
these 720 selected molecules was docked into COX-2 using the
AutoDock package67, all resulting conformers of each ligand por-
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tray a thermodynamic binding energy landscape for the receptor-
ligand pair. Next, the intrinsic specificity quantified by intrinsic
specificity ratio (ISR) representing the ratio of free energy gap
between the native binding mode and the average of all other
binding modes versus the roughness (characterized by the spread
or variance ) of the underlying free energy landscape for each a
specific ligand binding to COX-2 was gained as mentioned above
and in Figure 1B.

3 Results and Discussion

3.1 The Distribution of free energy of Single Molecule Bind-
ing

We can obtain the distribution functional form for the sin-
gle molecule binding free energy based on the random energy
model27,28,35,49–53. 1.00,1.00,1.00rgb]1.00,0.00,0.00And we
have verified the model by exploring the density of states(DOS)
of protein folding and protein binding in our previous stud-
ies14,15. Here,1.00,1.00,1.00rgb]1.00,0.00,0.00as mentioned
above, the energy function of the ligand-receptor system can
be expressed as H = ∑i j Ji jσi j. Because various atom types
and cutoff distances will be involved in the contact interac-
tions, different Ji js with the different values form a distribu-
tion 1.00,1.00,1.00rgb]1.00,0.00,0.00The coupling strengths be-
tween the atomic pairs Ji j is assumed to be Gaussianly dis-
tributed. Since the energy of system is linearly associated with
the 1.00,1.00,1.00rgb]1.00,0.00,0.00J, this easily leads to a ran-
dom energy model with the corresponding interaction energy fol-
lowing a Gaussian distribution6. Then, the distribution function
of the free energy is as follows (For details, See ESI†):

f (F)∼ exp[− (F− F̄)2

2∆E2 ] (7)

This is a gaussian distribution for the single molecule binding
free energy 1.00,1.00,1.00rgb]1.00,0.00,0.00F near its mean F̄
with the variance of the distribution ∆F2 = ∆E2 (The width of
the distribution of energy ∆E here means the roughness of fluctu-
ations of the energy landscape above the glassy trapping tran-

sition temperature Tc. Tc =
√

∆E2

2S represents the glass transi-
tion temperature implying the onset of the local trapping along
the global energy landscape, 1.00,1.00,1.00rgb]1.00,0.00,0.00S,
as the configurational entropy, is used to measure the size of
the whole configurational space and scales with the size of the
receptor-ligand complex system. S = KBlogΩ where Ω is the
number of multifarious states in the configurational space). Ad-
ditionally, the single molecule binding free energy distribution
1.00,1.00,1.00rgb]1.00,0.00,0.00f(F) has the exponential distri-
bution near the tails (near or below Tc)27,28,35,49–53 as follows:

f (F)∼ exp[
ρ(F−Fc)

T
]θ(Fc−F) (8)

where ρ = T
Tc

and Fc represents the cut-off (upper limit)
free energy (θ function is described as follows: θ(x) =

1 while x > 0;θ(x) = 0 while x <= 0). Furthermore,
the mean free energy is almost equivalent to |Fc − Tc|
1.00,1.00,1.00rgb]1.00,0.00,0.00(here,KB = 1)and the distribu-

tion width is close to Tc. Obviously, the resulting distribution of
the single molecule binding free energy has simple exponential
tails implying slower decays than gaussian distribution. Thus, the
events with low probability and binding free energies in the spec-
trum may play more important role at the exponential tail than
the Gaussian center.

In order to quantify the global single molecule binding free
energy spectrum of a particular ligand-receptor binding pair, we
need not only the simple information near the mean, but also the
width of the distribution. Interestingly, the free energy perturba-
tion and some other approximation methods are often applied in
the current microscopic atomistic simulations on the bio-molecule
binding to estimate affinity. We have illustrated the distribution
of free energy beyond the mean and average of binding from the
analytical model, the average is often used to study the thermo-
dynamics and kinetics. The variance and the whole distribution
are less explored. The average binding energy of the different
ligand-receptor pair is self-averaging if the distribution is nearly
Gaussian. In other words, the average of binding energy is rep-
resentative of the typical binding. However, when the underlying
distribution is non-Gaussian with long tails, there are significant
fluctuations around the mean. Therefore, the average of bind-
ing energy is not sufficient in characterizing the typical binding.
Statistical distribution is needed. With the development and con-
tinuous efforts in computational capability, more complete infor-
mation can be achieved and more comprehensive analysis and
calculations based on microscopic studies can be also realized.
The determination of the values of the parameters in terms of the
current analytical approach as well as the comparisons and confir-
mations with the ones from the experiments are vital to the com-
prehensive description of the underlying free energy landscape
and the associated single molecule binding process.

3.2 The Distribution of equilibrium constant K of Single
Molecule Binding

The equilibrium constant K or dissociation constant often
needs be measured in the experiments such as chemical re-
actions.1.00,1.00,1.00rgb]1.00,0.00,0.00For the single molecule
binding complex, it can be considered to correlate with the differ-
ence between Fn and Fun:LogK = Fn−Fun

T where Fn is the free en-
ergy of the native state and Fun is the free energy of the non-native
states. Actually, the LogK indicates the ability of two molecules
associating with each other. From the free energy distribution
function, the 1.00,1.00,1.00rgb]1.00,0.00,0.00f(K) for the distri-
bution of the equilibrium constants K will be written as (assuming
native binding has little spread):

f (K)∼ 1
K

exp[− T 2

2∆E2 (LogK−LogK̄)2] (9)

which shows a log-normal distribution about the mean (above Tc)
while

f (K)∼ K−1− T
Tc (10)

which presents the distribution with a power-law decay near the
tail of the distribution with the low K value ( near or below Tc ).

The slow power law decay has a long tail in the distribu-
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tion of single molecule binding equilibrium constant for the
ligand-receptor pair. In this case, the average is not suitable to
1.00,1.00,1.00rgb]1.00,0.00,0.00characterize the typical equilib-
rium constant.. This implies that the low probability events at the
long tail of the distribution may play an important role in char-
acterizing the whole system. The power law distribution of sin-
gle molecule binding equilibrium constant therefore implies that
most of the bindings occurred in the system show weak binding
affinities, just occasionally, a specific binding pattern or mode will
be subject to high stability and affinity. Thus, achieving high affin-
ity or the associativity will be very vital although it often is rare
to explore the evolution and function for molecular recognition.
The results from the theoretical and experimental studies can sup-
port each other to further validate the theoretical model and ex-
perimental methods. For a few examples, a physical model was
applied to reproduce the degree distribution of the experimen-
tally determined protein-protein interactions (PPI) networks68;
the universal statistical distributions for biomolecular recognition
with different sequence pairs were recently uncovered54.

3.3 The Distribution of Time Scale of Single Molecule Bind-
ing

Under the quasi-equilibrium condition, the corresponding time
scale τ of single molecule binding for a particular receptor-ligand
pair can be expressed as: log( τ

τ0
) = F ]−Fun

T where F] represents
the free energy of the transition state ensemble of system, Fun

indicates the free energy of the complete non-native states, τ0 is
the time scale. The distribution of single molecule binding kinetic
time τ for the ligand-receptor pair can be shown to have the form
as (assuming a common transition state free energy):

f (τ)∼ 1
τ

exp[− T 2

2∆E2 (log
τ

τ0
− log

τ̄

τ0
)2] (11)

giving a log-normal distribution around the mean of the distribu-
tion (above Tc). while

f (τ)∼ τ
−1− T

Tc (12)

giving a distribution with much slower power-law decay near the
tail ( near or below Tc).

Again, we see power law statistics which im-
plies intermittent kinetics of association of binding.
1.00,1.00,1.00rgb]1.00,0.00,0.00Some good examples are
from Xie’s group45,46. The authors had performed a series of
single molecule protein conformational dynamics experiments
by exploring the photo-induced electron transfer in the flavin
reductase system. By the exploration of the fluorescence lifetime
of the single molecule system on a photon-by-photon basis,
the authors find that the distance of flavin-tyrosine varies over
time. And the results further reveal that the conformations
fluctuate at multiple time scales covering from hundreds of
microseconds to seconds. These demonstrate the presence of
various conformations of the single molecule system as well as
the different time scales of the interconversion among these
conformations at room temperature. Using the similar methods,
the authors further experimentally determine the memory kernel

K(t) which is a reflection of the time scale fluctuations. In
addition,1.00,1.00,1.00rgb]1.00,0.00,0.00the extreme kinetics
are rare, but can give important contributions to the whole single
molecule binding event and function. Furthermore, the kinetics
in the tail can give us hints on the structure of underlying energy
landscape through density of states8,27,28,35,51–53. This is partic-
ularly important in practice as the residence time (off kinetics)
characterizes the duration of drugs staying with the target. Both
the average and distribution of off kinetics (residence time) is
crucial for the effectiveness of drugs.

3.4 Microscopic simulations

We have performed the flexible docking studies on different lig-
ands associating with the receptor COX-2. By exploring specific
small molecules binding to the receptor, we can quantify and
characterize the different ligand-receptor free energy landscapes.
We characterize the mapped landscapes and gain the important
statistical information on these single molecule binding systems
constituted by numerous specific receptor-ligand pairs. The sta-
tistical distributions of the relevant physical properties charac-
terizing the system are obtained. In principle, according to the
aforementioned funneled energy landscape theory, the extreme
left value of distributions corresponds to the global minimum,
which is generally considered as the folded or bound native state.
However, in practice, it is possible the lowest free energy state
may not correspond to the most geometrically matched binding
structure between the ligand and receptor. In those cases, one
may need to cluster the low free energy state ensemble around
the native and lowest free energy states and create a small native
binding ensemble (distribution) against the non-native binding
ensemble.

The distributions of the single molecule binding free energy for
the different ligands binding with the same receptor in combi-
nations of high, medium and low affinities with high, medium
and low intrinsic specificities are shown in Figure 2 (See the fit-
ting details and the parameters of the fitting in ESI†) and Figure
S1-S8(ESI†). They are all Gaussian distributed at the center and
exponentially distributed near the tail. This is quite consistent
with the results from analytical studies mentioned above. We can
see that the width of the distribution however is different for each
case. For high specific binding (high ISR), the width of the dis-
tribution is small relative to the gap, while for low binding speci-
ficity (low ISR), the width is more spread and comparable to the
energy gap. The width of the distribution is viewed as a mea-
sure of the roughness of the binding free energy landscape6,7.
Rougher energy landscape has a larger width or variance in bind-
ing free energy.

In Figure 3 (See the parameters of the fitting in ESI†) and Fig-
ure S9-S16(ESI†), we show the single molecule binding equilib-
rium constant K distribution for the different ligands binding with
the same receptor. Consistent with the analytical results, we find
that the single molecule binding equilibrium constant or disso-
ciation constant is log normal distributed around the mean and
power law distributed near the tail. The distribution coefficients
are different for each case with faster decay for high specific bind-
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Page 6 of 9Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Fig. 2 The distribution of free energy with the compound with high
affinity and specificity associating with the Cox-2, the vertical axis
indicates the number or probability of states for free energy, the
gaussian curve (in the center) and exponential curve (near the tail) are
shown. The abbreviation for High is H (High→ H).
1.00,1.00,1.00rgb]1.00,0.00,0.00The insert is the corresponding
log-linear plot with the straight line fit near the tail.

ing or smoother landscape and slower decay for low specific bind-
ing or rougher landscape of binding.

Fig. 3 The distribution of the logarithm of equilibrium constant K with
the compound with high affinity and specificity binding with the Cox-2,
the vertical axis indicates the number or probability of states for the
logarithm of equilibrium constant K, the gaussian curve (in the center)
and exponential curve (near the tail) are shown. The abbreviation for
High is H (High→ H). 1.00,1.00,1.00rgb]1.00,0.00,0.00The insert is the
corresponding log-linear plot with the straight line fit near the tail.

As mentioned, although the statistical nature of the energy
landscape of single molecule binding discussed here can be ex-
plored directly by single molecule experiments. The interpreta-
tion for the origin of kinetics remains challengeable. In this study,
we provide a probabilistic description of the kinetics of confor-
mational dynamics through a diffusion approach along the free
energy landscape from the result of the microscopic simulations
of a specific receptor-ligand pair. In Figure 4 (See the parameters
of the fitting in ESI†) and FigureS17-S24(ESI†), for the differ-
ent receptor-ligand pairs constituted by different ligands binding
with a receptor, The results show that the single molecule binding
kinetics is log-normal distributed around the mean of the distri-
butions and power law distributed near the tail of the distribu-
tions. This is quite consistent with our analytical expectations
mentioned above.

It is worthwhile to point out the power law dis-
tribution of the single molecule kinetics has been
1.00,1.00,1.00rgb]1.00,0.00,0.00explicitly observed in sin-
gle molecule experiments. The distribution of energy barriers

Fig. 4 The distribution of the kinetics with the compound with high
affinity and specificity binding with the Cox-2, the vertical axis indicates
the number or probability of states for the kinetics, the log-normal (in the
center) and power law curve (near the tail) are shown. The abbreviation
for High is H (High→ H). 1.00,1.00,1.00rgb]1.00,0.00,0.00The inserts
are the corresponding log-log plots with the straight line fit near the tail.

and the observed fluctuations or relaxations of single molecule
such as the protein have been extensively applied to interpret
the kinetic behaviors at low temperatures and characterize
some features observed at high temperatures30,42–47,69–71.
1.00,1.00,1.00rgb]1.00,0.00,0.00Our theoretical results of
kinetics such as the MFPT and the FPT statistical behavior
may provide a possible basis and new insight into the statistics
and mechanisms of single molecular recognition dynamics. In
addition, except for these experiments on single molecule protein
conformational dynamics performed in room temperature, the
theoretical predictions for the temperature dependence on the
kinetics statistics can be also validated from the serial single
molecule experiments by means of controlling temperatures
1.00,1.00,1.00rgb]1.00,0.00,0.0048,51,72. These predicted
fluctuations or relaxations of the protein can not only be used
to interpret the kinetic behavior at low temperatures but also
give us a valuable insight into some features observed at high
temperatures. This will contribute to our detailed understanding
of microscopic mechanism which can not be obtained from the
ensemble-averaged experiments. Our models and simulations on
single molecule binding, by completely exploring the underlying
conformational energy landscape and explicitly considering the
kinetic fluctuations, can figure out fairly convincing explanations
for the qualitative trends of the single molecule kinetic data
observed. Furthermore, we can use the experimental statistical
data on kinetics to portray the structure of the underlying energy
landscape such as density of states and the topography.

Furthermore, the equilibrium constant or the dissociation con-
stant is usually measured as the average in the bulk. In single
molecules, the equilibrium constant depends on each individual
measurements. Since the equilibrium constant depends on the
underlying free energy landscape, the inherent distribution of the
free energy leads to the distribution of equilibrium constant or
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dissociation constant. This can be analyzed directly from the tra-
jectories or binding states. We can collect and combine the statis-
tics of the forward and backward rate process to obtain the statis-
tical information about the equilibrium constant. The statistical
fluctuations of the equilibrium constant in single molecules will
not be averaged out among the large number of the molecules in
bulk. Thus single molecules provides a direct route to approach
for the statistical fluctuations of the equilibrium properties or the
equilibrium constant which can not be probed by the bulk mea-
surements.

4 Conclusions
We have investigated the statistical features of the free energy,
equilibrium constant and kinetics of single molecule binding by
analytical model as well as microscopic simulations. We gained
the definite analytical form of the distribution of single molecule
binding free energy being gaussian distributed around the mean
and exponentially distributed at the tail. The single molecule
binding equilibrium constant is log normal distributed near the
mean and power law distributed at the tail. We uncovered the
statistical feature of the single molecule binding kinetics to be log-
normal distributed around the mean and power law distributed at
the tail.

The theoretical predictions can be tested in the single molecule
experiments. The experiments can give information on the un-
derlying construction of the energy landscape of single molecule
binding. Furthermore, since each ligand or receptor can be dif-
ferent, although the distribution has universal form, the actual
coefficient or parameter for the distribution is different for differ-
ent ligand receptor pair. The specific parameters give quantitative
characterizations for specific ligand-receptor binding systems.

The statistical methodology and approach herein rooted on en-
ergy landscape theory is quite general. They can be generally
applied not only to protein-ligand binding, but also to protein-
protein, protein-RNA and protein-DNA binding in the future. In
this study, to the first order approximation, we have ignored cor-
relations between different binding states. The correlations may
to a certain degree influence the properties of tail of the distribu-
tion of the relevant physical variables. We will incorporate this
potential effect55,56 in the future studies.
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