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2 Information theory

2.1 Localization measures

The Shannon entropy40,41 is an uncertainty measure, hence a

measure of the delocalization-localization of a distribution. This

entropy can be defined for one-particle or two-particle distribu-

tion functions. It can also be defined for position and for momen-

tum space probability distributions. If the distribution is time-

dependent we can also define a time-dependent Shannon entropy.

The one-particle Shannon entropy in position space is defined by

sx(t) =−
∫

dx n(x, t) ln [n(x, t)], (1)

and measures the localization in n(x, t), where n(x, t), the posi-

tion space density, is normalized to unity. The Shannon entropy

increases when the underlying distribution delocalizes and de-

creases when it localizes. In this context, a larger entropy or un-

certainty is associated with a loss of information while a smaller

uncertainty is associated with a gain of information. In this man-

ner, the Shannon entropies can be utilized to monitor changes in

the localization-delocalization features of the underlying distri-

butions. It must be noted that the definition holds if the density

comes from a one-particle system or if it is reduced by integration

from a many-particle system with the appropriate normalization.

The corresponding uncertainty measure in momentum space is

defined by,

sp(t) =−
∫

d p n(p, t) ln [n(p, t)], (2)

with n(p, t), the unity-normalized momentum space density.

As uncertainty measures, both Shannon entropies fulfill an en-

tropic uncertainty principle42, that for the one-dimensional case

is,

sx(t)+ sp(t)≥ 1+ lnπ. (3)

This entropic sum can be interpreted as an uncertainty measure

of a separable phase-space distribution,

st(t) =−
∫

dxd p n(x, t) n(p, t) ln [n(x, t) n(p, t)] = sx(t)+ sp(t). (4)

Two-particle Shannon entropies, defined for position space as,

s2
x(t) =

∫

dx1dx2 n(x1,x2, t) ln [n(x1,x2, t)] (5)

and for momentum space as

s2
p(t) =

∫

d p1d p2 n(p1, p2, t) ln [n(p1, p2, t)], (6)

can be used to study the delocalization properties of the respec-

tive two-particle distribution functions.

There is an uncertainty principle at the two-particle level43,

s2
x(t)+ s2

p(t)≥ 2(1+ lnπ) (7)

which can be interpreted as measuring the delocalization in the

corresponding two-particle separable phase-space distribution,

sT (t)=−
∫

dxd p n(x1,x2, t) n(p1, p2, t) ln [n(x1,x2, t) n(p1, p2, t)] = s2
x(t)+s2

p(t).

(8)

2.2 Correlation measures

Mutual information40,41 is defined in position and in momentum

space44,45 as

Ix(t) =
∫

dx1dx2 n(x1,x2, t) ln

[

n(x1,x2, t)

n(x1, t)n(x2, t)

]

= 2sx(t)− s2
x(t),

(9)

Ip(t) =
∫

d p1d p2 n(p1, p2, t) ln

[

n(p1, p2, t)

n(p1, t)n(p2, t)

]

= 2sp(t)− s2
p(t).

(10)

These quantities are measures of the correlation between posi-

tions or between momenta and are only zero when the two-

variable distributions are separable. In all other cases they are

greater than zero.

The Shannon entropy is used as the localization measure be-

cause the statistical correlation, as measured by the mutual infor-

mation, is defined in terms of the these entropies [Eqs. (9) and

(10)]. Thus, there is a relationship between statistical correlation

and localization. Other measures of localization or uncertainty

such as the standard deviation can be used. However the stan-

dard deviation is not always an appropriate measure of quantum

uncertainty. The entropic uncertainty relation [Eq. (3)], based on

Shannon entropies, is proving to be a more general formulation

of the uncertainty principle, as compared to that based on stan-

dard deviations46–49. Statistical correlation can also be measured

by the correlation coefficient. However, mutual information is a

more general measure of statistical correlation as compared to

the correlation coefficient. This has also been observed in studies

of quantum systems50.

3 Open quantum systems

For the treatment of the OQS we start with the unitary evolution

of the full density matrix (system plus reservoir), see for exam-

ple51,52,

d

dt
ρ̂(t) =−i

[

Ĥ(t), ρ̂(t)

]

. (11)

The full Hamiltonian is given by

Ĥ(t) = ĤS(t)+ ĤR +V̂ (12)
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where ĤS(t) is the system Hamiltonian, ĤR is the bath (reservoir)

Hamiltonian, and V̂ is the system-bath coupling, which is gener-

ally regarded to be weak. Defining the reduced density operator

for the system alone by tracing over the reservoir degrees of free-

dom,

ρ̂S(t) = TrR{ρ̂(t)}, (13)

one arrives at the formally exact quantum master equation51,52,

d

dt
ρ̂S(t) =−i

[

ĤS(t), ρ̂S(t)

]

+
∫ t

t0

dτ Ξ̆(t − τ)ρ̂S(τ)+Ψ(t). (14)

Here, Ξ̆(t − τ) is the memory kernel and Ψ(t) arises from initial

correlations between the system and the environment. Although

the equation is formally exact, in practice approximations are

needed for Ξ̆ and Ψ.

3.1 Markov approximation and Lindblad master equation

To make Eq. 14 easier to solve than the full equation, one often

invokes the Markov approximation in which the memory kernel

is local in time,

∫ t

t0

dτ Ξ̆(t − τ)ρ̂S(τ) = D̆ρ̂S(t). (15)

The Markov approximation is valid when the interaction between

bath and system is weak51,52.

The Lindblad form of the Markovian master equation,

D̆ρ̂S(t) = ∑
m,n

{

Lmnρ̂S(t)L
†
mn −

1

2
L†

mnLmnρ̂S(t)−
1

2
ρ̂S(t)L

†
mnLmn

}

,

(16)

is constructed to guarantee complete positivity of the density ma-

trix51, where the Lmn’s are the Lindblad operators and will be

specified for specific cases in the next section. As written in Eq.

(16), the Lindblad equation is simply a mathematical construction

that guarantees the positivity of the density matrix. However the

bath operators Lmn can be derived microscopically starting from

the Hamiltonian of the form Eq. (12)53. Two limiting cases of the

above Lindblad equation: pure-dephasing without relaxation and

relaxation without pure-dephasing will be discussed in the next

section.

The Lindblad master equation formulism is not the only route

to incorporate environmental effects. Stochastic terms can be

included in the system Hamiltonian to formulate a stochastic

Schrodinger equation54.This can be done by considering fluctua-

tions as Markovian or non-Markovian processes. Lindblad theory

can also be extended to consider non-Markovian master equations

in order to better model realistic systems and incorporate mem-

ory effects. This lack of memory effects or history is a feature of

Markovian dynamics which leads to an assumption of weak cor-

relations between system and environment. Another assumption

is that the system is uncorrelated with the environment at t = 0.

Entropic uncertainty relations have recently been discussed in the

context of memory effects realized through non-Markovian con-

siderations55.

4 Models studied

In this section, we will discuss the results of our analysis to two

ubiquitous models whose physics is well understood and that can

provide the physical intuition to tackle more complex systems in

the future. We begin by describing the harmonic oscillator and

continue by discussing the Moshinsky atom.

4.1 Harmonic oscillator

For the 1D harmonic oscillator (HO) Hamiltonian (atomic units

(m =h̄ = 1) are used throughout the paper),

ĤS =−1

2

d2

dx2
+

1

2
ω2x2, (17)

the Lindblad master equation

dρ̂S(t)

dt
= −i[ĤS, ρ̂S(t)]+∑m,n

{

Lmnρ̂S(t)L
†
mn − 1

2
L

†
mnLmnρ̂S(t)

− 1
2

ρ̂S(t)L
†
mnLmn

}

(18)

can be solved analytically by obtaining the coefficients of the den-

sity operator

ρ̂S(t) =
1

∑
n,m=0

ρn,m(t) |n〉〈m|. (19)

|m〉 is the mth state of the oscillator. Upper and lower limits in the

summation are a result of considering only the first two eigen-

states of HO. This approximation is valid in the low temperature

regime for the relaxation case and because the initial condition

contains only the first two states for the pure-dephasing case. We

assume the initial state to be formed by the first two eigenstates,

|ψ(0)〉= 1√
2
(|0〉+ |1〉) (20)

which is equivalent to consider ρ0,0(0) = ρ0,1(0) = ρ1,0(0) =

ρ1,1(0) =
1
2
. This model was discussed in the context of TDDFT

for open quantum systems56–59 in Ref.60.

At this point, we can express the density operator in its position

or momentum representation by taking

n(x, t) = 〈x|ρ̂S(t)|x〉 (21)

n(p, t) = 〈p|ρ̂S(t)|p〉. (22)
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4.1.1 Pure-dephasing without relaxation

Pure-dephasing describes a situation in which the system-bath

collisions are elastic so that the bath decoheres the system with-

out exchanging energy51,52. In this regime, the Lindblad opera-

tors take the form,

Lmn = δmn

√

γm

2
|m〉〈m| (23)

where δmn is the Dirac delta function.

Using these operators and equation (19) yields populations,

ρ00(t) = ρ00(0) =
1

2
(24)

and

ρ11(t) = ρ11(0) =
1

2
. (25)

This means that there is no relaxation in the system and the en-

ergy is not affected by the bath. For the coherences, we have

ρ01(t) = ρ01(0)e
−i(E0−E1)te−

1
2
(

γ0+γ1
2

)t =
1

2
eiωte−

1
2
(

γ0+γ1
2

)t (26)

and

ρ10(t) = ρ10(0)e
−i(E1−E0)te−

1
2
(

γ0+γ1
2

)t =
1

2
e−iωte−

1
2
(

γ0+γ1
2

)t . (27)

They oscillate and decay exponentially due to the presence of the

bath. For the calculations we take γ0 = γ1 and γ0 ≡ γ, to simplify

the notation.

4.1.2 Relaxation without pure-dephasing

In this case the Lindblad operators are strictly non-diagonal,

which means that the physical processes in the system are transi-

tions of the particle between energy states52

Lmn =
√

γmn|m〉〈n| i f m 6= n,

Lmn = 0 i f m = n. (28)

In order to ensure that the populations of the equilibrium solu-

tion obey detailed balance, one also requires that

γmn = eβωmn γnm, (29)

where β = 1/kBT is the inverse temperature. The populations

evolve according to

d

dt
ρnn(t) = ∑

m

γnm ρmm(t)−ρnn(t)∑
m

γmn. (30)

The first term is the rate at which population leaves from ρnn,

and the second term is the rate at which population is trans-

ferred to ρnn from the other states. It can be verified that the

right hand side of Eq. (30) vanishes at equilibrium and these two

rates balance. Considering the first two levels, we get the popu-

lations from solving the coupled differential equations subject to

the above mentioned initial conditions. Thus

d

dt
ρ00(t) = γ01 ρ11(t)− γ10 ρ00(t) (31)

d

dt
ρ11(t) = γ10 ρ00(t)− γ01 ρ11(t). (32)

The coherences evolve as

ρnm(t) = ρnm(0)e
−i(En−Em)te−

1
2
(∑l γln+∑l γlm)t (33)

and leads to

ρ01(t) =
1

2
eiωte−

1
2
(γ10+γ20+γ01+γ21)t (34)

ρ10(t) =
1

2
e−iωte−

1
2
(γ10+γ20+γ01+γ21)t , (35)

which means that the bath decoheres the system even in absence

of pure-dephasing. In fact, the relaxation regime is closer to a

real physical situation since one expects that relaxation and deco-

herence occur simultaneously when the system interacts with the

bath. For the special case of a two-level system, one obtains from

the solutions of Eq. (30) and from Eq. (33) that the decoherence

rate is exactly half of the relaxation rate. This is analogous to the

phenomenological formula from NMR spectroscopy

1

T2

=
1

2T1

+
1

T ∗
2

, (36)

relating the time-scale for decoherence T2, to that of relaxation

T1 and pure-dephasing T ∗
2

52,61. In the absence of pure dephasing

(the second term on the r.h.s. of Eq. (36) is not considered), the

time-scale for decoherence is twice that of relaxation, which is

confirmed by Eqs. (30) and (33).

We can approximate all the γ ’s in terms of γ01 which governs

the rate of the relaxation from the state |1〉 to the state |0〉 (which

is the largest possible relaxation rate under these assumptions)

by means of the relations (with ω = 1),

γ10 = γ01e−(E1−E0) = γ01e−ω =
γ01

e
,

γ20 = γ02e−(E2−E0) = γ02e−2ω ≈ γ01

e2
,

γ21 ≈ γ10 =
γ01

e
. (37)

Thus, it is sufficient to specify the value of γ01 and we use γ01 ≡ γ

in order to simplify notation.
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5 Moshinsky atom

We now proceed to study the 1D Moshinsky atom repulsive

Hamiltonian38,39,

ĤS =−1

2

d2

dx2
1

− 1

2

d2

dx2
2

+
1

2
ω2x2

1 +
1

2
ω2x2

2 −
1

2
λ (x1 − x2)

2, (38)

the Lindblad master equation,

dρ̂S(t)

dt
= −i[ĤS, ρ̂S(t)]+∑mn,m′n′

{

Lmn,m′n′ ρ̂S(t)L
†
mn,m′n′

− 1
2

L
†
mn,m′n′Lmn,m′n′ ρ̂S(t)− 1

2
ρ̂S(t)L

†
mn,m′n′Lmn,m′n′

}

(39)

can be solved analytically by obtaining the coefficients of the den-

sity operator

ρ̂S(t) =
1

∑
m,n,m′,n′=0

ρmn,m′n′(t) |mn〉〈m′n′|. (40)

|mn〉 = |m〉|n〉 are the eigenstates of the Moshinsky atom. In this

notation, m is associated with the center-of-mass coordinates and

n with the relative ones. The relative coordinates govern the sym-

metry of a particular solution. For n even, the wave functions are

symmetric whereas for n odd they will be antisymmetric. Upper

and lower limits in the summation come from the fact that we

consider just the first two eigenstates. Accordingly, we assume

the initial state,

|ψ(0)〉= 1√
2
(|00〉+ |10〉). (41)

Both eigenstates have the same symmetry. They are symmetric

under the interchange of the original coordinates. This choice is

equivalent to ρ00,00(0) = ρ00,10(0) = ρ10,00(0) = ρ10,10(0) =
1
2
.

For considering the pure-dephasing without relaxation and the

relaxation without pure-dephasing regimes we proceed in com-

plete analogy with the HO model presented above.

6 Harmonic oscillator coupled with the bath

The Shannon entropies, Eqs. (1) and (2), of the HO coupled to a

bath are shown in Fig. (1) for both regimes: the pure-dephasing

without relaxation and the relaxation without pure-dephasing,

with the coupling parameters γ = 0.15, γ = 0.3 and γ = 0.5.

The interpretation of the curves in Fig. (1) is that the

delocalization-localization behavior is damped with time and this

damping depends on the strength of the bath coupling constant

(on comparing the curves for different values of γ).

For the pure-dephasing without relaxation regime, the dynam-

ics in position space starts with a highly localized state at t = 0

(smaller Shannon entropy), where we have more information

about the quantum system. As the system evolves in time, the

entropy increases, i.e. the particle becomes more delocalized in

successive periods of the evolution and asymptotically approaches

the thermal equilibrium value (the mixed state at t = ∞), where

the coherences are zero. The concept here is that the state delo-

calizes in x-space and loses information as the coherences dimin-

ish. This behavior can be observed from the densities in Fig. (2).

The density at t = 0 is highly localized. It delocalizes at t = π/2

and localizes again at t = π and t = 2π (but delocalized as com-

pared with t = 0).

In momentum space, the difference is that at t = 0 we start with

a highly delocalized state (less information) whose entropy is the

same as that of the thermal equilibrium. However note that in the

evolution of the system we periodically gain and lose information.

The coherences are zero at half intervals of π. These points

are characterized by a maximum entropy in position space (de-

localization or loss of information). At these points, there is no

difference in the Shannon entropies corresponding to different

bath couplings as the densities are the same for these points (see

Fig. (2)). That is, the delocalization (loss of information) for

different intensities of coupling with the bath is the same. For

other points in the period, the loss of information provoked by a

larger coupling with the bath is greater since its Shannon entropy

is larger.

In momentum space, the zero coherences at half intervals of

π are characterized by localization or gain of information. The

larger coupling to the bath is characterized by loss of information

since the Shannon entropy is larger. Thus, the off-diagonal or

quantum interference terms must serve to localize the density in

position space and delocalize it in momentum space.

In the case of the relaxation without pure-dephasing regime,

we start in position space with a highly localized state and we

lose information with the system’s evolution, this behavior of the

density is apparent in Fig. (2). In momentum space, we start with

a highly delocalized state, but the difference with pure-dephasing

is that the value at t = 0 is not the thermal equilibrium value. The

Shannon entropy at thermal equilibrium is smaller than at t = 0,

thus we have gained information as compared to this initial point.

At half intervals of π in the relaxation regime, the larger in-

teraction with the bath leads to smaller loss of information in

position space, but larger in momentum space. Note also that

this behavior is reversed at integer values of π, t = nπ. A larger

interaction leads to larger loss of information in x-space and a

smaller loss of information in p-space. For the position space we

can interpret this behavior by observing that of the densities in

Fig. (2).

Remarkably, in the pure-dephasing regime, the entropic sum

st is sensitive to the strength of the interaction with the bath,

s
γ=0.5
t > s

γ=0.3
t > s

γ=0.15
t . The entropy sum has been shown to be

sensitive to the effects of interparticle repulsions50,62 in a closed
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t
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Fig. 1 Position space entropy as a function of time, sx(t), Eq. (1) (top),

momentum space entropy as a function of time, sp(t), Eq. (2) (middle)

and total entropy as a function of time, st(t) (bottom) of the harmonic

oscillator, for the case of pure-dephasing without relaxation (left) and

relaxation without pure-dephasing (right). ω = 1 and γ = 0.15 (red),

γ = 0.3 (blue), γ = 0.5 (green).

quantum system. These results illustrate that it is also sensitive

to the effects of the coupling with the environment. A larger cou-

pling to the bath provokes a larger entropic sum. These results

are also valid in the relaxation regime for t < π, where addition-

ally the entropy sums reach a maximum value and then decrease.

This means that the separable phase-space density first delocal-

izes (loss of information) for smaller t and then localizes (in-

formation gain) for larger values of t. For greater values of t,

there are crossovers in the curves. The physical interpretation of

these crossovers is that the phase-space density is more delocal-

ized when the coupling to the bath is stronger, at smaller values of

time. This behavior is inverted when the system approaches the

equilibrium state. It is the weakest coupled which is most delocal-

ized. Hence, at equilibrium, the information loss in phase-space

is greater when the system-bath coupling is smaller.

7 Moshinsky atom coupled with a bath

7.1 The non-interacting case

Setting the interparticle potential equal to zero (λ = 0), the

Moshinsky atom becomes a system of two noninteracting oscil-

lators, whose wave function is symmetric. In this way, we study

the effects of the bath on the system and eliminate any effects due

to the interparticle potential.

In Fig. (3) we plot the entropies in both regimes and for several

values of γ. We observe that the behavior is similar to that of the

-3 3
x

0.5

nHx,tL

t=0

-3 3
x

0.5

nHx,tL

t=0

-3 3
x

0.5

nHx,tL

t=Π�2

-3 3
x

0.5

nHx,tL

t=Π�2

-3 3
x

0.5

nHx,tL

t=Π

-3 3
x

0.5

nHx,tL

t=Π

-3 3
x

0.5

nHx,tL

t=3Π�2

-3 3
x

0.5

nHx,tL

t=3Π�2

-3 3
x

0.5

nHx,tL

t=2Π

-3 3
x

0.5

nHx,tL

t=2Π

Fig. 2 Position space density, n(x, t), of the harmonic oscillator for the

case of pure-dephasing without relaxation (left) and relaxation without

pure-dephasing (right). ω = 1 and γ = 0.15 (red), γ = 0.5 (blue).
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t
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Fig. 3 Position space entropy as a function of time, sx(t), Eq. (1) (top),

momentum space entropy as a function of time, sp(t), Eq. (2) (middle)

and total entropy as a function of time, st(t) (bottom), for the case of

pure-dephasing without relaxation (left) and relaxation without

pure-dephasing (right) in the non-interacting Moshinsky atom (λ = 0).

ω = 1 and γ = 0.15 (red), γ = 0.3 (blue), γ = 0.5 (green).

HO case. In the pure-dephasing regime in x-space, a larger cou-

pling to the bath leads to a larger loss of information in general.

In the relaxation regime, there is a more complicated behavior

which alternates between a larger loss of information with in-

creasing bath coupling strength and the inverse behavior (smaller

loss of information with increasing coupling strength). This de-

pends on the particular value of t.

The position space Shannon entropy increases from t = 0 to

t = π
2

. At this latter point the coherences are zero. In the pure-

dephasing regime, this point is characterized by a loss of informa-

tion which does not depend on the coupling strength. In momen-

tum space, this point is characterized by a gain of information

(smaller entropy-more localized distribution) which does depend

on the coupling strength. A smaller coupling strength induces a

larger gain in information. In the relaxation regime the behav-

ior is similar but in position space the loss of information now

depends on the coupling strength. A larger coupling results in

smaller gain of information in momentum space.

The entropic sum which measures the uncertainty in a sepa-

rable phase-space distribution increases with t and is sensitive

to the coupling strength of the bath. A larger coupling strength

yields a larger entropy in the pure-dephasing regime. In the re-

laxation regime, this result holds for t < π. For greater t, there are

crossovers, and the entropy sums display maxima with the same

physical interpretation as in the HO case.

7.2 The effect of the interparticle potential

7.2.1 One-variable Shannon entropies

In this section we examine the effect of the interparticle potential

in the presence of the bath, on the localization of the distribu-

tion functions and in the correlation measures. We start with the

analysis of the reduced one-variable Shannon entropies.

In Fig. (4) we plot the entropies for both regimes. A larger

interparticle potential provokes a larger sx, hence larger loss

of information. In momentum space the behavior is opposite.

Larger λ yields a smaller sp (localization). This occurs in both

regimes. These effects are the same as those observed for the

time-independent closed system50.

The plots of st show that the entropic sum tends toward asymp-

totic equilibrium values. We also observe intersections between

the plots in the vicinity of t = π/2. Also interesting is that the

plots show more structure for larger values of the interparticle in-

teraction, λ . This structure is more pronounced in the relaxation

without pure-dephasing regime where we observe maxima in all

plots. These maxima occur in the first period of the evolution

t ∈ [0,2π]. Beyond this period all curves are characterized by a

monotonically decreasing behavior. Note also that all points are

above the bound for st in Eq. (3).

The entropic sum as a function of the interparticle potential

is plotted in Fig. (5) for both regimes and for different values

of time. The same increasing trend is displayed in most of the

plots. However there are minima for t = π/2 in both regimes.

This minimum is more pronounced in the pure-dephasing regime.

For t = π/2, the coherences, are zero in both regimes for the first

time in the evolution. At this point, the momentum space distri-

bution localizes more strongly than the delocalization in the po-

sition space distribution, which is an effect of the potential. The

fact that these minima do not occur again for other half values of

π can be interpreted as an effect due to the interaction with the

bath, which decoheres the system with time.

7.2.2 Two-variable Shannon entropies

We now turn our attention to the two-variable non-reduced dis-

tributions and their entropies, in the presence of the bath. The

effect of the potential is the same as discussed above for the re-

duced entropies. As observed from Fig. (6), a stronger inter-

particle potential induces a larger delocalization in the position

space distribution (information loss) and a larger localization in

the momentum space one (information gain).

The most striking difference is the behavior of the entropic sum

in the different regimes. In the pure-dephasing without relaxation

regime, sT does not depend on the interparticle potential while it

does in the relaxation without pure-dephasing regime. All points

are above the bound for sT in Eq. (7).

In Fig. (7), the interparticle potential dependence of the en-

tropic sum is plotted. sT (λ ) is a constant for the pure-dephasing
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t

1.1

1.35
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0 2 Π 4 Π 6 Π

t

1.1

1.35

sx

sx

0 2 Π 4 Π 6 Π

t

1.1

1.35

sp

sp

0 2 Π 4 Π 6 Π

t

1.1

1.35

sp

sp

0 2 Π 4 Π 6 Π

t

2.35

2.56

st

st

0 2 Π 4 Π 6 Π

t

2.35

2.43

st

st

Fig. 4 Position space entropy as a function of time, sx(t), Eq. (1) (top),

momentum space entropy as a function of time, sp(t), Eq. (2) (middle)

and total entropy as a function of time, st(t) (bottom), of the Moshinsky

atom, for the case of pure-dephasing without relaxation (left) and

relaxation without pure-dephasing (right). ω = 1 and γ = 0.15. λ = 0

(red), λ = 0.3 (blue), λ = 0.5 (green).

regime. This is also a characteristic of the (time independent)

closed quantum system50.

On the other hand, the dependency of the entropic sum on the

interparticle potential in the relaxation without pure-dephasing

regime comes from the population changes with the interaction

with the bath. Thus, the increasing behavior of the sum with the

potential is the result of delocalization in position space which is

not compensated with an equal localization in momentum space.

Hence the effect of the bath is greater in position space than

in momentum space. This is different from the pure-dephasing

regime where delocalization in position space is perfectly com-

pensated by localization in momentum space. In this case, the

effect of the bath is the same in both spaces.

7.2.3 Mutual information

In this section, we discuss the combined effect of the bath and

the interparticle potential on the statistical correlation between

particles.

In Fig. (8) we present the correlation between particles mea-

sured in position and in momentum space, and their sum (the

total correlation) for γ = 0.15. The behavior is similar for other

values of the bath coupling.

In position space, the statistical correlation between particles

is smaller with larger interparticle potential at larger values of t.

The most statistically correlated case is in fact the non-interacting

0 0.6

Λ

2.35

2.44

st

t=0

0 0.6

Λ

2.35

2.44

st

t=0

0.6

Λ

2.415

2.425

st

t=Π�2

0 0.6

Λ
2.37

2.39

st

t=Π�2

0 0.6

Λ

2.48

2.53

st

t=Π

0 0.6

Λ

2.4

2.48

st

t=Π

0 0.6

Λ

2.52

2.55

st

t=2Π

0 0.6

Λ

2.41

2.46

st

t=2Π

0.6

Λ

2.53

2.545

st

t=5Π�2

0 0.6

Λ

2.41

2.46

st

t=5Π�2

Fig. 5 Total entropy as a function of the interparticle potential, st(λ ), of

the Moshinsky atom, for the case of pure-dephasing without relaxation

(left) and relaxation without pure-dephasing (right). ω = 1 and γ = 0.15,

for different values of time, t.
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t
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2

0 2 Π 4 Π

t

2.1

2.6

sx
2

sx
2

0 2 Π 4 Π 6 Π

t

2.1

2.5

sp
2

sp
2

0 2 Π 4 Π

t

2.1

2.5

sp
2

sp
2

0 2 Π 4 Π 6 Π

t

4.55

4.93

sT

sT

0 2 Π 4 Π 6 Π

t

4.55

4.74

sT

sT

Fig. 6 Position space pair entropy as a function of time, s2
x(t), Eq. (5)

(top), momentum space pair entropy as a function of time, s2
p(t), Eq. (6)

(middle) and total pair entropy as a function of time, sT (t) (bottom), of

the Moshinsky atom, for the case of pure-dephasing without relaxation

(left) and relaxation without pure-dephasing (right). ω = 1 and γ = 0.15.

λ = 0 (red), λ = 0.3 (blue), λ = 0.5 (green).

system. This behavior, contrary to intuition, is a decoherence ef-

fect due to the bath. Details of the smaller t part of the plot are

shown in Fig. (9). The dynamics starts with the expected behav-

ior at t = 0. That is, the most correlated case is the one with the

larger interparticle potential. However, this correlation rapidly

decays and the intersections in the plots are apparent. Thus, the

effect of the bath makes the more repulsively correlated system

less statistically correlated. That is, the interaction with the bath

decouples the positions of the particles as the system evolves to-

wards equilibrium. This behavior also holds for different values of

the system-bath coupling strength. Thus, for small t, the statistical

correlation is governed by the interparticle potential whereas for

greater t, it is governed by the interaction with the bath. This be-

havior is present in both regimes. The difference between the two

is that the asymptotic values of the correlation at large t is smaller

for the relaxation regime as compared to the pure-dephasing one

for a particular value of λ . This effect is due to the changing

populations in the relaxation regime.

On the other hand, the momenta of the particles are more sta-

tistically correlated for larger values of the interparticle potential

as expected. The structure of the plots is essentially the same for

the different values of λ .

The sum of the correlation between positions and between mo-

menta, It , can be interpreted as the total correlation between the

particles in the system. As shown in the plots, the total correlation

0 0.7

Λ

4.48

4.5

sT

t=0

0 0.7

Λ

4.48

4.5

sT

t=0

0 0.7

Λ
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4.69

sT

t=Π�2

0.7

Λ

4.64

4.72

sT

t=Π�2

0 0.7

Λ

4.77

4.79

sT

t=Π

0.7

Λ

4.7

4.78

sT

t=Π

0 0.7

Λ

4.86

4.88

sT

t=2Π

0.7

Λ

4.73

4.77

sT

t=2Π

0 0.7

Λ

4.88

4.9

sT

t=5Π�2

0.7

Λ

4.73

4.76

sT

t=5Π�2

Fig. 7 Total pair entropy as a function of the interparticle potential,

sT (λ ), of the Moshinsky atom, for the case of pure-dephasing without

relaxation (left) and relaxation without pure-dephasing (right). ω = 1 and

γ = 0.15, for different values of time, t.
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t
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0 2 Π 4 Π 6 Π

t

0.02

0.12

Ix

Ix

0 2 Π 4 Π 6 Π

t

0.02

0.15

Ip
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0 2 Π 4 Π 6 Π

t

0.02

0.15

Ip
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0 2 Π 4 Π 6 Π

t

0.15

0.27

It

It

0 2 Π 4 Π 6 Π

t

0.07

0.18

It
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Fig. 8 Position space mutual information as a function of time, Ix(t), Eq.

(9) (top), momentum space mutual information as a function of time,

Ip(t), Eq. (10) (middle) and total mutual information as a function of time,

It(t) (bottom), of the Moshinsky atom, for the case of pure-dephasing

without relaxation (left) and relaxation without pure-dephasing (right).

ω = 1 and γ = 0.15. λ = 0 (red), λ = 0.3 (blue), λ = 0.5 (green).

is larger for the greater values of the interparticle potential for the

most part of the evolution. There are, however, intersections be-

tween the curves that occur at small t. This behavior illustrates

the interplay between the interparticle potential and the inter-

action with the bath, in governing the total correlation between

particles. Details of this interplay can be observed in Fig. (9).

Another question to be asked is if the strength of the coupling

to the bath affects the statistical correlation between particles in

the same manner as the strength of the interparticle repulsive po-

tential. To analyze this, we present plots of the correlation for the

non-interacting system (λ = 0) at different values of the coupling

strength γ in Figs. (10) and (11). At t = 0, the correlation is the

same in all instances and stems from the indistinguishability of

the particles and the quantum superposition.

In position space, at very small t, the effect of a stronger inter-

action with the bath is a smaller correlation in the pure-dephasing

regime. This behavior is similar to that previously observed for

the interparticle potential in Figs. (8) and (9) at larger t. The

difference here is that for t > π
4

, the curves intersect and the more

strongly coupled to the bath is now the more correlated case. In

the relaxation regime, a stronger coupling to the bath yields a

weaker correlation for all t. This behavior is the same as that be-

tween the correlation and interparticle potential in Figs. (8) and

(9) at larger t.

In the pure-dephasing regime in momentum space, a stronger

0
Π

2

Π

t

0.05

0.11

Ix

Ix

0
Π

2

Π

t

0.05

0.11
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Π

2

Π

t

0.15

0.22

It

It

0
Π

2

Π

t
0.1

0.2

It

It

Fig. 9 Detail of the previous plot. Position space mutual information as

a function of time, Ix(t), Eq. (9) (top) and total mutual information as a

function of time, It(t) (bottom), of the Moshinsky atom, for the case of

pure-dephasing without relaxation (left) and relaxation without

pure-dephasing (right). ω = 1 and γ = 0.15. λ = 0 (red), λ = 0.3 (blue),

λ = 0.5 (green).
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Fig. 10 Position space mutual information as a function of time, Ix(t),

Eq. (9) (top), momentum space mutual information as a function of time,

Ip(t), Eq. (10) (middle) and total mutual information as a function of

time, It(t) (bottom), for the case of pure-dephasing without relaxation

(left) and relaxation without pure-dephasing (right) in the non-interacting

Moshinsky atom (λ = 0). ω = 1 and γ = 0.15 (red), γ = 0.3 (blue), γ = 0.5

(green).

10 | 1–13

Page 10 of 13Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



0
Π

4

Π

2

t

0.072

0.085

Ix

Ix

0
Π

4

Π

2

t

0.05

0.08

Ix

Ix

0
Π

4

Π

2

t

0.145

0.17

It

It

0
Π

4

Π

2

t

0.085

0.16

It

It

Fig. 11 Detail of the previous plot. Position space mutual information as

a function of time, Ix(t), Eq. (9) (top) and total mutual information as a

function of time, It(t) (bottom), for the case of pure-dephasing without

relaxation (left) and relaxation without pure-dephasing (right) in the

non-interacting Moshinsky atom (λ = 0). ω = 1 and γ = 0.15 (red),

γ = 0.3 (blue), γ = 0.5 (green).

coupling to the bath results in a stronger correlation between mo-

menta. This relation is the same as that observed between the

interparticle potential and the correlation in Fig. (8). In the re-

laxation regime, a stronger coupling to the bath yields a weaker

correlation and is the same trend as that observed in position

space. This trend is opposite to that in Fig. (8) where a larger

interparticle potential provokes a stronger correlation.

The total correlation in the pure-dephasing regime increases

with a stronger coupling to the bath. This behavior is in general

consistent with that of Fig. (9), except for values close to t =

0. On the other hand, this behavior is inverted in the relaxation

regime which is expected since both its components display the

same behavior.

In Fig. (12), we systematically compare the correlations be-

tween positions with the correlations between momenta as mea-

sured by the mutual information. For the non-interacting case,

the values of the position and the momentum correlation are

closer than in the interacting cases (λ = 0.3,0.5). Thus, the ef-

fect of the interparticle potential is to separate Ix from Ip. When

the interparticle potential is turned on (λ 6= 0), the statistical cor-

relation between the momenta is larger than the correlation be-

tween positions. These trends also hold for other values of the

bath coupling and are not presented for brevity.

8 Conclusions

The effects of the interaction between a two-particle quantum sys-

tem and its environment is studied by the use of the Moshinsky

atom model and the Lindblad operator master equation formal-

ism. The purpose of this work is to gauge the response of the

system to the coupling with the environment, and the interplay

with the interparticle repulsive potential. We use Shannon en-
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0 2 Π 4 Π 6 Π

t
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t
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I
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0.15

I

Λ=0.5

0 2 Π 4 Π 6 Π

t
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0.15

I

Λ=0.5

Fig. 12 Comparison between position space mutual information as a

function of time, Ix(t), Eq. (9) (red) and momentum space mutual

information as a function of time, Ip(t), Eq. (10) (blue), of the Moshinsky

atom, for the case of pure-dephasing without relaxation (left) and

relaxation without pure-dephasing (right). ω = 1 and γ = 0.15. λ = 0

(top), λ = 0.3 (middle), λ = 0.5 (bottom).

tropies to examine how the environmental coupling and interpar-

ticle potential affect the localization-delocalization features of the

one (reduced) and two-particle distribution functions in position,

momentum and separable phase-space. Furthermore, mutual in-

formation is used to study the statistical correlation between par-

ticles and how this correlation is affected by the environment and

the repulsive potential. Bath coupling in position space leads to a

delocalization of the one and two-particle distribution functions,

which can be interpreted as a loss of information. On the other

hand, bath coupling in momentum space leads to a localization of

the underlying distributions, which can be interpreted as a gain

of information. The (reduced) one-particle entropy sum mea-

sures the delocalization of a separable phase-space distribution

and forms the basis of the entropic uncertainty relation. Results

show that in the presence of the bath it is sensitive to and in-

creases with the strength of the interparticle potential. The only

point where this is not valid is at t = π/2 where the off-diagonal

elements of the density matrix are zero. At this point, the entropy

sum is shown to transit through a minimum as the potential is

increased. The entropy sum is also shown to be sensitive to the

strength of the bath coupling. The two-particle entropy sum is

constant and does not depend on the strength of the interparticle

potential (λ) in the pure-dephasing regime. On the other hand,

it increases with λ in the relaxation regime. The interpretation of

this behavior is a loss of information in a separable phase-space
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distribution.

The statistical correlation between the particles positions and

between their momenta, in the presence of the bath, display

markedly different behaviors. At t = 0, the magnitude of the cor-

relation in position space depends on the strength of the inter-

particle potential. That is, the positions of the particles are more

statistically correlated in the system with the strongest interparti-

cle potential. However, in the presence of the bath, it is the system

with weakest interparticle potential that has the largest statistical

correlation. Thus the effect of the bath is to randomize the be-

havior of the particles which yields a smaller correlation between

their positions. Hence we conclude that the coupling to the bath

governs the statistical correlation between particles for larger val-

ues of t, whereas the interparticle potential is responsible for this

correlation at small t. The point taken from this analysis of the

position space mutual information is that the bath decouples the

particles. It would be interesting to investigate if this effect is

maintained for other potentials such as the Coulombic one for

the case of realistic electronic systems.

On the contrary, particles with a stronger interparticle poten-

tial are more correlated with regard to their momenta, even in

the presence of the bath. Based on this, the observation is that

the effects of the bath on the statistical correlation between the

particles is more pronounced in position space as compared to

momentum space. We also find that the presence of a repulsive

interparticle potential in a system that is coupled to a bath yields

that the magnitude of the statistical correlation between the par-

ticles momenta is greater than that between their positions. The

difference between these magnitudes increases with the strength

of the potential.

The two-particle model studied in this work can be generalized

to N particles, and is still analytically solvable. Thus one can study

many-body effects on the statistical correlation between two par-

ticles and its interplay with the bath coupling. Employing suitable

definitions of higher-order mutual information, one could exam-

ine other collective effects present in this open quantum system

and test if the observed trends about information gain/loss and

statistical correlations persist for N particle systems. It would also

be interesting to perform a study utilizing non-Markovian dynam-

ics.
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