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Reactive symbol sequences for a model of hydrogen combustion

Mohammad Alaghemandia and Jason R. Green∗a,b

Transient, macroscopic states of chemical disequilibrium are born out of the microscopic dynamics of molecules. As a reaction

mixture evolves, the temporal patterns of chemical species encodes some of this dynamical information, while their statistics are a

manifestation of the bulk kinetics. Here, we define a chemically-informed symbolic dynamics as a coarse-grained representation

of classical molecular dynamics, and analyze the sequences of chemical species for a model of hydrogen combustion. We use

reactive molecular dynamics simulations to generate the sequences and derive probability distributions for sequence observables:

the reaction time scales and the chain length–the total number of reactions between initiation of a reactant and termination

at products. The time scales and likelihood of the sequences depend strongly on the chain length, temperature, and density.

Temperature suppresses the uncertainty in chain length for hydrogen sequences, but enhances the uncertainty in oxygen sequence

chain lengths. This method of analyzing a surrogate chemical symbolic dynamics reduces the complexity of the chemistry from

the atomistic to the molecular level and has the potential for extension to more complicated reaction systems.

1 Introduction

Away from equilibrium, simple theories for macroscopically

observable phenomena may be hidden in the complicated dy-

namical motions of microscopic components of matter. Com-

plex chemical reactions are a phenomenon where parameter-

free theories remain elusive, in part, because the processes in-

volved can be highly transient, dissipative, and irreversible.1,2

Such behavior can obscure the essential microscopic dynami-

cal details to include in a more macroscopic theory. Here we

introduce a method for analyzing the information these dy-

namics encode on the statistical patterns of chemical species

in reacting mixtures. In particular, we apply the method to

combusting mixtures of hydrogen and oxygen. Through an

analysis of the chemical symbol sequences produced during

the reaction, we show this method is a route to extract infor-

mation that is important to the search for concise macroscopic

theories of complex chemistry away from equilibrium.

The nonequilibrium features of combustion chemistry have

made it necessary to rely on chemical kinetic modeling for en-

gineering applications.3–9 Typical models of complex chemi-

cal kinetics can be massive, heavily-parameterized mathemat-

ical representations.6,8 These models are extensively validated

against experiments, and yet can still be inaccurate or incom-

plete, and subject to further reduction in some temperature or

pressure regimes.10 These kinetic models are the primary link

between atomistic and bulk scale descriptions of chemistry,

and so, are of significant importance in applications that in-

clude autoignition and the structure of detonations. From a

fundamental perspective, these complex models use assump-
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tions about partial equilibria or steady states to predict rate

constants for the presumptive set of elementary reactions,2 as-

sumptions that intrinsically neglect molecular dynamics. The

method we present here is a means of testing the validity of

such assumptions and effectively coarse-graining the underly-

ing microscopic dynamics.

Even within equilibrium assumptions, chemical kinetic

models for combustion need the rate constants for all elemen-

tary reactions,11,12 preferably derived from molecular prop-

erties. This fact presents a challenge because the complex-

ity of the model explodes for fuels composed of molecules

with increasing numbers of internal degrees of freedom. Hy-

drogen combustion, of interest here, involves eight chemical

species and more than twenty elementary reactions,11 but suc-

cessful models for methane combustion involve around fifty

chemical species and more than three-hundred elementary re-

actions.13–15 An additional demand on these models is that

the rate constants be predictable over a vast range of temper-

ature and pressure, a direction in which there has been some

recent success.16 Both the high-dimensionality and nonequi-

librium nature of complex chemistry are at the heart of cur-

rent challenges to predictive theory with no free parameters

to tune. In this paper, we use reactive molecular simulations

to demonstrate an approach that is analogous to applied sym-

bolic dynamics17,18 in the field of dynamical systems theory.

Specifically, we study the atomistic dynamics with a surrogate

dynamics of the chemical species to quantify features that may

be important in the search for parameter-free theory.

Molecular dynamics or classical trajectory simulations are

an effective and efficient method to investigate the statistical

behavior of molecular populations at and away from equilib-

rium.19 Coupling classical molecular dynamics with the meth-

ods of dynamical systems theory has profited our understand-

ing of small reactive molecular systems, in isolation,21–25 and
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for high-dimensional, dissipative systems26,27 in nonequilib-

rium environments.28,29 Now it is possible to simulate mix-

tures undergoing complex chemical reactions with classical

mechanics using reactive force fields.20 It seems likely that

new understanding of evolving reaction mixtures can also

come from methods borrowed and adapted from dynamical

systems theory. One possibility we explore here is symbolic

dynamics, a method of coarse graining where one maps tra-

jectories onto a surrogate symbolic dynamics through a par-

titioning of state space.17 The dynamical symbol sequences

that result encode, and can preserve, the key features of the

nonlinear dynamical system of interest.30

Here we assume a force field captures the essential fea-

tures of the chemistry that are necessary to formulate a sta-

tistical mechanical approach.19,31 Rather than partitioning the

high-dimensional phase space, we take a chemically-informed

view, extracting chemical species from an ensemble of molec-

ular dynamics trajectories. We apply the method to mixtures

of hydrogen and oxygen that react and induce a transient dy-

namics of chemical symbol sequences composed of an alpha-

bet of eight species. Our results show how the sequences of

chemical symbols is a useful, but different, route to character-

ize the kinetics of complex chemical reactions. After present-

ing the details of our computational methods, we discuss the

features of the overall reaction kinetics from simulation data.

Then, we parse the chemical sequences extracted from the tra-

jectories by their chain length and examine them over a wide

range of temperature and density.

2 Methods and model

A combusting reaction mixture can generate a diverse set of

chemical species. Representing a chemical species in the

mixture at the time of a measurement as a symbol, xi, the

evolving mixture will produce a sequence of chemical sym-

bols, x0 x1, . . .. For a single mixture, many such sequences

will result during the course of the overall reaction. This

view motivates our use of the techniques of symbolic dynam-

ics, some of which focus on quantifying statistical features of

these symbol sequences (though the assignment of symbols to

the underlying dynamics is done differently). To derive sym-

bol sequences in computer simulations of detailed atomistic

motions, one can track a particular atom and periodically ask

to what chemical species it belongs. As the species under-

goes transitions, a sequence of answers will result, for exam-

ple H2 → OH→ H2O. Here, we choose to only update symbol

sequences when there is a reaction causing transitions between

chemical species. This assumes purely irreversible transitions

and a kinetic scheme in which there is no probability a chem-

ical species will survive. Thus, a single classical trajectory

generates a sample set of such sequences, x0 x1, . . .xL, one for

each hydrogen (and oxygen), with variable length, L. We fo-

cus on the set of reactive sequences where x0 = H2 or O2 and

xL = H2O.

This symbolic dynamics is a step towards an alternative ap-

proach to the problems in combustion chemistry that stem

from the high dimensionality of the classical phase space,

rather than the quantum mechanical nature of the reaction

mixture. In demonstrating the methodology here, we expand

on simulation results for hydrogen combustion in the litera-

ture.32,33 From each trajectory, we extract the sequences of

chemical species by tracking each hydrogen and each oxy-

gen. When identifying chemical species, we start from the

last frame where the tracked atom was a part of H2 (or O2)

and stop at the first frame where the tracked atom was a part

of H2O. Each atom in the reaction mixture generates its own

symbol sequence. We group these sequences according to the

element under observation. To accurately identify chemical

species, and avoid including spurious atoms, we only accept

species with a lifetime greater than 50 fs. Our primary aim

here is to analyze the properties of these sequences. For ex-

ample, the chain length–the total number of reactions between

reactants and products.

Histories of chemical species are also the focus of other

approaches in chemical kinetics. A recent example is the

stochastic approach of Bai et al.34 using a sum over his-

tories representation for chemical kinetics, similar to Feyn-

man’s path integral formulation of quantum mechanics, to

describe chemistry with reaction pathways. Chemical path-

ways are a time-ordered sequence of both chemical species

and elementary reactions. Generating time-ordered sequences

of the chemical species from an underlying dynamics, as we

do here, is a complementary means of analyzing the overall

reaction. For example, in the chlorination of methane, a two-

step chemical pathway is CH4
R1
−→ CH3

R2
−→ CH3Cl, and the

corresponding chemical symbol sequence is CH4 → CH3 →

CH3Cl. Chemical symbol sequences are a further reduction

of the description that does not distinguish between sequences

brought about through different elementary reactions. This

has the advantage that the analysis of the complex kinetics

is independent of the notion of elementary reactions, which

can breakdown in high-pressure environments and in the con-

densed phase.35,36 Furthermore, in this work chemical sym-

bols serve as a surrogate or reduced model for the determinis-

tic classical dynamics.

Despite the accuracy of quantum mechanical methods to

describe chemical reactions at the atomistic level, their com-

putational expense is a limiting factor in their application to

reaction mixtures. Instead, we simulate mixtures undergoing

chemical reactions with a reactive force field, ReaxFF,32,33,37.

Van Duin et al.32 and Goddard III et al.33 have used ReaxFF to

simulate hydrogen combustion. Döntgen et al. used ReaxFF

to determine both the reaction mechanism and rate constants

of methane combustion,38 using a method to identify and

2 | Phys. Chem. Chem. Phys., 2015, XXX, 1–9 This journal is c© the Owner Societies 2015

Page 2 of 9Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



quantify the rate coefficients of elementary reactions. We

study the dynamics of the ReaxFF model of hydrogen oxi-

dation with simulations of a stoichiometric mixture of H2 and

O2. All molecular dynamics simulations were performed with

the PuReMD-GPU simulation package39 using the ReaxFF

potential32,33,37 and the parameters in Ref. 32.

Practical applications motivate an interest in combustion ki-

netics over a range of macroscopic parameters. In this study,

we ran a set of 50 independent simulations, from unique initial

conditions, at temperatures, T , from 2400 to 6800 K and den-

sities, ρ , from 50 to 500 kg m−3 (the Supplementary Informa-

tion, SI1, lists the exact temperatures and densities). To avoid

simulating the time before an initiation reaction, we seeded

the chemistry in each trajectory with a single OH radical. The

cubic simulation box was also initially filled with 66 hydrogen

and 33 oxygen molecules. The chosen densities at 3000 K cor-

respond to initial pressures from 100 to 500 MPa; because we

fixed the number of atoms, temperature, and volume, the pres-

sure varied during the course of the reaction. For the Nosé-

Hoover thermostat40–42 we used a coupling time of 1 ps. Us-

ing this coupling time, the instantaneous simulation tempera-

ture was within 200 K of the target temperature at all times. In

time steps of 0.1 fs, the simulation time ranged between 50 ps

and 5 ns depending on the temperature and density. Simula-

tions with density of 250 kg m−3 were run at temperatures be-

low 4000 K for 2 ns, above 6000 K for 50 ps, and in between

for 1 ns. Simulations with densities lower than 200 kg m−3

were run for 5 ns.

3 Results and discussion

3.1 Time evolution of chemical species

Before discussing the statistics of chemical symbol sequences,

let us first discuss the overall hydrogen combustion reaction:

2 H2 + O2→ 2 H2O. Fig. 1 shows simulation results for the

number of reactant and product species versus time at 3000 K

and 250 kg m−3. Both reactant populations, H2 and O2, decay

monotonically from their initial stoichiometric amounts as the

reaction progresses. The reaction product, H2O, monotoni-

cally increases in abundance before reaching a plateau that

indicates the completion of the overall reaction. From these

data, the average numbers from 50 parallel simulations are

smooth functions of time. In what follows, we only show the

average value of our simulation results.

The overall reaction hides the “complexity” of the underly-

ing chemistry, which involves eight species: H2, O2, H, O,

HO2, OH, H2O2, and H2O. As a reaction mixture initially

composed of reactants evolves in time, it passes through com-

positions that can include five meta- or un-stable intermediates

on the way to a product-dominated composition. We find in

our results that the average number of OH, H, and O radi-
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Fig. 1 The number of reactants and product versus simulation time, in

nanoseconds, during the combustion of hydrogen. Data are from 50

independent simulations of a stoichiometric mixture (66 H2, 33 O2, 1 OH) at

a temperature of T = 3000 K and a density of ρ = 250 kg m−3. Simulation

data at 21 temperatures and 11 densities show roughly the same trends, but

on different time scales. Black solid lines are averages over trajectories.

cals are below one at all times during the reaction, while the

mean number of HOOH and HO2 increase slightly above one

before tending towards zero; see Supplementary Information,

SI2. Similar trends are seen with other simulations.32,43

Temperature and density have a strong influence on the re-

activity of H2/O2 mixtures. Increasing either reduces the

time that is necessary to reach the maximum number of wa-

ter molecules. Fig. 2(a) shows the time to produce the maxi-

mum amount of H2O over the range of temperatures above the

flame ignition temperature, ≈ 800 K.44,45 Note the maximum

in the number of water molecules is temperature dependent,

Fig. 2(b). Fig. 2(c) shows this reaction time over a range of

densities. The reaction time decreases monotonically, and ap-

parently exponentially, upon increasing both temperature and

density. As we will show in the next section, shorter overall

reaction time is a consequence of the “faster” completion of

sequences producing water.

In chain reactions, the sum of the chain carriers cancel out

in the overall reaction stoichiometry. However, this is not nec-

essarily the case in these simulations because a pool of radi-

cals can persist at sufficiently high temperatures. Fig. 2 shows

the reduction in the time to reach 90% of the maximum water

molecules produced at each temperature. There is more statis-

tical uncertainty in our data at lower temperature and density,

which nevertheless shows that at temperatures below 4000 K,

there is more than 90% conversion to water. At temperatures

above 4000 K, water dissociation lowers the water yield. The

intermediate species are continually renewed by the dissoci-

ation of water; see Supplementary Information, SI2. Sub-

tracting the intermediates from the maximum possible water

molecules, 66, necessarily accounts for the lower water pro-

duction at higher temperatures in Fig. 2(b).
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ability a sequence terminates after L reactions is

P(L) = ∑
x0

. . .∑
xL

p(x0, . . . ,xL). (1)

The sum runs over all sequences with constraints on the end

points: sequences must initiate at a reactant, x0 = H2 or O2,

and terminate at water, xL = H2O, after a variable number of

L reactions. To simplify notation we do not specify that the

probability estimates depend on temperature or density. As

Fig. 3 shows, the most probable fate of H2 is a direct transition

to water (> 57%), a sequence of chain length one. The next

most probable sequence is H2 → H → H2O with a chain length

of two. Other sequences of chain length two and longer have

lower probability. Oxygen though, has a longer sequence as

the most probable, O2 → HO2 → HOOH → OH → H2O;

see Fig. 3(b). Direct conversion of oxygen to water is a rare

event (0.23%) compared to hydrogen sequences, which is a

constraint of the known elementary reactions.47

To simplify the reactive sequences between H2 or O2 and

water, we group them according to their chain length. Only

sequences with a length of 9 or shorter have a significant prob-

ability. Fig. 4 shows the probability, P(L), of all sequences

with a chain length less than four. The probabilities of longer

sequences up to L = 9 are included in the Supplementary In-

formation (SI3). Note that each L > 1 consists of different

sequences with identical length. For example, both H2 →

H → H2O and H2 → OH → H2O are possible two-step se-

quences. A particular feature of interest is the most proba-

ble chain length. For hydrogen sequences the most probable

chain length is one because the most probable sequence is di-

rect conversion of hydrogen to water, as also seen in the state

diagram. A chain length of one is the most probable for all

of the temperatures and densities studied. The probabilities of

other chain lengths are also insensitive to temperature and den-

sity for hydrogen sequences. At higher temperatures P(2) and

P(3) slightly increase at the cost of reducing P(4) and longer

sequences (not shown here); see the top panel of Fig. 4(a). By

increasing the density at 3000 K the probabilities of L = 1, 3,

and 4 slightly increase, while P(2) decreases (Fig. 4(b), top

panel).

Oxygen sequences differ significantly from those of hydro-

gen. Sequences with chain length one have the lowest proba-

bility. They are nearly zero at 2400 K and slightly increase to

0.1 at 6800 K. Sequences with a length of four are the most

probable at temperatures up to 3400 K, where sequences with

a chain length of three begin to dominate. Increasing the tem-

perature above 3400 K continues to suppress the likelihood

of four-step sequences, favoring three and then two-step se-

quences. We see two-step sequences are the most probable

above 5800 K; see the bottom panel of Fig. 4(a). Overall,

for both hydrogen and oxygen sequences, increasing temper-

atures in the range of 2400 K and 6800 K causes a decrease in
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Fig. 4 Chain length probability, P(L), of hydrogen (top) and oxygen

(bottom) at (a) a range of temperature from 2400 to 6800 K and 250

kg m−3 and (b) 3000 K and densities from 50 to 500 kg m−3.

the number of transitions that are necessary to reach water.

The density also influences O2 sequence lengths. The bot-

tom panel of Fig. 4(b) shows our results for densities between

50 to 500 kg m−3 at 3000 K. From these data, we see P(1)
is close to zero for all densities, while P(2) and P(3) de-

crease with increasing density. The probability of four-step

sequences is non-monotonic with density, passing through

a maximum around 250 kg m−3. This density marks the

crossover of the most probable chain length from three to four.

Of note in this figure is that the total probability of sequences

with chain length less than four decreases. The probabilities

of sequences with chain length greater than four increase by

a corresponding amount. As shown in the Supplementary In-

formation, SI3, this probability is mostly concentrated in five,

six, and eight step sequences. A plausible interpretation of

these results is that, at the highest densities, the diffusion rate

of chemical species through the simulation volume is lower,

and reactive collisions are more frequent because the reaction

partners are more readily accessible in comparison to a more

“dilute” environment, where species are more mobile. Conse-

quently, it is reasonable to suspect longer sequences are more

accessible in dense reaction mixtures on average.

The species-to-species transitions in a dynamically-

generated reactive sequence can be caused by more than one

elementary reaction. Furthermore, a single elementary re-

action can simultaneously generate transitions for multiple

tracked atoms. To illustrate this point, and given the common

use of elementary reactions in combustion studies, we corre-

late the elementary reactions and chemical symbol sequences

extracted from our trajectory calculations. While this corre-

lation is possible for hydrogen oxidation, it will be a much

more difficult task in the case of more complex fuels. The el-

ementary reactions are identifiable at lower temperatures and

densities by correlating the species undergoing a transition in

successive time frames. All observed elementary reactions at
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3000 and 6000 K and a density of 250 kg m−3 are tabulated in

SI4 and SI5, respectively. From this complete set of observed

elementary reactions, the reactions of interest are those asso-

ciated with the most probable chain lengths for hydrogen and

oxygen sequences, shown in Fig. 4. For hydrogen sequences,

the most probable chain length is one, which corresponds to

a single one-step sequence, H2 → H2O, and two observed el-

ementary reactions at 3000 K and four at 6000 K. These re-

actions are shown in Table 1 and 2 at 3000 K and 6000 K,

respectively. The most probable elementary reaction observed

overall studied temperature range is H2 + OH → H + H2O.

This finding is consistent with available kinetic data47, where

this elementary reaction has the highest rate coefficient in the

temperature range.

Table 1 Elementary reactions leading to the sequence H2
T 1
−→ H2O at

3000 K and 250 kg m−3. Ti and R j indicate the transition and elementary

reaction, respectively. The complete set of elementary reactions is in SI4.

(Ti, R j) Reaction Probability

(T1, R1) H2 + OH → H + H2O 0.264

(T1, R9) H2 + HO2 → OH + H2O 0.026

Table 2 Elementary reactions leading to the sequence H2
T 1
−→ H2O at

6000 K and 250 kg m−3. The complete set of elementary reactions is in SI5.

(Ti, R j) Reaction Probability

(T1, R1) H2 + OH → H + H2O 0.227

(T1, R7) H2 + O → H2O 0.038

(T1, R13) H2 + HO2 → OH + H2O 0.023

(T1, R15) H2 + O2 → O + H2O 0.015

Table 3 Elementary reactions leading to the sequence O2
T 1
−→ HO2

T 2
−→

HOOH
T 3
−→ OH

T 4
−→ H2O at 3000 K and 250 kg m−3.

(Ti, R j) Reaction Probability

(T1,R2) H + O2 → HO2 0.193

(T2,R4) H + HO2 → HOOH 0.077

(T2,R5) H2 + HO2 → H + HOOH 0.052

(T3,R3) HOOH → 2OH 0.084

(T4,R1) H2 + OH → H + H2O 0.264

(T4,R6) H + OH → H2O 0.045

The most probable sequence for oxygen has a chain length

of four at 3000 K and two at 6000 K. The elementary reactions

associated with each transition in these oxygen sequences are

in Table 3 and 4. At 3000 K, for example, Table 3 indicates

sequential reactions leading to the transitions in the most prob-

able oxygen sequence, O2 → HO2 → HOOH → OH → H2O.

Elementary reactions are labeled in order of their probabil-

ity of occurrence; see SI4 and SI5. Note that in both of the

most probable oxygen sequences, at 3000 and 6000 K, the last

transition is OH → H2O. Just as in the case of hydrogen, this

transition is mostly due to the reaction H2 + OH → H + H2O.

Table 4 Elementary reactions leading to the sequence O2
T 1
−→ OH

T 2
−→ H2O

at 6000 K and 250 kg m−3.

(Ti, R j) Reaction Probability

(T1, R4) H + O2 → O + OH 0.053

(T2, R1) H2 + OH → H + H2O 0.227

(T2, R3) H + OH → H2O 0.144

Fig. 4 indicates the probability of each chain length, but

does not contain information about the time to complete the

sequences. Sequences can initiate at any time, but for the mo-

ment, we take the time zero to be when the simulation time

at which the first transition from hydrogen (or oxygen) to an-

other species is observed. The result is that the duration of se-

quences with a chain length of one is zero. The average time,

τ̄ , to complete longer sequences is shown in Fig. 5 as a func-

tion of chain length for both hydrogen and oxygen initiated

sequences. The general trend is that more time is necessary

on average to complete sequences with longer chain lengths,

i.e., longer sequences need more time to convert from a re-

actant to the product. Increasing the temperature or density

reduces the mean time for each L, as we saw for the overall

reaction. Temperature also reduces the fluctuations around the

mean time for each chain length; see SI6. The time to com-

plete hydrogen and oxygen sequences, once begun, show a

similar trend, except that the average time is higher for longer

oxygen sequences.

Thus far, we have separately shown the most probable se-

quence length and the corresponding average duration at each

temperature and density. Now, we consider both temporal

and probabilistic information together to identify how quickly

the most probable sequences terminate in simulation time.

For each realization of a particular sequence there are dis-

tinct times, relative to the simulation time zero, at which each

transition occurs. We use the average transition times, τ ′,

over these specific sequences to represent the time evolution.

Fig. 6 shows the three most probable hydrogen and oxygen

sequences at two select temperatures. The times of each tran-

sition are using τ ′, with the clock starting at the beginning of

simulation. Also note that the times in Fig. 5 are averages

over all sequences with a given L, but in Fig. 6 the times are

averages over the realizations of a specific sequence. Direct

transformation from H2 to H2O is the most probable hydrogen

sequence at both temperatures, as we saw in Fig. 4. Surpris-

ingly, while it is the most probable sequence, it is not the first

to complete on average. The first sequence to finish, among

the most probable, is H2 → H2O2 → OH → H2O at 3000 K,

and H2 → OH → H2O at 6000 K. In addition, notice that the

time for reactants to reach the product at 6000 K is more than

one order of magnitude smaller than at 3000 K, which is con-

sistent with the overall reaction time shown in Fig. 2. At both

temperatures, oxygen sequences are most likely to be longer
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Fig. 5 Longer sequences take more time. Average time, τ , to

complete a sequence for (top) hydrogen and (bottom) oxygen at (a)

a range of temperature from 2800 to 6800 K and 250 kg m−3 and (b)

3000 K and densities from 50 to 500 kg m−3.

and more temporally compressed than hydrogen sequences.

The average uncertainty about the chain length is another

feature that may be of interest for a macroscopic predictive

theory that focuses on the set of reactive sequences. Generally,

entropy quantifies the average degree of uncertainty associated

with a probability distribution. Here we measure uncertainty

in the number of reactions that will occur before chain termi-

nation, L, with the Shannon entropy

SL(T ) =−∑
L

P(L) lnP(L). (2)

Fig. 7 shows the temperature dependence of the Shannon

entropy at the density 250 kg m−3. The chain length entropy

SL(T ) monotonically increases with temperature for O2 se-

quences and monotonically decreases for H2 sequences. The

suppression of entropy for hydrogen-initiated sequences sug-

gests the chain length becomes more certain with increas-

ing temperature. In the context of Fig. 4 the decrease in

uncertainty is the compression of the chain length distribu-

tion towards shorter sequences. The oxygen-initiated chain

lengths, however, become less certain – the entropy increases.

Even though the entropy increases, increasing temperature

still has the net effect of decreasing the most probable chain

length. Temperature consistently decreases the most proba-

ble sequence length. Of note in this data are the difference

in statistics for oxygen sequences compared to those of hy-

drogen; this is a result of stoichiometry. For a stoichiometric

mixture of H2 and O2, there are half as many oxygen atoms

contributing to the estimate of the chain probabilities. Even

within these statistical fluctuations, the trends are clear: rais-

ing the temperature decreases the uncertainty about the chain

length for hydrogen sequences but increases our uncertainty

about the chain length for oxygen sequences.
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Fig. 6 The three most probable reactive hydrogen- and oxygen-

initiated sequences averaged over time at (a) 3000 K and (b) 6000 K

with a density of 250 kg m−3. The most probable sequence is not

necessarily the first to complete. The time τ ′ denotes the average

time during the simulation at which the given transition was

observed.
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Fig. 7 Shannon entropy of chain length distribution, SL(T ), as a

function of (a) temperature for oxygen and hydrogen sequences and

(b) the variance in the chain length probability distribution. Results

are at a density of 250 kg m−3. While temperature effectively

shortens the most probable chain length, it can enhance or suppress

the fluctuations in the chain length that determine the average

uncertainty.

4 Summary

Dynamically generated chemical symbol sequences are a

coarse-grained description of temporally evolving reaction

systems. This approach, with connections to dynamical sys-

tems and information theory, is a means of analyzing di-

verse sets of reaction sequences. Each sequence represents

the dynamical passage from reactants to products, potentially

through many intermediates. Together, the symbol sequences

are an alternative representation of chemical kinetics to tradi-

tional models for sets of elementary reactions. The species-to-

species transitions in sequences relate to elementary reactions,

but the mapping between these representations is not unique.
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Our data for the reactive sequences from a model of hydro-

gen combustion show that oxygen-initiated sequences typi-

cally have a longer chain length and a longer time scale than

hydrogen sequences. Increasing temperature effectively short-

ens the most probable chain length for all sequence types, but

a shorter most-probable chain length, however, does not mean

our uncertainty about the chain length necessarily decreases

on average. Rather, it is the effect of temperature on chain

length fluctuations that controls the average uncertainty, and

the temperature dependence of these fluctuations is different

for hydrogen and oxygen sequences. These findings, based

upon thousands of sample trajectories and tens of thousands

of sequences over temperatures between 2400 and 6800 K and

densities between 50 and 500 kg m−3, demonstrate the utility

of the method. In sum, chemically-informed symbolic dynam-

ics reduces the description of complex chemistry and encodes

details of molecular-scale events.
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