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The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists.
This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-
consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-
based dye sensitizer with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of
the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from
existing databases of structures) are carried out with respect to an user-adaptable set of rules. Rather than using computationally
intensive Density Functional Theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property
relationship (QSPR) models (calibrated from empirical data) for rapid estimates of the property of interest, which in this case
is the product of the short circuit current (Jsc) and the open circuit voltage (Voc). Since QSPR models have limited validity,
pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked
structures provide supporting evidence of their potential for dye sensitized solar cell applications.

1 Introduction

The direct exploitation of the abundant solar energy resources
has been a long, on-going research effort1. In the search
for low-cost and commercially viable alternatives to silicon-
based counterparts, dye-sensitized solar cells (DSSCs) have
received widespread attention2–4. The typical device architec-
ture contains a transparent conducting oxide (fluorine-doped
tin oxide), a semiconductor film (e.g. TiO2, ZnO) that is dyed
with a sensitizer (adsorbed onto the surface), an electrolyte
solution with a redox mediator (e.g. iodide/tri-iodide (I−/I−3 ,
cobalt(II/III))) and a counter electrode. When the sensitizing
dye (an organic or inorganic transition metal complex) absorbs
a photon, an electron is injected into the conduction band (CB)
of the nanocrystalline semiconductor and is then transferred to
the counter electrode (generally platinum-based) while pass-
ing through the transparent electrode and the external load.
The oxidized dye is restored to the ground state by the redox
mediator, which is in turn regenerated at the counter electrode.
The DSSC is thus, essentially modular with functions such as
light absorption (dye), electron (oxide) and hole (electrolyte)
transport performed by different components that interact with
each other5.

With the highest reported solar energy to current conver-
sion efficiency of only 12%6 (for a zinc-porphyrin dye com-
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bined with a cobalt based redox mediator), more needs to be
done to improve the efficiency and stability of DSSCs. With
this aim in view, research has focused on optimizing the dif-
ferent components ranging from the electrodes7–10 to elec-
trolytes6,11–13 and dyes14–16. In contrast to the other materials
used in the DSSC, the properties of the dyes (light harvesting
efficiency, stability etc) are more easily adjusted by making
subtle changes to their chemical composition. Thus, a variety
of organic dyes such as triphenylamines15, perylenes17, and
inorganic ruthenium-based18 and zinc-porphyrin dyes19 have
been explored. Although ruthenium-based dyes20 have tradi-
tionally shown good efficiencies (up to 11%21), organic metal-
free dyes too are slowly catching up with recent estimates
closely matching inorganic counterparts. above22–24. Further-
more, factors such as high molar extinction coefficients, struc-
tural diversity, environmentally friendliness, and availability
of materials have resulted in increased interest in organic sen-
sitizer25.

With the dye sensitizer controlling key aspects of photo-
voltaic performance such as the light harvesting capacity, de-
vice stability and charge transfer efficiency, focus is on en-
gineering them with specific properties suited for their ap-
plication. Though most dyes typically possess a donor-π
bridge-acceptor (D-π-A) architecture, other forms such as D-
A-π-A have also been reported26. The principal means of
improving the DSSC efficiency has been to make molecular
modifications (systematic variation of the π-spacer and an-
choring groups27) to existing dyes which have been shown
to be promising. Given that the costs associated with these
experiment-driven approaches tend to be quite high, the ap-
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proach is limited to investigating a a rather small number of
candidate dyes.

A better understanding of the relationship between the
molecular structure and the photovoltaic performance would
certainly facilitate a faster and more rational design of dyes25.
While a majority of this effort has been through experiments,
there is a rising trend towards using computational methods, in
particular quantitative structure-property relationship (QSPR)
models28–33. These methods, however, are not limited to dyes.
For instance, machine learning and data mining tools have
been used to model solar cell properties of metal oxides34 and
in other photovoltaic applications35. Taking this a step fur-
ther, in a recent article, the QSPR models were used to guide
the evolutionary de novo design of phenothiazine dyes36. Re-
sults showed that an increase of around 2% (in the estimated
power conversion efficiency (PCE)) could be achieved for the
proposed structures. The advantage of the approach lies in its
ability to identify novel molecules and rapidly assess potential
high-performance dyes while filtering out the less promising
ones.

Until now, the highest reported efficiencies (PCE) for the
coumarin dyes have been around 7-8%37. With the aim of
improving cell performance, a number of theoretical studies
have been reported where existing coumarin dyes have been
modified by introducing different substituent groups38–40. In
this contribution, we investigate the use of an efficient, com-
putational screening scheme based on artificial evolution to
the automated in silico design of coumarin-based dyes. Start-
ing with a set of fragments (single atom or groups of atoms)
that are combined in a synthetically tractable manner, the al-
gorithm explores the molecular space by iteratively refining
existing scaffold structures. The Darwinian operators of selec-
tion, mutation and crossover are used to create small changes
in the geometric and electronic properties of the dye struc-
ture41–43. Promising coumarin dyes emerging from these sim-
ulations are validated using quantum chemical calculations.

2 Methods and Materials

2.1 Artificial Molecular Evolution

Figure 1 provides a general overview of the de novo method-
ology being used and is only discussed here briefly. Read-
ers are referred to previous articles for additional details of
the procedure36,41,44. At the core of the computational pro-
cedure is a genetic algorithm (GA) that explores different
combinations of small fragments (building blocks), while tak-
ing into account aspects of synthetic accessibility of the pro-
posed structures and the need for high performance. In the
GA, the molecules are encoded as trees36 whose nodes rep-
resent fragments that are connected by edges i.e. bonds. The
mechanisms driving the evolution towards better solutions are

mainly, crossover and mutation which are applied so that ge-
netic material in the form of fragments are either exchanged
or substituted.

Fig. 1 Overview of the QSPR-guided de novo approach.

To maximize the probability of being able to synthesize the
new structures, we have employed the concept of a fragment
compatibility matrix (coded as a lookup table) that defines
the connection rules between fragments36,44,45. Each build-
ing block (fragment) stores information about the sites (atoms
to which other fragments may be connected) called attachment
points and the type of substituents that can be bound (see Fig-
ure 2). To create the relevant building blocks for the molecular
assembly, dyes reported in the literature were subjected to a
pseudo-retrosynthetic44 decomposition. Attachment point an-
notation is therefore based on the type of substituents existing
on each side of the cleaved bond. Over 100 such fragments
containing moieties such as benzothiadiazole, thienopyrazine
etc. that are found in several dyes were extracted. A second
list of fragments consisting of coumarin scaffolds (different
attachment points, chemical structure) were additionally iden-
tified (see bottom part of Figure 2) following a similar proce-
dure.

Molecular assembly is carried out by selecting a coumarin
scaffold (randomly from the list) and then looping through the
available attachment points, adding fragments according to the
linkage rules. Over a number of cycles, the GA modifies each
structure (using crossover and mutation) in an attempt to im-
prove its fitness, which here corresponds to a measure of the
desired level of a given property. Both crossover and muta-
tion are also subject to the fragment compatibility rules, thus
ensuring realistic structures. The de novo simulations were
carried out using in-house software written in Java.

Optimizing the efficiency of the DSSC requires a delicate
balance between several processes. Although some of these
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Fig. 2 Figure shows the compatibility matrix which governs the
connectivity between fragments and thus constrains the chemical
space to more realistic structures. The genetic algorithm attaches
different fragments at the specified R# according to the linkage rules.

procedures can be modelled theoretically, only a few proper-
ties can be predicted (e.g. absorption wavelength, injection
efficiency) reliably using quantum chemical methods46. In
addition, such properties also tend to be only weakly corre-
lated with the PCE. For a typical GA run, where thousands of
structures need to be assessed, use of DFT/TDDFT level elec-
tronic structure methods becomes computationally prohibitive
given the computational costs. A more rapid estimation is af-
forded by QSPR methods which are now being increasingly
used in computational chemistry to approximate properties of
interest47–49.

2.2 QSPR Modelling

The overall solar-to-electrical energy conversion efficiency
PCE, is given by the following equation:

PCE(%) =
Jsc ·FF ·Voc

Pinc
×100 (1)

where FF is the fill factor (FF), Jsc the short circuit current
(measured in mA cm−2) and Voc the open circuit voltage (mea-
sured in mV). While the FF has been shown to be influenced
by external factors such as electrode thickness and composi-
tion of the electrolyte etc50, the Jsc and to some extent the Voc
are more directly influenced by the dye. Since the short circuit
current and open circuit voltage largely depend on the molec-
ular properties of the donor and acceptor moieties in the dye,
we have chosen to model the product Jsc×Voc.

The experimental data on the photovoltaic properties for
49 coumarin dyes was taken from the literature37,51,52,52–63

where the PCE values for the molecules range from 0.3% to

7.7% (see Table S1 in the supplementary material). Previous
studies have demonstrated the utility of vibrational frequency
based eigenvalue (EVA) descriptors64 for defining structure-
property models for coumarin29 and phenothiazine30,36 dyes.
Here, we extend the approach to additionally include molecu-
lar orbital energies (eigenvalues of the Schrödinger equation).
Unlike comparative molecular field analysis (CoMFA65)-type
methods, both EVA and electronic eigenvalue (EEVA)66 do
not require any 3D molecular alignment and are physically
sound representations of the intrinsic electronic and physico-
chemical properties of molecules.

The molecules in the data set were constructed using Mar-
vinSketch67 and energy-minimized using the Dreiding force
field68. The structures were then geometry optimized us-
ing the AM1 Hamiltonian in MOPAC69. For each molecule,
the vibrational frequencies ( fi) and molecular orbital energies
(ei) from the semi-empirical calculation are projected onto a
bounded scale: 1− 4000cm1 for the EVA and −45− 10 eV
for the EEVA. For a chosen sampling interval L, a Gaussian
smoothing function of fixed standard deviation σ is applied to
each frequency(energy) value and the EVA(EEVA) descriptor
(Dx) at each point x of the scale is calculated as:

DEVA
x =

3A−6

∑
i=1

1
σ
√
(2π)

exp(
−(x− fi)

2

2σ2 ) (2)

DEEVA
x =

N

∑
i=1

1
σ
√
(2π)

exp(
−(x− ei)

2

2σ2 ) (3)

where, A is the number of atoms in the molecule, N
is the number of energy values. For the success of
the method there is a need to identify the optimal set
of σ and L values. σ and L were, therefore, varied
as follows: σ = {0.025,0.050,0.075,0.100,0.200} and L =
{0.025,0.050,0.100} for the EEVA and σ = {2,4,6,8,10} and
L = {1,2,5,8,10} for the EVA.

Due to the efficiency in treating large numbers of descrip-
tors, partial least squares regression (PLSR)70 was used to
predict the photovoltaic properties. The predictive power of
the models was assessed with respect to independent training
(80%) and test sets(20%) that were created using the Kennard-
Stone algorithm71. Prior to modelling, all variables were au-
toscaled to zero mean and unit variance. The optimal number
of latent variables (LVs) was determined using 10-fold cross-
validation (CV), repeated 50 times, thus producing different
sets of CV folds (500 total resamples). The number of LVs
corresponding to the lowest root mean square error (RMSE)
was then taken as the optimal value. The predictive ability of
the model was evaluated in terms of the cross-validated corre-
lation coefficient (R2

cv) and the RMSE that are given by:
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R2
cv = 1− ∑(yobs,i− ŷcv,i)

2

∑(yobs,i− yobs)2 (4)

RMSE =

√
∑(yobs− ypred)2

n
(5)

where, ŷcv,i is the the predicted value for the excluded
(cross-validated) ith compound, yobs,i is the corresponding ex-
perimental value and yobs is the mean of the experimental
values. Variable selection was performed using the variable
importance on projection (VIP) scores that take into account
the explained variance of each PLSR dimension72. Here, we
have chosen to include only those variables with VIP scores
greater than 1. Furthermore, to guard against overfitting,
y−randomization tests73 (repeated 1000 times) were also car-
ried out. Using the above-described approach, multiple PLSR
models were computed by varying the σ and L and the combi-
nation yielding the best R2

cv was then used in further analysis.
The PLSR modelling was carried out using the pls74 package
available in the R75.

2.3 Applicability Domain

Although QSPR models can rapidly predict quantities of in-
terest, given the finite size of their applicability domain (AD),
the reliability of the predictions needs to be evaluated. Here,
we have employed two such diagnostics. For both measures,
high values suggest that the predictions should be treated with
caution.

1. The leverage76 hi = t′i(T
′T)
−1

ti where ti is the scores
vector for the ith compound and T is the model scores
matrix. The warning leverage threshold is typically set to
3 Ncomp

Ntrain
where Ncomp is the number of PLSR components

(LVs) in the model and Ntrain, the number of compounds
in the training set.

2. The uncertainty associated with each prediction ỹi =√
∑

M
j=1(ŷ j−ŷ)2

M−1 is calculated using a bootstrapping tech-

nique36,77. In this work, 500 bootstrap models were cre-
ated and the standard deviation of the predictions was
taken as a measure of the uncertainty.

3 Results and Discussion

3.1 QSPR Results

In order to identify the best combination of the EVA and
EEVA descriptors, over 500 models were computed. The set-
tings of σ = 8 (σ = 0.050), L = 10 (L = 0.025) for the de-
scriptors were found to yield the best models. For the cal-
ibration set containing 49 structures, a 3-component PLSR

Fig. 3 Plot of the observed vs predicted Jsc×Voc values.

model with R2
cv = 0.83 and RMSE = 1.25 (mA ·V cm−2) was

obtained. Corresponding figures of merit for the test set (9
compounds) were R2

test = 0.89 and RMSEtest = 1.21 which is
suggestive of a fairly predictive model despite the structural
diversity of the molecules in the dataset. Table 1 summarizes
the results for the QSPR model calculated for Jsc×Voc. The
scatter plot in Figure 3 further shows the linear relationship
between experimental and predicted values for both training
and test set data. Further, examination of the score plot (see
Figure F1 in the Electronic Supplementary Information (ESI))
clearly shows a separation between low (< 2% PCE) and high
efficiency structures. For the predicted Jsc×Voc, applicability
domain estimates in the form of leverage values (hi) are well
within the warning threshold of 0.225 with maximum uncer-
tainties of up to ±2mA ·V cm−2.

3.2 de novo Evolution Runs

The GA experiments were carried out using population sizes
of 100-200 molecules with 5 offspring produced during each
generation (100-500 cycles). For each proposed molecule, the
QSPR model was used to rapidly assess the Jsc×Voc. Both
crossover and mutation probabilities were set to 0.50. Dur-
ing the runs, structures that violated the warning leverage
threshold were discarded. Over 6000 unique dye molecules
were generated with predicted Jsc ×Voc ranging between 2-
12 mA ·V cm−2, an increase of up to 2 units with respect to
the calibration set data. Although very few structures violated
the leverage threshold, prediction uncertainties can rise up to
±20mA ·V cm−2. In addition to the commonly occurring D-
π-A configuration, other molecular architectures containing
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Table 1 QSPR model performance for the calibration and test set molecules (text in italics). The ”QSPR” column contains the predicted
Jsc×Voc with calculated uncertainties. hi corresponds to the leverage for the QSPR prediction.

Molecule Jsc×Voc QSPR hi Molecule Jsc×Voc QSPR hi

C0156 1.68 2.59 ± 0.77 0.06 C2656 0.92 1.21 ± 0.71 0.07
C0252 1.20 2.50 ± 1.01 0.06 C2756 1.71 1.94 ± 0.59 0.06
C0378 8.52 8.46 ± 0.46 0.03 C2856 7.00 4.86 ± 1.57 0.05
C0478 6.51 7.65 ± 0.97 0.02 C2956 7.10 7.98 ± 0.61 0.04
C0578 7.58 8.60 ± 0.88 0.03 C3037 7.99 7.94 ± 0.50 0.03
C0679 8.29 8.29 ± 0.34 0.02 C3180 8.64 8.15 ± 0.42 0.03
C0779 7.45 7.02 ± 0.49 0.01 C3237 10.30 8.22 ± 0.43 0.03
C0853 1.21 1.08 ± 0.43 0.07 C3337 10.01 9.66 ± 0.63 0.05
C0953 1.04 1.23 ± 0.37 0.06 C3457 9.30 9.05 ± 0.60 0.05
C1053 0.54 1.90 ± 0.49 0.04 C3558 9.66 8.77 ± 1.06 0.04
C1153 0.77 1.14 ± 0.52 0.07 C3681 7.30 8.14 ± 0.62 0.04
C1253 0.46 0.39 ± 0.47 0.08 C3757 9.96 10.00 ± 0.42 0.08
C1353 0.90 0.41 ± 0.49 0.09 C3859 7.20 6.13 ± 1.08 0.07
C1454 7.12 6.51 ± 0.63 0.04 C3959 8.48 7.05 ± 1.20 0.10
C1554 6.14 6.86 ± 0.66 0.06 C4059 8.95 9.25 ± 0.91 0.17
C1654 6.32 7.07 ± 0.88 0.08 C4160 3.72 3.29 ± 0.47 0.04
C1755 8.22 8.68 ± 0.46 0.04 C4260 1.93 2.60 ± 0.88 0.03
C1855 5.89 6.91 ± 0.98 0.07 C4360 4.00 3.90 ± 0.54 0.01
C1955 3.87 5.24 ± 1.04 0.00 C4460 2.42 2.00 ± 0.56 0.07
C2056 3.68 5.03 ± 1.11 0.01 C4560 5.10 4.24 ± 0.65 0.01
C2156 8.36 6.48 ± 0.52 0.02 C4660 1.91 0.98 ± 0.78 0.10
C2256 4.70 5.22 ± 0.42 0.02 C4761 5.14 5.11 ± 0.69 0.02
C2356 6.45 6.27 ± 0.52 0.04 C4861 7.62 6.44 ± 1.22 0.02
C2456 6.14 6.98 ± 0.55 0.02 C4961 9.89 7.29 ± 2.00 0.04
C2556 5.66 5.88 ± 0.78 0.02

double donors (D-D-π-A), multiple π−A and D-π-A-π based
systems were also observed. The top ranking structures (see
dyes M01-M06 in Table 2) contained electron donating sub-
stituents such as furan, auxiliary acceptors such as quinoxa-
line and benzothiazole. Dyes containing secondary electron
donors such as fluorene82 and triphenylethylene83 have also
been explored. While on one hand they can enhance photoin-
duced intramolecular charge transfer, owing to their twisted
non-planar structure, these moieties have been shown to slow
down electron recombination kinetics and lengthen electron
lifetimes84,85. Additionally, the presence of such bulky groups
can also limit aggregation through steric hindrance86. While
the carboxylic acid based anchoring group occur ed in a ma-
jority of the dyes, some molecules instead contained a nitro
group as an alternative anchoring group which has been shown
to increase the electron injection ability27.

3.3 Theoretical Validation of Designed Dyes

Selected promising structures (see Table 2) emerging from the
GA runs were subjected to additional calculations at the DFT
level of theory. Solvation effects were included by means of
the conductor-like polarizable continuum model (CPCM)87.

The analysis focuses on important features such as the UV-
vis spectra and reorganization energy31. All calculations were
carried out using the Gaussian software88.

3.3.0.1 HOMO-LUMO distribution:Preliminary exami-
nation of the ground state isodensity plots (computed at the
B3LYP/6-31 G(d,p) level) in Table 2, shows that the or-
bitals are well distributed over the linker conjugation. While
the HOMO is generally localized over the coumarin scaffold
(donor), the LUMO is distributed around the acceptor and an-
choring groups. This localization is expected to be advanta-
geous for charge separation and electron injection4,89.

3.3.0.2 Spectral properties:In addition to a high light har-
vesting efficiency (LHE), with reference to Equation 1, the
short circuit current Jsc

90,91 is defined as:

Jsc =
∫

LHE(λ )φin jηcoldλ (6)

where LHE(λ ) is the light harvesting efficiency at wavelength
λ , φin j is the electron injection efficiency and ηcol is the charge
collection efficiency. Since the cells only differ in the dyes be-
ing used, it is reasonable to assume that ηcol is constant. Thus,
the two main factors influencing Jsc are the LHE and φin j. The
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LHE of the dye is calculated as LHE(λ ) = 1−10− f (λ ) where
f (λ ) is the oscillator strength of the dye at absorption wave-
length (λ ). In order to model the absorption spectra, we have
employed time-dependent density functional theory92. Since
the choice of the functional affects the accuracy of the DFT
calculated spectral properties, we analysed a number of hy-
brid functionals. Among those tested, the CAM-B3LYP93

functional with a DGDZVP94 basis set was found to pro-
vide the best agreement between theoretical and experimen-
tal data (see Table S2 in the ESI). For the proposed coumarin
dyes, the computed maximum absorption wavelengths λmax
(in ethanol), oscillator strengths ( fmax) and the light harvest-
ing efficiency LHE are listed in Table 3.

3.3.0.3 Dye-TiO2 complex: For dyes containing the car-
boxylic acid anchoring group (M01-M04), the optical re-
sponse after adsorption onto the TiO2 surface was also stud-
ied. Assuming a bidentate chelating configuration, TDDFT
calculations were performed for dyes bound to a (TiO2)9 clus-
ter, which has been shown to reproduce electronic absorption
spectra with reasonable accuracy96,97. Here, the geometry op-
timizations were carried out using the B3LYP functional and
6-31G(d,p) basis set for the C, H, O, N, S atoms and the effec-
tive core potential (ECP) LANL2DZ basis set for the Ti atom.
With the exception of dye M01 (for which convergence could
not be achieved), all three dyes tested (M02, M03, M04) show
only a marginal decrease in the (∼10 nm) in the λmax (see Ta-
ble 4).

3.3.0.4 Injection efficiency: In order to maximize the pho-
tocurrent (Jsc), the electron injection efficiency φin j also needs
to be enhanced. Since φin j is related to the thermodynamic
driving force of electron injection38,91,98 (∆Gin j) i.e. the free
energy change (in eV) that can be expressed as:

∆Gin j = Edye∗
ox −ETiO2

CB (7)

where Edye∗=Edye
ox −λmax is the oxidation potential of the dye

in the excited state and ECB is the reduction potential of con-
duction band of the semiconductor (experimental value of -4.0
eV vs. vacuum is used99). The excited-state oxidation poten-
tial is calculated from the redox potential of the ground-state
dye and the absorption energy corresponding to the λmax):

Edye∗ = Edye
ox −λmax (8)

Another important requirement is that of low reorganization
energies to ensure rapid electron transfer during regenera-
tion100. Here, we focus on the inner-sphere reorganization
energy λi

101 which is calculated as:

λi = [E0(G+)+E+(G0)]− [E+(G+)+E0(G0)] (9)

Table 4 Simulated TDDFT spectra (in ethanol) of dyes adsorbed on
TiO2.

Mol Spectra λmax (nm/eV) f

M02 440 (2.81) 1.42

M03 447 (2.86) 2.04

M04 488 (2.54) 2.03

where E j is the energy of the system in charge state j, Gk is the
geometry of the system in charge state k, while 0 and + cor-
respond to the neutral and cationic charge states respectively.
Table 5 lists the injection efficiencies and reorganization ener-
gies for the 6 dyes analyzed. The driving force of the electron
injection (∆Gin j) decreases in the order M03 > M04 > M05
> M01 > M06 > M02. The corresponding trends for the cal-
culated reorganization energies proceeds as M01 > M04 >
M06 > M02 > M05 > M03. Among these, dye M03 con-
taining both fluorene and tetraphenylethylene units possesses
the highest ∆Gin j that favours electron injection from dye ex-
cited state into the TiO2 conduction band edge. In addition
a low reorganization energy should also support rapid elec-
tron transfer. In dye M04, the presence of methine moieties
can increase the conjugation length as reflected in the spec-
tral response (see Table 3. However, larger values of λi may
result in slower injection kinetics. Furthermore, the stronger
electron localization in rhodanine-3-acetic acid acceptor moi-
ety that is present in M04, can cause the lowest unoccupied
molecular orbital (LUMO) to be shifted from the anchoring
group, thus impeding electron injection into the conduction
band of TiO2

102,103. For the dye M01, which contains al-
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ternating electron withdrawing-π conjugation groups, the im-
pact of removing these substituents was studied. The existing
molecular architecture of D-A-π-A was modified manually by
either rearranging or replacing the moieties. A significant de-
crease by up to 5 units in the predicted Jsc×Voc values for
the modified dyes, although associated uncertainties are much
smaller (see Table S4 in the ESI). Two dyes (M05,M06) con-
tain a nitro group as the acceptor/anchoring that have been
shown to improve dye/TiO2 coupling and facilitate electron
transfer27,104.

Table 5 Estimated HOMO, LUMO, ∆Gin j , reorganization energies
λi (in eV) for the proposed dyes.

Dye HOMO LUMO ∆Gin j (eV) λi (eV)
M01 -4.94 -2.51 -1.71 0.206
M02 -4.97 -2.35 -1.89 0.149
M03 -5.18 -2.59 -1.40 0.097
M04 -5.22 -2.91 -1.55 0.202
M05 -5.07 -2.91 -1.69 0.148
M06 -5.04 -2.92 -1.81 0.150

The present work makes use of a QSPR-driven evolution-
ary molecular design approach that allows for the estimation
of the Jsc×Voc in a matter of minutes (2-3 minutes on an In-
tel Core i5-2400 CPU @ 3.10GHz). This can be easily in-
tegrated into a virtual high-throughput screening framework
where large libraries of dyes can be analyzed by using theoret-
ical techniques105. Although the EVA/EEVA descriptors are
not easily amenable to interpretation, their use is purely mo-
tivated by the prospect of performing accelerated dye discov-
ery. Furthermore, the existing model does not account for the
interactions between the cell components (dye-electrolyte106,
dye-dye107,dye-TiO2

108). Predictive models applied in this
study that are based solely on the dye can therefore be limited
in practice. Attention must also be drawn to the experimental
variability and their impact on the DSSC performance indica-
tors. While it is desirable to obtain data measured according
to recommended practices109,110, we do observe differences in
the procedures for the preparation (different electrolyte com-
positions, TiO2 layer thickness) and evaluation (different ac-
tive areas, use of additives such as tert-butyl pyridine, deoxy-
cholic acid in different concentrations, lack of stability tests)
of cells. From a QSPR perspective, the variability in the mea-
surement protocols introduces greater uncertainty in the mod-
els. In this respect, data generated by combinatorial chemistry
based approaches emerging from a single lab (thus avoiding
inter-lab variations) would be an promising alternative111.

4 Conclusions

In this article, we have investigated the feasibility of using
a fully automated de novo approach based on artificial evo-
lution to design new and promising coumarin dye sensitizers
with improved properties. Underlying the approach is a QSPR
model built from experimental data which enables fast esti-
mation of the property being optimized i.e. Jsc ×Voc. The
scheme has been able to propose a diverse set of dyes with
different molecular architectures (D-π-A, D-A-π-A, D-D-π-
A etc.) and anchoring groups. The analyzed dyes contained
substituents such as fluorene and tetraphenylethylene which
not only limit aggregation but also act as additional electron
donors. DFT verification of the new coumarin dyes makes
them promising candidates for future experimental testing.
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Table 2 Chemical structures of the most promising (large Jsc×Voc values) dyes emerging from different de novo runs. For each dye,
computed isodensity surfaces (0.02 a.u.) of the HOMO and LUMO orbitals (based on B3LYP/6-31G(d,p) geometries) are shown alongside.

Dye Jsc×Voc Structure HOMO LUMO

M01 12.09±2.43

M02 11.98±3.47

M03 11.12±3.24

M04 11.02±3.16

M05 11.68±4.00

M06 11.51±4.00

10 | 1–11

Page 10 of 11Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Table 3 Calculated UV/Vis spectra corresponding to the S0-S1 transition in ethanol using the CAM-B3LYP functional and DGDZVP basis set.
The spectra are obtained using Gausssum95. The letters ”H” and ”L” in the column ”Major transitions” correspond to the HOMO and LUMO
orbitals.

Dye Absorption Spectra λmax (nm/eV) f LHE Major Transitions

M01 471 (2.63) 2.28 0.994 H-1→L (26%), H→L (50%), H→L+1 (10%)

M02 454 (2.73) 1.12 0.924 H-1→L (20%), H→L (64%)

M03 439 (2.49) 2.59 0.997 H-2→L (28%), H→L (42%), H→L+1 (18%)

M04 492 (2.51) 2.04 0.990 H-1→L (19%), H→L (68%)

M05 483 (2.57) 1.73 0.981 H-1→L (27%), H→L (40%), H→L+1 (16%)

M06 457 (2.71) 1.04 0.908 H-1→L (37%), H-1→L+1 (24%), H→L (17%)
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