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Abstract 

 

In many cases the stability of a protein has to be increased to permit its biotecnological 

use. Rational methods of protein stabilization based on optimizing electrostatic interactions 

have provided some fine successful predictions. However, the precise calculation of 

stabilization energies remains challenging, one reason being that the electrostatic effects on the 

unfolded state are often neglected. We have explored here the feasibility of incorporating to a 

Poisson-Boltzmann model electrostatic calculations performed on representations of the 

unfolded state as large ensembles of geometrically optimized conformations calculated with the 

ProtSA server. Using a data set of 80 electrostatic mutations experimentally tested in two-state 

proteins, the predictive performance of several such models has been compared to that of a 

simple one that considers an unfolded structure of non interacting residues. The unfolded 

ensemble models, while showing correlation between the predicted stabilization values and the 

experimental ones, are worse than the simple model, suggesting that the ensembles do not 

capture well the energetics of the unfolded state. A more attainable goal is that of classifying 

potential mutations as either stabilizing or not, rather than accurately calculating their 

stabilization energies. To implement a fast classification method that can assist in selecting 

stabilizing mutations, we have used a still simpler electrostatic model based only in the native 

structure and have determined its precision using different stabilizing energy thresholds. The 

binary classifier developed finds 7 true stabilizing mutants in every 10 proposed candidates and 

can be used as a robust tool to propose stabilizing mutations. 
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Introduction 

 

In 1982, site-directed mutagenesis was first applied to modify the active site of proteins 

of known structure and mechanism, marking the effective beginning of Protein Engineering.1-3 

Since then, many biotechnological and biomedical applications have benefited from the 

advances in the field, using either directed evolution or rational design methods.4-6 The latter are 

specially appealing, as they provide a greater control and contribute to the understanding of 

protein structure-function relationships. In particular, computational methods7  are key in 

rational design, allowing to implement and test complex models, and to analyze increasingly 

large numbers of target proteins. Computational methods greatly vary in complexity. While 

some use sequence-only models, others consider protein structure; some use machine-learning 

algorithms and others exploit statistical, semi-empirical or first-principles descriptions of 

protein energetics. Structure-based, first-principles computational methods are those with a 

greater potential. Whatever the method used, the goal is to design a protein with the properties 

needed for the required function. A key property is conformational stability
8,9

  because most 

proteins must be conformationally stable or achieve stability under a given set of conditions. 

Stability typically depends on the protein solution conditions (pH, ionic strength, solvent, 

temperature, etc.), and is a function of protein physical-chemical properties. Among the many 

protein stabilizing methods known (helix optimization, entropic stabilization, disulfide 

introduction, packing optimization, etc.),
10-16

 those focusing on electrostatics
17,18

  are central 

because, to some extent, they constitute the basis of many of the other methods, and are also 

helpful to understand the interaction of proteins with other molecules. 

Electrostatic models of proteins19  go back to the Linderstrøm-Lang model consisting of 

a spherical protein with continuous surface charge, embedded on continuous solvent.
20

 Its main 

improvement, the Tanford-Kirkwood model,21 included point charges and has been used with 

further refinements as a tool to stabilize proteins in recent years.
22,23

 Other continuous-solvent 

methods are Poisson-Boltzmann24 (also used in protein stabilization25) and Generalized-Born.26 

Some faster to calculate empirical models
17

  and some computationally expensive explicit 

solvent all-atom models or simplified dipolar models27  have also been used.  

Methods based on the Tanford-Kirkwood or the Poisson-Boltzmann models are 

relatively simple, require a moderate computational cost, and have sometimes been successfully 

implemented.
28,18

 These methods usually focus in designing surface mutations assuming a 

random coil model of the unfolded state. The high conformational flexibility attributed to folded 

surface residues allows a less accurate structural modeling of the mutant protein, compared to 

that in protein core optimization, and tends to minimize complications arising from steric 

clashes of the mutant residue.
18

 However, the previous assumptions do not always hold
18,29

  as 

sometimes other electrostatic (such as hydrogen bonds) and non-electrostatic contributions need 
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to be to consider. Besides, the unfolded state ensemble may not always be rightly modeled as a 

random coil of non-interacting residues. Here, we focus on the latter problem and explore a 

model of the unfolded state consisting in an ensemble of unfolded conformations.  

Though Poisson-Boltzmann is considered the reference among the macroscopic 

continuous methods,
30,31

 simpler models such as Tanford-Kirkwood have proved successful
32

  

and several works have shown that Tanford-Kirkwood residue interaction energies are similar to 

those calculated with Poisson-Boltzmann models.
33,34

 The general strategy used with the 

Tanford-Kirkwood model consists in first identifying residues with unfavorable electrostatic 

interactions, and then suggesting charge reversal or charge deletion mutations. In this work, we 

use Poisson-Boltzmann calculations to detect residues in the wild type protein with unfavorable 

electrostatic interactions. The method performs, with less computational effort, similarly well as 

a more detailed version including the calculation of the electrostatic energy of the possible 

mutants. 

Fundamental in the comparison of the different models is to use an adequate metric. 

Previous works have focused on predicting stabilization energies.
32,35

 Although the energy of 

stabilization is a very informative metric, the precise calculation of stabilization energies still 

constitutes a difficult quantitative goal for current approaches. A more attainable goal, very 

important for providing reliable tools for rational protein stabilization, is to accurately classify 

mutations as either stabilizing or not. Metrics using binary classifications are currently used to 

evaluate the performance of prediction methods,36 e.g. general stabilization methods37  or 

algorithms used to detect pathological mutations from stability calculations.
38

 Using a binary 

classification, our approach finds 7 true stabilizing mutants in every 10 proposed candidates. 

Methods 

 

Energy models 

 

To test different electrostatic models by their capacity to predict changes in Gibbs 

energy of folding in mutant protein variants relative to wild type (∆∆���→����	
 ), we have made 

the gross but necessary approximation of considering the non-electrostatic component of the 

Gibbs energy (∆��
�
��	
 )	to be the same in both the wild type and the mutant protein variant.  

∆∆���→����	
 = �∆��
�,����	
 + ∆��
�
�,����	
 � − �∆��
�,���	
 + ∆��
�
�,���	
 � ≈ 	∆∆��
�,��→����	
 		(1) 

To further simplify the model we have dealt with two-state proteins that can be in either the 

folded or the unfolded state. Accordingly, their electrostatic Gibbs energies of folding can be 

expressed as:  

∆��
��	
 = ��
�� − ��
�� 																																																																																																																				(2) 
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 Our overall goal is to test different protein electrostatics representations and to develop 

a predictive model for protein stabilization that can be easily implemented and that allows for 

fast calculations. A single energy model has been used to represent the folded state in which the 

protein is considered as a continuous dielectric with point charges, surrounded by a continuous 

solvent (water) with salt ions. On the other hand, four different two-state models have been 

tested, differing in the description of the unfolded state. In all of them, we have assumed that, in 

the unfolded state, all the charges are completely exposed and surrounded by the continuous 

dielectric of the solvent. Our reference unfolded model (called below Simple unfolded model) 

assumes a fully expanded unfolded conformation for the protein where the residues do not 

interact among them. We foresee that the next simplest model that could treat more realistically 

the unfolded conformations would simply account for the interactions between residues as in 

complete exposure to solvent. Further improvements should consider the exact exposure to 

solvent of each residue and the actual screening due to the ionic strength in the unfolded state, in 

a similar way as we do for the folded state. In addition to these four two-state models, we have 

tested and discussed a much simpler predictive model based only in the folded structure of the 

wild type protein.  

Temperature, ��, and ionic strength are those used in each experiment (Table 1). In 

cases where we use a value obtained in conditions different to those in which it is applied (such 

as in the	����	��
	 values), the fact is indicated. 

 

 

 

The energy model for the folded state 

 

 This state is considered to have a single structural conformation but multiple 

protonation configurations. A permittivity constant of 78.54 is used for the solvent (water). As 

there is no agreement about the best value for the permittivity of the protein42 (see also the range 

of values used in the methods reviewed in ref. 43) we have selected a value of 20 because it 

provided better energy predictions in preliminary tests. The linear Poisson-Boltzmann model 

has been used to obtain the electrostatic potentials, considering the ionizable residues in table 

S2. For implementation simplicity, we have not considered the terminal groups as ionizable so 

that in our model each residue can have, at most, one ionizable group and be either charged 

(±1) or neutral. The neutral state of histidine is determined by the hydrogen bond network 

calculated by the REDUCE software
44

  for each protein. Therefore, for a protein with N 

ionizable residues, there are 2N protonation configurations, having each configuration �" an 

energy ��
�� (�"). Assuming the same non-electrostatic energy in each protonation configuration, 

the folded state electrostatic energy corresponds to the Boltzmann-weighted average of: 
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��
�� =< ��
�� (p%") > 																																																																																																			 (3) 
 To avoid time consuming calculations, our models use the Metropolis algorithm as an 

approximation for sampling the protonation configurations in the folded state. To calculate the 

electrostatic energy of a given protonation configuration we have followed the description of 

ref. 45 that breaks the energy into 2 terms: one accounting for the charging of each ionizable 

residue independently of all other ionizable residues, and the other accounting for the interaction 

among residues not considered in the first term of eq. (4). Thus, for a protonation configuration 

�": 
��
�� (�") =(�())∆�*+�()) +( ( �())�(,)∆��
�,-��(), ,)	

.∈ℛ,-1.
													(

-∈ℛ-∈ℛ
4) 

where ℛ is the set of all ionizable residues, �()) is 1 when residue ) is charged, and 0 otherwise, 

and )	 < 	, if residue ) comes first in the protein sequence.  

 The calculation of equation (4) follows ref. 45 but differs in the following: 1) for each 

ionizable residue ), its potential maps 3- and 3-4 are calculated using the charges of all its atoms, 

and not just those of the titratable group; 2) we use AMBER partial charges (see below), 

extended for dealing with the non-standard protonation state of ionizable residues (see Table 

S2); we do not yet deal with the ionization of the N- and C-terminal groups; 3) for the model 

residues, we use the pKas provided in Table 3 of ref. 46; 4) we do the calculations using Delphi 

without focusing.  

 The details of the calculation appear in the supplementary materials. The calculation of 

∆�*+�()) for each ionizable residue ) requires obtaining its intrinsic ���,
21

 which is done 

through a thermodynamic cycle involving four states (��
�56 , 	��
�76, ��
�78, ��
�58 ) representing, 

respectively, the neutral protein, the neutral ionizable residue, the charged ionizable residue and 

the charged protein (see suplementary fig. 1). This requires 4 Poisson-Boltzmann calculations 

for each ionizable residue (one per state), which are also used for obtaining the second term of 

equation (4).  

 The electrostatic interaction energy of a residue ) in the folded state is the sum of the 

interaction energies of that residue with any other ionizable residue ,. Being 9(), ,) the 

Boltzmann-weighted fraction of protonation configurations �" that have both ) and , charged, the 

residue interaction energy is: 

∆��
�,-��()) = ( 9(), ,)∆��
�,-��(), ,)																																														(5)
.;-,.∈ℛ

 

 One of our models, the Native only one, is entirely based on just the structure of the wild 

type folded state. In this model, we assume ∆∆���→����	

 (termed ∆∆���� for this model) to be 

the opposite of the electrostatic interaction energy for the mutated residue ) from the wild type: 

∆∆���� =-∆��
�,-��()). Therefore, for this model, the analysis of both neutralization and 
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inversion mutations makes the gross assumption that replacement of an ionizable residue 

removes its electrostatic effect. The main advantages of this Native only model are that it avoids 

calculating all possible mutants (as it would happen in the Simple model) and, above all, that it 

offers a clear and visual rationale (see figure 4) for selecting stabilizing mutations. Of course, 

the newly introduced residue could be easily modeled, as it is in the implementation of the 

Simple model, for further checking of the results. On the other hand, the more promising 

residues according to the Native only model predictions could be further studied using the 

Simple model.  

 

Energy models for the unfolded state. 

 

 We have used four alternative models for the unfolded state. The first model is termed 

Simple and considers a completely unfolded structure where the residues do not interact among 

them and only the independent charging energies of the residues are considered. The other three 

models consider ensembles of 2000 unfolded structures created with the ProtSA server,
47

 which 

constitute a geometrically accurate representations of fully unfolded proteins, as described 

before.
48

 However, because these unfolded ensembles have not been tested for energetic 

accuracy, we have computed, from the electrostatic energies of the individual conformations, 

the ensemble electrostatic energy in three different ways that differentiate the models as: 

Minimum energy (the electrostatic energy of the ensemble is taken as the minimum electrostatic 

energy among all the conformations), Average energy (the electrostatic ensemble energy is 

taken as the average of the 2000 conformation electrostatic energies), Boltzmann-weighted 

energy (the ensemble electrostatic energy is taken as the Boltzmann-weighted average of the 

conformations electrostatic energies). In these three ensemble models the ionizable residues are 

considered to be independently charged and they are allowed to interact as if they were in a 

completely solvent-exposed environment. This general assumption involves several 

simplifications that are enumerated in the discussion, and allows to avoid Poisson-Boltzmann 

calculations for the unfolded ensemble, significantly reducing the computation time needed. 

 In the Simple unfolded model the energy of the different protonation configurations, �" ,  
is represented by equation (4). However, as the ionizable residues do not interact the equation 

can be simplified to: 

��
�� (�") =(�())∆�*+�())																																																																															(6)	
-∈ℛ

 

Furthermore, the structure and solvent exposure of the ionizable residues is considered to be 

similar to those of their corresponding model compounds, and ���-��())	is replaced in eq. (S2) 

by ����	�()), so that: 
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∆�*+�()) = =())>?(ln 10) C�� − ����	�())D																																												(7) 
Since the ionizable residues do not interact, the Boltzmann-weighted average of all the 

protonation configurations can be calculated directly. The fraction of unfolded proteins having 

residue ) charged, 9()), is given by: 

9()) = F

∆G8HI(J)

KL

1 + F

∆G8HI(J)

KL
																																																																																											(8) 

and the electrostatic energy of the completely unfolded protein becomes: 

��
�� =(9())=())>?(ln 10) C�� − ����	�())D																																									(9)
-∈ℛ

 

 The three ensemble unfolded models are extensions of the Simple unfolded model by 

addition of electrostatic interaction energies between ionizable residues calculated from analysis 

of 2000 unfolded conformations generated with an offline version of the ProtSA server47  with 

the solvent probe radius set to 1.4	Å. In the three models we assume that all unfolded 

conformations of a given protein have the same charge for the same residue, therefore being the 

inter-residue distances Q-. (see equation 10) the only significant parameter that changes from 

one conformation to another (the residue charges being the same). We model those charges as 

point charges placed in a single atom of the ionizable residues and we further assume that they 

are the same as the mean fractional charges =())9()) previously obtained for the Simple 

unfolded model (this implies that those mean charges per residue do not significantly vary in 

any of the three unfolded energy models). We have also considered that all the ionizable 

residues are completely exposed to solvent so that, for the calculation of ∆�*+�()), they display 

the ��� of the model compounds. With these assumptions, the electrostatic interaction energy 

between residues for a given protein unfolded conformation is: 

�-�� =(( FRST
	4UVWVX10
YW

=())9())=(,)9(,)
Q-..,-1.

																																													(10)
-

 

where ST is the Avogadro number and VX  is the solvent relative permittivity. Calculations 

related to protein mutants use the same unfolded conformations as for the corresponding wild 

type protein. Therefore the atoms used to place the charges of the ionizable residue have been 

defined (see Table S3). Combining the charging and interaction energy terms, the electrostatic 

energy of a given unfolded conformation of the ensemble, Z, becomes: 

��
�� (Z) =(9())=())>?(ln 10) C�� − ����	�())D
-∈ℛ

+(( FRST
	4UVWVX10
YW

=())9())=(,)9(,)
Q-..,-1.

											(11)
-
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In the Minimum energy model the ��
�� representing the unfolded ensemble is the minimum 

energy among all the electrostatic energies of the 2000 unfolded conformations: ��
�� =
min] ��
�(Z). In the Average energy model: ��
�� = Y

RWWW∑ ��
�� (Z)] . In the Boltzmann-

weighted energy model: ��
�� = ∑ G_`_a (])�bc_`_a (d)/fg

∑ �bc_`_a (h)/fgh
] , where Z and i are indexes in the number 

of conformations. 

 

Proteins, mutants and model jkls  

 

 The experiments and proteins studied are shown in Table 1. The experimental 

conditions indicated are those from the cited reference articles. The table also lists the PDB 

codes of the folded structures that have been used; these are the same as those used in the 

reference articles for structural analysis or calculations. In the case of SNase, the experiment 

seems to have been done with the whole sequence, but the calculations seem to have been done 

with the smaller sequence in structure 1stn; therefore, for consistency, we have used 1stn for the 

calculations too. The experimentally determined folding free energy of all mutants with respect 

to their corresponding wild types are shown in Table S1. Since several electrostatic models will 

be tested in their capability to suggest stabilizing mutations, we have exclusively selected those 

mutations affecting ionizable residues (Asp, Glu, Cys, Tyr, Lys, His and Arg) in the wild type 

structure; this excludes Csp-Bc mutants Gln2Leu, Asn11Ser, Gly23Gln, Ser24Asp, Thr31Ser, 

Gln53Glu, Asn55Lys, Val64Thr, and Leu66Glu.The following SNase mutants have also been 

discarded: Glu135Lys (mutant building failed because of steric clashes), Asp143Lys, and 

Asp143Asn (Asp143 is not modeled in the 1stn PDB file). The proteins selected are two-state, 

small, monomeric, with no gaps in their sequence, no cofactors, and no ligands. For 

apoflavodoxin, that behaves as a 2-state protein in urea denaturation but as a 3-state one towards 

thermal unfolding,
9
 the 2-state chemical denaturation data has been always used.  

 The complete set studied consists of 80 mutations (complete set), 22 of them actually 

representing 11 mutations studied at two different ionic strengths. We have also defined a subset 

of 56 mutations for which the reference articles include a stability prediction (comparable set), 

which comprises 8 apoflavodoxin, 9 ubiquitin and 39 SNase mutants. 

 To describe the deprotonation of single residues (model residues) in solution we have 

used the pKas provided in ref. 46; see Table S2. Although the experimental conditions used to 

obtain those ���s (temperature, ionic strength, and the exact model compounds used to 

represent the residues) do not sometimes apply to the cases studied here, the choice allows to 

compare this work with previous reports. 
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Radii and point charges of atoms in the folded state 

 

 To define the solvent-accessible molecular surface separating the protein dielectric 

region from the solvent dielectric region, we used a single set of van der Waals atomic radii 

from the Amber parameter set leaprc.ff03.r1,49 with the radii specified in files parm99.dat and 

frcmod.ff03. Since it specifies a null radius for some hydrogen atoms (such as �m of serine), we 

changed those values to 1.0	Å to avoid charges near the protein surface. 

 The atomic partial charges used were those in the Amber parameter set leaprc.ff03.r1 

(file all_amino03.in). We only used the charges for the standard protonation states from Amber. 

For obtaining the non-standard protonation state of all the residues, we followed the rules in 

Table S2, placing point charges in selected atoms to model the addition or removal of a 

hydrogen atom. Note that no atom is actually removed from the protein structure and the 

dielectric boundary does not change (this simplifies the calculations for our energy model; see 

discussion of eq. 10 of ref. 45). 

 

Preparation of protein structures 

 

 The PDB structures of the wild type proteins used in the reference articles were 

considered. They have no gaps, and only 1csp had missing heavy atoms different from the C-

terminal oxygen (affecting Glu3, Glu21, Glu36, and Glu66). Those side chains were 

reconstructed with SCWRL 3.0.
50

 All structures consisted of a single chain except 1c9o, where 

we chose chain A for the calculations. All ligands and ions were removed (sulfate ion in 1ftg, 

sodium ion and tris buffer molecules in 1c9o). The mutant structures were built from the 

corresponding wild type structure using SCWRL 3.0. Then hydrogen atoms were added with 

REDUCE v. 3.10.070818, which follows the method in ref. 44. Finally, for all structures, the N-

terminal hydrogens and the C-terminal oxygen were removed if present to deal with them as 

non-terminal residues so that the terminal groups are neutral. 

 Ensembles of 2000 wild type unfolded structures were created using the protein 

sequences as input to an off-line version of the ProtSA server.
47

 For the mutants we used the 

same structures obtained for their wild types, and only the placement or removal of a charge 

differentiates mutant and wild type. 

 

Sampling of the protonation configurations in the folded state 

 

 To calculate the folded state energy from the Boltzmann distribution of the available 2n 

protonation configurations we have used the Metropolis Monte Carlo method.51 The Beroza et 
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al.
52

  application of such method has been followed with a modification consisting in adding 

transitions for triplets of strongly interacting residues, and using a different probability for 

choosing the transition to try in each step. We start from a random initial protonation state, and 

run 6000 full scans, discarding the first 1000 ones, considered as equilibration scans. Each scan 

consists of as many Monte Carlo steps as the number of ionizable residues, plus the number of 

couples and triplets of strongly interacting residues, therefore effectively running (on average) 

6000 tries per ionizable residue (and per strongly interacting groups of residues). Complete 

details on the method appear in the supplementary materials. 

 

Regression analysis 

 

 For the regression analysis only the mutant proteins were considered, and the wild type 

variants only served as reference points. 

 

Results and discussion 

 

 We have created a small data set of electrostatics-related mutations experimentally 

analyzed (Table S1). This is just a first step towards building a benchmark data set for this kind 

of mutations —see ref. 36 for an analysis of the desired properties of a benchmark data set—. 

Though ref. 37 established a benchmark data set for stabilizing mutations, it covers any type and 

not just electrostatic mutations. Similarly, ref. 53 uses a data set including non electrostatic 

mutations. A related initiative, the ��� cooperative,54 does cover electrostatic mutations, but is 

currently focused on calculating residue ��� values and not strictly on protein stability. Our 

complete data set contains 80 mutations belonging to 5 different proteins. Based in studies of 

experimental error
55,37

  and in our previous experimental work in the field of protein stability
56

  

we have chosen a threshold of −2	opqrs
Y in the change in folding free energy (mutant minus 

wild type) to define a given mutation as stabilizing. There are 20 such stabilizing mutations in 

the database. The influence of the threshold selected on the accuracy of the classifications 

provided by our different models for hypothetical mutations as either stabilizing or otherwise 

will be discussed below. 

 The 80 mutations of the complete data set affect ionizable residues, comprising 47 

mutations that correspond to inversions of charge (substitution of an ionizable residue for 

another one of different sign), and 33 to neutralization (substitution of an ionizable residue for a 

non ionizable one). We have explored the feasibility of further dividing the neutralization 

mutations into those that greatly change the size or shape of the original residue and those that 

do not, as the former ones are likely to significantly affect stability through other means than 

electrostatic interactions. However, given the small size of the data set, we have not 
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implemented this additional classification category. Using the complete data set we have 

analyzed the accuracy of the predictions provided by our different models on mutations 

involving ionizable residues and have compared them to previous work. We are interested both 

in the quantitative prediction of stability changes and in the rather more practical (and simple) 

biotechnological problem of classifying potential mutations into stabilizing or not-stabilizing.  

 

Quantitative predictions of stability changes with different models of the unfolded state 

 

 The correlation between the stability changes previously determined experimentally for 

the complete set and the corresponding stabilizations calculated by the different models tested is 

shown is figure 1. The figure also shows what would be perfect correlations (the diagonal lines 

crossing the graphs), as well as the lines of the least squares fittings, with the numerical values 

of the fitting (QR, slope and intercept) in inset boxes. Perfect correlations between measured and 

calculated stabilization are out of question, not only because of all the simplifications 

introduced in the model but also because many mutations tend to give rise to stability changes, 

usually destabilizing, not directly related to electrostatic interactions.57 It is clear (figure 1) that 

the Simple model outperforms all others, with QR = 0.54. Given the good correlation for the 

complete set of mutations on ionizable residues found for the Simple model, we have separately 

analyzed neutralization mutations and charge inversion mutations to determine whether either 

type could be more accurately calculated. No significant difference in correlation is observed 

(QR = 0.59 for inversion, 0.57 for neutralization; graphs not shown), which suggests, on one 

hand, that the common destabilizing effects mentioned above
57

  occur to a similar extent in the 

two groups considered and, on the other hand, that the assignation of charges (Table S2) to the 

introduced residues in the charge-reversal group are reasonably correct. 

 Good performance of different implementations similar to our Simple model in the 

quantitative prediction of stability changes had been observed before using the Tanford-

Kirkwood model with the solvent-accessibility correction due to Gurd
58

  for the apoflavodoxin 

and ubiquitin mutations,39,22 or using the Poisson-Boltzmann single site ionization protocol for 

SNase.35 To facilitate comparison, we will globally refer to the combined predictions from those 

models as the Mixed reference model predictions. One pertinent question is how the predictions 

of the present implementation of the Simple model compare with those of the Mixed reference 

one. For the 56 mutants in the comparable set, the relevant fits that allow the comparison are 

shown in figure 2. As can be seen, our current implementation performs similarly well (with a 

slightly higher >R of 0.63, compared to 0.59 for the Mixed reference model), although with a 

lower slope of 0.42 compared to 0.69 for the Mixed reference model, which makes predictions 

from the latter closer in magnitude to the experimental values. A more detailed comparison is 
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not possible because each of those previous works only provided predictions for a subset of the 

interactions included in the comparable set. 

 Significantly, the three models that introduce electrostatic interactions in the unfolded 

state, represented by an ensemble of unfolded conformation, lower the correlation found in the 

Simple model (figure 2), which suggests that those ensembles, although geometrically correct
48

  

do not capture well the energetics of the unfolded state. In addition, the approximations done in 

the expression of the electrostatic energy of the unfolded state in the ensemble models (equation 

11) contribute to the inaccuracy of the calculated energies. Those approximations are: 1) the 

same 2000 conformations are used to describe the unfolded wild type ensemble and those of the 

mutants, which only differ from the wild type in the value of the charges; 2) the average charge 

per residue of the Simple model is assumed to apply to each of the 2000 conformations in the 

ensemble; 3) the ionic strength is not considered; 4) the intrinsic pKa of each residue is that of 

its corresponding model pKa  (i.e. the residues are fully exposed); 5) the charge of the residue is 

located in a point rather than distributed among its atoms. 

  Of the three ensemble models tested, the one offering the poorest correlation is the 

Average-energy model where the energy of the unfolded ensemble is represented by the 

arithmetic average of the 2000 conformations analyzed. Using instead the energy of the most 

stable of the 2000 conformations to represent the energy of the unfolded state of each mutant 

improves the fit and raises the slope closer to 1. Using the Boltzmann-weighted energy of the 

ensemble further improves the fit and slope. This improving trend observed in the fit as 

physically more correct models of the unfolded ensemble are used raises hopes that representing 

the energetics of the unfolded state of proteins as Boltzmann averages of large, energetically 

refined ensembles may prove useful. It is possible that energetically refined ensembles, based 

on those provided by ProtSA or from MD simulations of denatured conformations, may provide 

a more satisfactory representation of the electrostatic interactions in unfolded proteins and that 

their Boltzmann-weighted energies, combined with the energy calculated for the folded state, 

may predict stability changes better that the Simple model. Further research on the proper 

modeling of the unfolded state and its interactions is needed to test this possibility. Towards this 

end, it should be borne in mind that the calculated interaction corrections introduced on the 

Simple model by any of the three ensemble unfolded models tested —i.e. the second term in 

equation (11)— are not negligible but rather in the range of the predicted stabilizing energies 

(see supplementary materials and table S6). The same will very likely apply to more refined 

ensembles. Therefore, their energies would need to be calculated with great accuracy in order to 

be of help to improve the correlations. 

 In addition to the four two-state models discussed above, we have tested an even 

simpler model (Native only model) that can be used to calculate stability changes disregarding 

the energetics of the unfolded state. This model computes stability changes assuming the 
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electrostatic effect of the mutated residue is removed by either a neutralization or a charge 

reversal mutation. This model still shows some correlation, with QR = 0.39 which, albeit lower 

than that of the Simple model, is higher than that of any of the three ensemble models. Although 

for the goal of obtaining accurate estimations of the stability changes introduced by mutations 

involving ionizable residues the Simple model is the best among those tested here, the 

significant correlation shown by the Native only model and its great simplicity and speed 

compared to the others suggest it could be quite useful as a mutation classifier. 

 

Accurate classification of mutations for protein engineering purposes 

 

 For many biotechnological applications an accurate anticipation of the stabilization 

afforded by a given mutation may not be essential and it may suffice to know whether a given 

mutation would stabilize or not a given protein to at least a specified amount. This goal may be 

much easier to achieve than that of accurately predicting the actual figures of the change in 

stability. From this perspective, the practical problem becomes one of classification, as found in 

many other disciplines (ref. 59, chap. 18). From the many evaluation measures that have been 

proposed36,60,61, we have focused on precision. This is because we are interested in finding 

stabilizing mutations and, at the same time, in reducing the number of false positives (tu) in the 

predictions, given the high cost (in time and resources) associated to experimentally testing 

large numbers of predicted mutants. For a given set of predictions, with true positives (?u) 

being the number of stabilizing predictions which are experimentally confirmed to be 

stabilizing, and tu the wrong predictions, precision is defined as 
L5

L5v�5. To do a classification 

into stabilizing and non-stabilizing mutations we first sort all the calculated mutants by the 

predictive quantitative stabilization energy assigned by the model. Then, the ordered list is split 

into two parts by using a threshold value. Predictions with a stabilization energy lower than the 

threshold (i.e., a mutation predicted to be more stabilizing than those at the threshold), are 

considered to be stabilizing mutations, and all others to be non-stabilizing. Choosing the right 

threshold value for a given model is essential for obtaining good precision. A common threshold 

of 0	opqrs
Y for all models might seem a natural choice but small stabilizations are usually of 

no interest in real applications. Besides, as seen in Figure 1, the different models intercept the y-

axis (experimental values) at points different from 0. Past studies have shown actual errors of 

±0.10 to ±0.60	owxs	qrs
Y 
55

  in protein stability determinations, and the recent work of ref. 

37 on protein stability prediction upon mutation found an average absolute error of 

0.44	owxs	qrs
Y in the experimental data. Based on those reports and on our own previous 

expertise in the field —see ref. 56 for a discussion of reliability of experimental stability 

differences in the calculation of equilibrium phi values— we have set the threshold for 
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experimental data at −2	op	qrs
Y (negative values meaning more stable mutants), which 

provides us with 20 mutations classified as stabilizing in our data set, out of 80 mutations on 

ionizable residues. On the other hand, we have used as specific thresholds of the different 

models tested their predicted values corresponding to the single experimental threshold of 

−2	opqrs
Y, rounding at values of half opqrs
Y. Thus, for the Simple model, with slope 

= 0.45 and intercept = 0.46	opqrs
Y, the threshold (∆∆��+X = 
R.W
-���X*�y�
z
	y� )		becomes 

−5.82	opqrs
Y, which we have rounded to −6	opqrs
Y for simplicity. Similarly, for the 

Native only model, the rounded threshold is −3.5	opqrs
Y; and for the mix of preditions from 

the reference articles (Mixed reference model), the threshold, in this case obtained using only 

the 56 mutations of the comparable set, is −4	opqrs
Y. Achieving a correct prediction of 

protein stability changes beyond a 2	opqrs
Y threshold will prove very useful for the 

engineering of protein thermostabilization. It is clear, however, that modeling subtle biological 

processes involving differences in electrostatic energies lower that 2	opqrs
Y will require more 

accurate models. 

 Table 2 shows the precision values for the comparable data set and our best quantitative 

model (Simple two-state model) and the Native only model, and compares them to the 

classification done using the predictions published in the reference articles. The best precision is 

obtained with the Simple model (0.82) but those of the Mixed reference model (0.80) and of the 

Native only model (0.75) are close. For our two models, Simple and Native only, using the larger 

complete set of 80 mutations gives essentially identical results as those obtained for the smaller 

comparable data set. The obtained precisions are much higher than those expected for a random 

classifying model (0.23 for the comparable set) and are relatively insensitive to the actual 

values of the model thresholds used (see supplementary material and supplementary figure S2). 

 Given the reasonably high precision of the Native only model and its conceptual 

simplicity and smaller computational cost compared to the Simple unfolded state model, we 

have further characterized its performance towards different types of mutations. The calculated 

interaction energies of all the mutated residues of the complete set in their corresponding wild 

type structures are shown in Figure 3 (with the sign changed, so that they show predicted 

stabilization energies upon neutralization) as bars, compared to the experimentally determined 

changes in folding free energy upon mutation shown as dots (red dots for inversion mutations 

and green dots for neutralizations). As expected, both the stabilizing or destabilizing effects 

brought about by mutations at a given position are typically larger in the case of inversions than 

in neutralizations. However, the dispersion of the data indicates that the effect exerted on 

protein stability by the different mutations is not only electrostatic, and there are apparently no 

better predictions for inversions than for neutralizations. 
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Suggested strategy for predicting stabilizing mutations 

 

 From the previous discussion, the Native only model is a good candidate to build an 

automatic tool to predict stabilizing mutations based in generating, for the target protein, residue 

stabilization profiles similar to the interaction profiles introduced by ref. 33. These profiles 

(Figure 4) allow to select the residues with greater potential to design stabilizing changes as 

those with larger predicted stabilization energy. Because proteins differ in electrostatic 

properties, this method, as any other method conceived to stabilize proteins, will hardly be 

equally suitable for each protein. In figure 4 we show two extreme cases. Apoflavodoxin, a 

highly acidic protein with a 2.2 acidic/basic residues ratio, contains a large number of acidic 

residues exhibiting at neutral pH large, positive interaction energies (Figure 4A). On the other 

extreme, SNase (83-231), a basic protein with a 1.4 basic/acidic residues ratio, shows a more 

balanced distribution of charges with only a few residues exhibiting significant positive 

interaction energies (Figure 4B). Therefore, apoflavodoxin provides many target residues for 

mutation but SNase provides very few. This explains that, while most mutations in ref. 35 were 

destabilizing, apoflavodoxin turned out to be an easy target for stabilization.39 

 We suggest to select stabilizing mutations for a target protein in three steps. First the 

stabilization potential profile for the ionizable residues of the protein will be generated with the 

Native only method. Second, potential target residues will be selected using a predefined 

threshold (−3.5	opqrs
Y for this model). Third, charge inversion mutations will be designed 

for the most destabilizing residues, avoiding mutations in residues essential for the biological 

activity of the protein. Following this procedure, and according to our precision profiles, for 

every 10 candidate mutations tested, 7 will actually increase the stability of the protein by at 

least 0.5 kcal/mol. Importantly, this method can be applied in principle to any protein whose 

three dimensional structure is known, regardless of whether experimental data on its stability is 

available. 

 

Conclusions 

 

 We have shown how a continuous electrostatic model can be used to predict the 

stabilizing effect of single inversion or neutralization mutations in a set of proteins, using the 

same parameters for all of them. Though promising, these results are based on a small dataset, 

and further research will prove whether the models presented here also apply to larger and more 

diverse sets. The precise modeling of the unfolded state is still a pending challenge. Our 

proposed unfolded ensemble models, while keeping some correlation between the predicted 

values and the experimental ones, are worse than the Simple unfolded model of non-interacting 

residues. A likely reason is that although the unfolded ensembles used here are geometrically 

Page 16 of 28Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



17 

 

consistent with experimental data on unfolded proteins, they still need to be energetically 

optimized. Additional reasons are the simplifications introduced in the calculation of the 

unfolded state interaction energies, as detailed in the discussion. On the other hand, the models 

tested here are two-state models and many proteins exhibit more complex equilibria.9 In order to 

stabilize the less stable subdomain of such proteins, the reference state for the calculations will 

no longer be the unfolded state but the intermediate conformation arising from the 

corresponding local unfolding event.
39,16

 The binary classifiers we have studied here offer a 

good performance as shown by the precision metrics, and they could assist future users in 

selecting stabilizing mutations, even if the exact stabilization energy is poorly predicted. 

Specifically, a classifier based on electrostatic residue interaction energies in the folded state 

computed from a PDB file can be used as a robust tool to propose stabilizing mutations. 
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Figure legends  

 

Figure 1. Linear fits of protein stability changes calculated using different models vs. 

experimental values (∆∆Gexp). ∆∆Gsimple values were calculated with the Simple unfolded model 

(A), ∆∆Gavg values with the Average-energy model (B), ∆∆Gmin values with the Minimum-

energy model (C), ∆∆GBoltzmann values with the Boltzmann-weighted-energy model (D), and 

∆∆Gnat values with the Native only model (E). As in the text, negative values of the calculated 

or the experimental energies indicate stabilization of the mutant. 

Figure 2. Comparison of fits to experimental values (∆∆Gexp) for the Simple model of the 

unfolded state (∆∆Gsimple) (A), and the Mixed reference model (∆∆Gpred) (B), considering the 56 

mutants of the comparable data set. 

Figure 3. Calculated stability changes (∆∆Gnat) for all ionizable mutated residues in the 

complete data set (at the different experimental conditions) using the Native only model and 

assuming a neutralization or inversion mutation, ordered from greatest to lowest expected 

stabilization (shown as bars; axis is on the left). Superimposed, the experimental stability 

changes (∆∆Gexp) of inversion (red points) or neutralization (green points), placed at the same 

horizontal position as the interaction energy of the mutated residue (axis is on the right). 

Figure 4. Residue-specific expected stabilization profiles calculated with the Native only model. 

A. Apoflavodoxin (1ftg) at pH 7, {|}	k, ~. ~{	� ionic strength. B. SNase (1stn) at pH 7, 

{|�	k, ~. ��	� ionic strength. 
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Figure 2 
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Figure 3 
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Figure 4 
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Table 1. Stability experiments considered 

Protein and origin Short name Reference Experimental conditions. PDB 

Number 

of single 

mutants 

Num. 

res. in 

PDB 

Apoflavodoxin  

Anabaena PCC 7119 

apoflavodoxin ref. 39 Urea unfolding; pH 7, 50	mM MOPS. 298.15	�. 

� = 19.78	q� 

1ftg 8 168 

Cold shock protein  

Bacillus caldolyticus 

CspB-Bc ref. 40 Thermal unfolding. pH 7, 0.1 M Na cacodylate/HCl. 

With and without 2	� NaCl. 343.15	�. � = 0.1	� or  

� = 2.1	�  

1c9o 6 66 

Cold shock protein 

Bacillus subtilis 

CspB-Bs ref. 40 Thermal unfolding. pH 7, 0.1	M Na cacodylate/HCl. 

With and without 2	� NaCl. 343.15	�. � = 0.1	� or  

� = 2.1	�  

1csp 4 67 

Cow blood ubiquitin ubiquitin ref. 22 Urea unfolding. pH 5, 50	mM	sodium acetate. 298.15	�. 

� = 31.84	q� 

1ubq 9 76 

Cold shock protein  

Bacillus caldolyticus 

CspB-Bc ref. 41 Thermal unfolding. pH 7.0, 0.1	M Na cacodylate/HCl.  

With and without 2	� NaCl. 348.15	�. � = 0.1	� or 

2.1	�.  

1c9o 14 66 

Staphylococcal 

nuclease (83-231)  

SNase ref. 35 GuHCl unfolding. pH 7, 100	mM NaCl and 25	q� 

sodium phosphate. 293.15	�. �	 = 	0.144	� 

1stn 39 136 
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Table 2. Hit rates of different models on the comparable set of �� 

mutants after applying the established thresholds
a
 

Model 
Total 

(TP + FP) 
TP FP 

Precision 

(
��

��v��) 

Native only 8 6 2 0.75 

Simple 11 9 2 0.82 

Mixed reference 10 8 2 0.80 

 
aThresholds are: −3.5	opqrs
Y for the Native only model, 

−6.0	opqrs
Y for the Simple model, and −4.0	opqrs
Y for the Mixed 

reference model. 
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