
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


1 
 

Water adsorption in SAPO-34: Elucidating the role of local heterogeneities and defects 

using dispersion-corrected DFT calculations
+
 

 

Michael Fischer 

Fachgebiet Kristallographie, Fachbereich Geowissenschaften, Universität Bremen, 

Klagenfurter Straße 2, 28359 Bremen, Germany 

michael.fischer@uni-bremen.de 

 

Entry for table of contents 

The adsorption of water in the chabazite-type silicoaluminophosphate SAPO-34 is investigated with 
first-principles calculations. In addition to SAPO-34 with isolated silicon atoms, models that 
incorporate local heterogeneities like silicon islands and defects are considered. The inclusion of both 
low and high water loadings permits conclusions regarding the influence of variations in the local 
structure on the water adsorption properties at different partial pressures. 
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Abstract 

The chabazite-type silicoaluminophosphate SAPO-34 is a promising adsorbent for applications in 

thermal energy storage using water adsorption-desorption cycles. In order to develop a microscopic 

understanding of the impact of local heterogeneities and defects on the water adsorption properties, the 

interaction of different models of SAPO-34 with water was studied using dispersion-corrected density-

functional theory (DFT-D) calculations. In addition to SAPO-34 with isolated silicon atoms, the 

calculations considered models incorporating two types of heterogeneities (silicon islands, 

aluminosilicate domains), and two defect-containing (partially and fully desilicated) systems. DFT-D 

optimisations were performed for systems with small amounts of adsorbed water, in which all H2O 

molecules can interact with framework protons, and systems with large amounts of adsorbed water (30 

H2O molecules per unit cell). At low loadings, the host-guest interaction energy calculated for SAPO-

34 with isolated Si atoms amounts to approximately -90 kJ mol-1. While the presence of local 

heterogeneities leads to the creation of some adsorption sites that are energetically slightly more 

favourable, the interaction strength is drastically reduced in systems with defects. At high water 

loadings, energies in the range of -70 kJ mol-1 are obtained for all models. The DFT-D interaction 

energies are in good agreement with experimentally measured heats of water adsorption. A detailed 

analysis of the equilibrium structures was used to gain insights into the binding modes at low 

coverages, and to assess the extent of framework deprotonation and changes in the coordination 

environment of aluminium atoms at high water loadings. 

 

Introduction 

Aluminophosphates (AlPOs) and silicoaluminophosphates (SAPOs) have attracted considerable 

interest as potential adsorbent materials for heat storage and heat transformation applications that use 

water as working fluid.1–4 SAPOs/AlPOs exhibit water uptakes and energy densities similar to those of 

typical aluminosilicate zeolites, however, they have been deemed to be more suitable for heat storage 

at moderate temperatures by virtue of their lower desorption temperatures: As complete desorption of 

water can be reached in a range between 95 and 140 °C, only moderate driving heats would be needed 
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in the regeneration phase of the adsorption cycle.4,5 Among these materials, SAPO-34, which has 

chabazite topology, has been identified as a particularly promising adsorbent.2–8 Significant steps 

towards application have been made, e.g. through the preparation of SAPO-34 coatings on aluminium 

for use in heat exchangers.7,8  

Due to the importance of SAPO-34 as catalyst for methanol-to-olefin conversions, there are a number 

of publications investigating the structure and stability of this system with a portfolio of experimental 

and theoretical methods. While a comprehensive overview cannot be given in this context, some 

findings of particular relevance will be summarised. The first point concerns the incorporation of 

silicon atoms in the framework: On the one hand, silicon atoms can replace phosphorus at isolated T 

sites of an AlPO-34 matrix. These isolated Si atoms are surrounded by Si-O-Al linkages, and a proton 

is bonded to one of the neighbouring oxygen atoms to balance the charge. On the other hand, “silicon 

islands” can form, e.g. by substituting one Al and four P atoms with five Si atoms (substitution 

patterns that lead to Si-O-P linkages were found to be unstable 9). When such silicon islands are 

formed, less than one proton per framework silicon atom is necessary to balance the charge (e.g. three 

protons for a 5-atom silicon island). As an intermediate scenario between isolated Si atoms and silicon 

islands, local aluminosilicate domains in which only aluminium and silicon atoms alternate on the T 

sites could also occur.10 Recent computations have delivered evidence for the stability of such “next-

nearest-neighbour” arrangements.11 

A peculiar feature of SAPO-34 is the dependence of the water adsorption properties on the sample 

preparation route: As shown by Henninger and co-workers, SAPO-34 synthesised with morpholine as 

template molecule exhibits a rapid loss of the water adsorption capacity in water adsorption-desorption 

cycles, whereas SAPO-34 samples synthesised with other templates are much more stable, with only 

negligible loss of capacity over approximately 30 cycles.2,3 This observation can be directly linked to 

the previous finding that the distribution of silicon in the framework can be influenced by the choice 

of the template molecule: For SAPO-34 with a moderate silicon content (~10% of the T atoms are 

silicon), the morpholine route favours isolated Si atoms, whereas use of a tetraethylammonium 

hydroxide template leads to the formation of silicon islands.10 A post-synthesis heat treatment was 
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found to decrease the number of isolated Si atoms, and to increase the number of Si-O-Si linkages, a 

phenomenon that was ascribed to a concurrent desilication and dehydroxylation of the framework, 

followed by the migration of silicon atoms to form silicon islands.12 With increasing silicon content, a 

larger fraction of the Si atoms are incorporated in silicon islands.10,13 A computational study using 

empirical potential models, which compared SAPO-34 and SAPO-5, showed that the relative stability 

of silicon islands depends on the framework topology.14 Furthermore, it was deduced from the 

calculations that protons in the vicinity of silicon islands have a higher acidity than those near isolated 

Si atoms, a finding that was substantiated in subsequent experimental and theoretical studies.15,16 

Computational methods were also employed to predict the most stable proton arrangement around a 5-

atom silicon island,17 and the most stable configuration of pairs of protons associated with two isolated 

Si atoms.11 

Upon water adsorption, all adsorbed H2O molecules can directly interact with the framework protons 

at low water loadings (up to one water molecule per proton).18,19 At higher water loadings 

(approaching saturation), the interaction with framework Al atoms can induce structural 

transformations. In an early diffraction study, Minchev et al. observed a significant loss of crystallinity 

of SAPO-34 upon water adsorption.20 However, dehydration restored the crystallinity. It was shown 

subsequently that the crystallinity of a SAPO-34 sample containing silicon islands can be restored 

after a prolonged exposure to humidity, whereas samples with isolated Si atoms lose their crystallinity 

irreversibly.21 This was explained with the increased likelihood of a hydrolysis of Si-O-Al linkages in 

systems that contain mostly isolated Si atoms. As shown by means of MAS NMR experiments, the 

adsorption of H2O molecules at the framework protons is followed by the coordination of water to 

framework aluminium atoms, leading to the formation of octahedrally coordinated Al atoms.19 While 

this process is fully reversible at room temperature, steaming at elevated temperatures may lead to the 

removal of silicon atoms from the framework. The desilication and subsequent redistribution of silicon 

atoms has been studied in detail in a series of computational studies employing density-functional 

theory (DFT).22–24 
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Another question related to the adsorption of water molecules is whether the adsorbed water molecules 

interact with framework protons exclusively through hydrogen bonds, or whether they can deprotonate 

the framework to form hydronium ions. Based on early IR spectroscopy experiments, it was postulated 

that a stoichiometric formation of hydronium ions occurs at room temperature.25 A combined neutron 

diffraction and IR study of water-loaded SAPO-34 pointed to the simultaneous presence of hydrogen-

bonded water molecules and hydronium ions.26 According to more recent spectroscopic investigations, 

however, only a limited amount of protonated water clusters form in SAPO-34 at high water loadings, 

whereas a large fraction of the available protons remain attached to the framework oxygen atoms.18 

Computational studies corroborated that the protonation of water molecules becomes more likely 

when the amount of water increases: In an early ab-initio Molecular Dynamics (MD) study, no 

indications for the formation of isolated hydronium ions were found, but it was predicted that 

(H2O)·(H3O)+ clusters may form when two water molecules are adsorbed near one framework 

proton.27 According to later computational works dealing with aluminosilicate zeolites, an even larger 

number of water molecules per acid site may be necessary to stabilise protonated clusters, especially 

when temperature effects are taken into account.28,29 

On a qualitative level, it has been established that variations in the local structure of SAPO-34 like 

silicon islands and structural defects affect the water adsorption properties. However, a quantitative 

atomistic description based on computational chemistry methods has not yet been attempted. In this 

study, dispersion-corrected DFT calculations were employed to study the interaction of various 

models of SAPO-34 with adsorbed water molecules. The following models were considered: 

• SAPO-34 with isolated silicon atoms  

• SAPO-34 with a 5-atom silicon island  

• Partially and fully desilicated SAPO-34, containing defects in place of some/all framework 

silicon atoms 

• Pure (defect-free) aluminophosphate AlPO-34  

The inclusion of desilicated models was motivated by the earlier, detailed computational studies of 

SAPO-34 desilication by Fjermestad et al., who showed that the removal of silicon atoms from the 
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framework can occur in the presence of water through hydrolysis of Si-O-Al linkages.22–24 The 

interaction of the different systems with adsorbed water at low and high water loadings was predicted 

from the calculations, and the optimised structures were analysed to identify binding modes and 

structural changes upon water adsorption. While the chosen approach delivers only a “static” picture, 

and cannot capture phenomena like progressive structural decomposition upon interaction with water, 

the present study enhances our understanding of how local heterogeneities and defects in SAPO-34 

affect the water adsorption properties. It can thus aid the atomic-level interpretation of experimental 

findings.  

 

Computational details and models of SAPO-34 

DFT calculations 

Dispersion-corrected DFT (DFT-D) calculations were performed using the CASTEP code, which uses 

a combination of plane waves and pseudopotentials.30 The calculations used on-the-fly generated 

ultrasoft pseudopotentials and an energy cutoff of 700 eV. Due to the size of the hexagonal unit cell of 

SAPO-34, only the gamma point was used to sample the Brillouin zone. The calculations employed 

the PBE exchange-correlation functional31 in conjunction with the dispersion correction proposed by 

Tkatchenko and Scheffler.32 In a previous study that investigated the performance of several exchange-

correlation functionals in reproducing the properties of different phases of ice, the PBE-TS functional 

delivered only moderately good agreement with experiment, exhibiting a systematic overestimation of 

lattice energies.33 However, it does give a molecular dispersion coefficient C6 of water that agrees very 

well with the experimental value. The PBE-TS functional has been successfully employed for the 

structure optimisation of sheet silicates, where it outperforms a variety of other functionals with and 

without dispersion corrections,34 and in a study of water/glycine coadsorption on copper surfaces.35 

Our own benchmarking investigation showed that the structures of water-containing zeolites predicted 

with this functional are mostly in very good agreement with experimental data.36  
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The interaction energies reported throughout this paper were obtained from the following equation: 

Eint = EPBE-TS(SAPO-34 + n·H2O) − EPBE-TS(SAPO-34) − n·EPBE-TS(H2O)  

The first term on the right hand side of the equation corresponds to the PBE-TS energy for a model of 

SAPO-34 with n adsorbed water molecules, the second term represents the guest-free system, and the 

last term corresponds to the energy obtained for a single water molecule in a box with an edge length 

of 20 Å, multiplied by n. In order to strictly compare the DFT-D results to experimental heats of 

adsorption, it would be necessary to include the zero-point vibrational energy, as well as temperature 

contributions. However, due to the computational overhead of the additional calculations, it was not 

attempted to compute these quantities. In a previous study of water adsorbed in aluminosilicate 

chabazite, a ZPVE correction of approximately +5 to +10 kJ mol-1 was obtained from PBE 

calculations.29 Temperature contributions can be approximated by including an RT term, which would 

amount to -2.5 kJ mol-1 for a temperature of 300 K. It can thus be estimated that the heats of 

adsorption measured at room temperature should be approximately 5 (+/- 2.5) kJ mol-1 lower than the 

DFT-D interaction energies (in absolute terms: while Eint is negative, the heat of adsorption is positive 

by definition). 

 

Models of guest-free SAPO-34 systems 

Models of SAPO-34 incorporating different distributions of the silicon atoms, as well as structural 

defects, were constructed and optimised with DFT-D calculations. In all cases, the structure 

optimisation included a relaxation of the lattice parameters. To start with, the structure of the 

aluminophosphate AlPO-34 was taken from the literature.37 A model of SAPO-34 with isolated silicon 

atoms was constructed from AlPO-34 as follows: In each double six-ring unit (d6R), one phosphorus 

atom was replaced with silicon, thereby reducing the symmetry from �3� to �3�. Thus, silicon atoms 

occupy one twelfth of the available T sites, an amount that is typical for relatively silicon-poor 

samples of SAPO-34 that can be synthesised with different template molecules.10 For the calculations, 

four separate models were prepared, in which the framework proton that balances the charge was 
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attached to different oxygen atoms surrounding the silicon atom. It is worth noting that different ways 

to enumerate the oxygen atoms in chabazite-type structures have been used by different 

researchers.26,38–41 In the following, we use the enumeration employed by Smith and co-workers, 

which is displayed in Figure 1.26,40,41 The systems are labelled according to the position of the 

framework proton: For example, the proton is bonded to the oxygen atom O1 in SAPO-34_O1. 

The model of SAPO-34 with a silicon island (termed SAPO-34_Si_island throughout this work) is 

based on earlier work by Zokaie et al.17 Using a combination of molecular mechanics and DFT 

calculations, these authors assessed the stability of a total of 108 possible proton distributions around a 

five-atom silicon island (the smallest possible silicon island that does not include unstable Si-O-P 

linkages), and derived criteria to predict unstable distributions. In the most stable arrangement found 

in their work, shown in Figure 2a, two protons are bonded to O1 atoms, and the third proton is bonded 

to an O3 atom. It is worth noting that this system contains a larger number of silicon atoms per unit 

cell than SAPO-34 with isolated silicon atoms (five instead of three), but that the number of 

framework protons is the same. In order to generate a model with a local “aluminosilicate” domain 

(SAPO-34_SiAl_domain), the central Si atom of SAPO-34_Si_island was replaced by an Al atom, and 

an additional proton was added at the O1 atom neighbouring this Al atom to balance the charge 

(Figure 2b). 

The first model of SAPO-34 incorporating a silicon defect (SAPO-34_defect+Si(OH)4) was 

constructed along the lines of the previous computational study of Fjermestad et al., who investigated 

the dealumination of SSZ-13, and the desilication of SAPO-34.22 In their final desilicated structure of 

SAPO-34, the silicon atom has left the framework, forming an extra-framework Si(OH)4 molecule 

(orthosilicic acid). The aluminium atoms that were originally neighbouring the silicon atom are now 

saturated by three hydroxyl groups and one aqua ligand. Because a network of hydrogen bonds forms 

between neighbouring hydroxyl groups, only four of the nine protons associated with the defect and 

the Si(OH)4 molecule are accessible to guest molecules. These protons are labelled explicitly in Figure 

2c, with Os representing protons of the Si(OH)4 group, and Of being a proton attached to a framework 

oxygen atom. In the original structure from the previous work of Fjermestad et al., there is one defect 
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per d6R unit, while the structure used in the current work contains one defect and two intact d6R units 

per (hexagonal) unit cell. The construction of a fully desilicated model of SAPO-34 (SAPO-

34_desilicated) was also based on the work of Fjermestad et al..22 In this case, their final desilicated 

structure, in which all silicon atoms have left their positions in the framework, was modified by 

removing the orthosilicic acid groups. Of the five protons associated with the defect (three hydroxyl 

groups and one aqua ligand), only one does not participate in hydrogen bonds, as shown in Figure 2d. 

This corresponds to a scenario in which the Si(OH)4 units have been able to diffuse out of the 

structure, and in which the defects caused through silicon removal are not “healed” through the 

migration of phosphorus onto the vacant T sites.24 While this model includes a number of a priori 

assumptions regarding the nature of the defect, it should be a reasonably realistic representation of a 

heavily defective SAPO-34 system. 

 

Models of SAPO-34 with adsorbed water molecules 

The interaction of SAPO-34 with water at low water loadings was studied by adding one or a few H2O 

molecules to the structure: In cases where several framework protons in the unit cell have the same 

environment (SAPO-34 with isolated Si atoms and SAPO-34_desilicated), one water molecule per 

d6R unit was added, i.e. the full unit cell contains three water molecules (macroscopically, this 

corresponds to a loading of roughly 21 g H2O per kg adsorbent). In those systems where all hydrogen 

atoms in the unit cell have a different environment (SAPO-34_Si_island, SAPO-34_SiAl_domain, 

SAPO-34_defect+Si(OH)4), separate structures with one water molecule per cell were constructed for 

each framework proton. In each case, the water molecules were placed in the close proximity of a 

framework proton. In a previous computational study, a number of local minima were found for a 

water molecule adsorbed at a given proton site of SAPO-34.27 As these minima are rather close in 

energy, the sampling in the present work is restricted to one local minimum per framework proton. 

The same strategy was employed in many previous computational works dealing with the adsorption 

of polar guests at the framework protons of SAPO-34.16,17,29,42 
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To generate initial configurations of a larger number of water molecules in the pores of SAPO-34, 

Monte Carlo simulations were performed for all adsorbent systems considered. These calculations 

used the Sorption module included in the Accelrys Materials Studio suite. The simulations were 

performed for a loading of 30 water molecules per unit cell. This corresponds to roughly 210 g/kg, a 

water loading that is typically attained at moderate relative pressures.4,6 The simulations used Lennard-

Jones parameters and charges from the Consistent Valence Force field (CVFF) for the water molecules 

and framework atoms.43 While further validation would be necessary when aiming at quantitative 

predictions, these parameters should be sufficiently accurate to generate realistic starting 

configurations for the subsequent DFT-D calculations. For each adsorbent, a simulation run 

comprising five million production steps was performed. A total of five snapshots from different 

stages of the simulation were chosen randomly, and optimised using the DFT-D approach outlined 

above. It has to be considered that the DFT-D optimisation of a snapshot will not deliver the global 

energy minimum, but a local minimum. In this complex system, a near-infinite number of local 

minima coexist, which are close in energy. In a real adsorption experiment, many of these minima will 

be sampled. In order to calculate an approximate value of the interaction strength, a simple averaging 

over the DFT-D interaction energies obtained for the five optimised snapshots can be performed. 

While this is a rather simplistic approach, it should give a realistic estimate of the average interaction 

energy. For a more comprehensive sampling, ab-initio MD simulations starting from different initial 

configurations should be performed, but these are beyond the scope of the present study. 

In the DFT-D calculations for SAPO-34 models with adsorbed water molecules, the lattice parameters 

were fixed to the values obtained for the guest-free systems, after establishing in preliminary 

calculations that the lattice distortions upon adsorption of 30 water molecules per cell remain modest 

(relative changes of less than 1% in the lattice parameters).  
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Results and Discussion 

DFT-D optimisation of guest-free SAPO-34 models 

The four structures of SAPO-34 with isolated silicon atoms were optimised using DFT-D calculations. 

A comparison of the total energies showed that SAPO-34_O1 is the energetically most favourable 

situation, with SAPO-34_O3 being 2.3 kJ mol-1 (per framework proton) less favourable, and the other 

two possibilities approximately 9 kJ mol-1 less favourable. Due to the small energy differences, it can 

be expected that the protons are most likely found at O1, but that they may also occupy other sites 

with a certain probability at finite temperature, as discussed in an earlier DFT study.44 The energetic 

order is in partial agreement with a neutron diffraction study of hydrated SAPO-34, where framework 

protons attached to O1 and O2 were observed.26 The same proton sites were found in a neutron 

diffraction study of H-SSZ-13 (an aluminosilicate with chabazite topology),41 whereas protons bonded 

to O2 and O4 were observed in a neutron diffraction study of dehydrated SAPO-34.40 Previous DFT 

studies also delivered O1 as the energetically preferred proton site in SAPO-34 and related chabazite-

type materials.39,45 Throughout this article, protons bonded to a certain framework atom OX are 

designated as H-OX for brevity. 

The DFT-D optimised lattice parameters of the four systems, listed in Table 1, fall in a relatively 

narrow range, with a ranging between 13.80 and 13.89 Å and c varying from 14.89 to 15.15 Å (due to 

the trigonal symmetry of these systems, there are no deviations from the hexagonal cell metric). These 

values are in very good agreement with the lattice parameters reported in a neutron diffraction study of 

fully dehydrated SAPO-34 (a = 13.774 Å, c = 15.016 Å), with the maximal absolute (relative) 

deviations remaining below 0.15 Å (1%).40  

The DFT-D optimisation of the SAPO-34_Si_island model delivered lattice parameters that are very 

similar to those obtained for SAPO-34 with isolated silicon atoms, with only minimal deviations from 

the hexagonal cell metric (Table 1). The same applies for the SAPO-34_SiAl_domain model. In the 

first of the defect-containing models, SAPO-34_defect+Si(OH)4, the lattice parameters b and c are 

slightly shorter than in the defect-free systems, but the angles remain close to the hexagonal values. In 
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the second system, SAPO-34_desilicated, the optimised unit cell parameters are significantly different 

than in all other SAPO-34 models: The c-axis is about 0.8 Å shorter, and a- and b-axes are roughly 0.2 

to 0.3 Å longer. Furthermore, the angles deviate from the hexagonal metric by up to three degrees. 

Finally, the optimisation of the pure aluminophosphate AlPO-34 delivered lattice parameters in 

excellent agreement with the experimentally determined values for the template-free system, which 

were reported by Amri and Walton (a = 13.744 Å, c = 14.941 Å at T = 110 K).37 

 

 

Spectroscopic signature of framework protons: Semi-quantitative interpretation 

IR spectroscopic experiments on guest-free SAPO-34 have revealed the presence of at least two 

distinct bands in the frequency range of the O-H stretching mode ν(OH): A high-frequency band at 

approximately 3630 cm-1 and a low-frequency band at approximately 3600 cm-1.15,18,40 These two 

bands were ascribed to vibrations associated with protons bonded to different framework oxygen 

atoms, whereas a third feature observed at 3617 cm-1 was explained as being due to protons near the 

border of silicon islands.15 In previous computational studies, it was found that the calculated 

frequency does indeed depend on the oxygen atom to which the proton is bonded, however, there was 

a systematic tendency to underestimate the difference between the ν(OH) values associated with the 

high-frequency and the low-frequency modes.45,46 While the present study does not aim at a direct 

prediction of the IR stretching frequencies, some semi-quantitative conclusions can be drawn by 

making use of the ν(OH)-d(O-H) correlation developed by Nachtigall and co-workers. This correlation 

permits the calculation of the ν(OH) value from the bond length d(O-H) calculated with the PBE 

functional. When it is assumed that the inclusion of the TS dispersion correction has no significant 

influence on the bond length, the previously published parameters for this correlation, obtained using 

the PBE functional (see Table 1 of ref. 47), can be employed to calculate ν(OH). In order to test the 

validity of this assumption, the d(O-H) values of the PBE-TS structures were compared to the 

analogous bond distances obtained in separate optimisations using the PBE functional without 
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dispersion corrections. The observed differences did not exceed 5·10-4 Å, corresponding to a 

difference of not more than 7 cm-1 in the respective frequencies. As this is clearly sufficient for the 

desired semi-quantitative interpretation, the parameters of the ν(OH)-d(O-H) correlation published in 

ref. 47 are applicable in the context of the present work. 

Table 2 lists the the bond lengths d(O-H) obtained for the SAPO-34_OX, SAPO-34_Si_island, and 

SAPO-34_SiAl_domain systems, as well as the ν(OH) values calculated using the ν(OH)-d(O-H) 

correlation. Like the experimental spectra, the calculated frequency values can be divided into two 

groups: Frequencies ranging from 3625 to 3632 cm-1 are associated with H-O2, H-O3, and H-O4 

protons, whereas frequencies between 3653 and 3670 cm-1 are calculated for protons bonded to O1 

atoms. In the latter group, frequency values around 3655 cm-1 are obtained for SAPO-34_O1 and 

SAPO-34_Si_island, whereas significantly higher frequencies in the range of 3665 cm-1 are obtained 

for the H-O1 protons in the system containing an aluminosilicate domain. Compared to the 

experimentally measured bands, there is a shift of at least 25 cm-1 towards higher wavenumbers, which 

is not surprising given the approximations made. For SAPO-34_OX and SAPO-34_Si_island, the 

difference between the low-frequency and high-frequency band of roughly 30 cm-1 is reproduced very 

well by the calculations; however, the prediction of even higher frequency values for SAPO-

34_SiAl_domain does not correlate with any experimental observation. Two main conclusions can be 

drawn at this point: Firstly, the calculations indicate that the high-frequency band can be ascribed to 

H-O1 protons, whereas the low-frequency band is due to protons associated with other framework 

oxygens. This differs from previously proposed interpretations of experimental spectra, where the 

high-frequency band was attributed either to H-O4 protons,40 or to protons bonded to any framework 

oxygen except O2.15,18 Secondly, the calculations for the systems with a small (5-atom) silicon island 

and aluminosilicate domain deliver no explanation for the additional band at 3617 cm-1 observed 

experimentally. Computations using appropriate supercells could help to elucidate whether this band 

can be assigned to protons associated with larger silicon islands or more extended aluminosilicate 

domains, as proposed in a previous spectroscopic investigation.15 
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Interaction of defect-free SAPO-34 with adsorbed water molecules 

This section presents the DFT-D results obtained for defect-free models of SAPO-34 (SAPO-34_OX, 

SAPO-34_Si_island, SAPO-34_SiAl_domain) with adsorbed water. For low water loadings (1 or 3 

H2O molecules per unit cell), the resulting interaction energies Eint as well as selected interatomic 

distances are given in Table 3.  

In SAPO-34 with isolated silicon atoms, the energies obtained for systems in which the proton is 

bonded to different oxygen atoms fall in a rather narrow range (-89.9 to -92.8 kJ mol-1), i.e. the 

framework-H2O interaction at low water loadings is practically independent of the proton position. As 

pointed out above, the DFT-D interaction energy is not equivalent to the experimentally accessible 

heat of adsorption. Nevertheless, it is insightful to compare the two quantities. From adsorption 

measurements, Jänchen and Stach calculated a heat of adsorption of approximately 85 kJ mol-1 at low 

water coverages, where all water molecules can interact with framework protons.6 Bearing in mind the 

systematic difference between DFT-D interaction energies and heat of adsorption, which, as discussed 

above, is expected to amount to 5 (+/- 2.5) kJ mol-1, the agreement between the two quantities is very 

good. This indicates that the chosen computational approach allows for a relatively accurate prediction 

of the interaction strength.  

Regarding the structures of the adsorption complexes, two different cases can be distinguished: For 

SAPO-34_O1, _O2, and _O4, there is only one short hydrogen bond, which is formed between the 

framework proton and the oxygen atom of the water molecule (d(H···OH2O) ≈ 1.53 Å). The secondary 

contacts between the hydrogen atoms of the water molecule and framework oxygen atoms are 

significantly longer (d(HH2O···O) > 2 Å). Their length varies considerably among the different systems, 

depending on the local environment. The equilibrium structure of H2O@SAPO-34_O1 is shown in 

Figure 3a. In contrast to this, the water molecule assumes a tripod-like configuration above the d6R 

unit in SAPO-34_O3, with three relatively short hydrogen bonds (all below 2 Å, see Figure 3b). Due 

to the presence of an additional hydrogen bond, the non-dispersive contribution to the total interaction 

is somewhat larger than for the other three SAPO-34_OX systems, but the total interaction energy 

remains in the same range. Furthermore, the bond between the proton and the framework oxygen atom 
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is elongated more strongly in this system: Compared to the guest-free system, d(O-H) is elongated by 

approximately 0.10 Å in SAPO-34_O3, whereas the elongation ∆d(O-H)  amounts to approximately 

0.06 Å in the other systems. In summary, we observe a distinct binding mode in SAPO-34_O3, which 

manifests itself in pronounced differences in the interatomic distances, but not in the interaction 

energy. 

These results can be discussed in the light of some findings from IR spectroscopic experiments: The 

strongest interaction is calculated for SAPO-34_O1, the system for which the highest ν(OH) stretching 

frequencies are predicted on the basis of the ν(OH)-d(O-H) correlation. In a real system, in which 

protons may occupy different sites, the adsorption should preferentially occur at H-O1 at low water 

loadings. Experimentally, it was observed that the high-frequency band at 3630 cm-1 loses intensity 

more quickly than the low-frequency band at 3600 cm-1 when the water loading is gradually increased, 

which means that the initial adsorption occurs primarily at those protons that contribute to the high-

frequency band.18 There is thus qualitative agreement between the computational predictions and 

experimental observations, although it has to be reiterated that previous studies ascribed the high-

frequency band to different protons than the present work. Based on the preliminary interpretation 

presented here, future computational work should aim at a comprehensive prediction of the IR spectra 

in guest-free and water-loaded SAPO-34. 

 

In SAPO-34_Si_island, the interaction of water with the individual protons is 2 to 3 kJ mol-1 stronger 

than in SAPO-34_OX. Table 3 shows that this increase is primarily due to a larger contribution of 

non-dispersive interactions. There are also systematic differences in the interatomic distances: In 

particular, the hydrogen bonds between the framework proton and the OH2O atom are systematically 

shorter. Together with the slightly increased elongation of the d(O-H) bond when compared to SAPO-

34_O1 and _O3, this points to stronger hydrogen bonding. Based on this, it can be postulated that 

protons in the vicinity of the silicon island exhibit a stronger positive polarisation than those near an 

isolated silicon atom, and thus interact more strongly with adsorbed water molecules. This is in 
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accordance with the previous observation that protons bordering a silicon island exhibit a higher 

acidity.14–16 

In the SAPO-34_SiAl_domain system, a more heterogeneous distribution of the individual interaction 

energies is observed, with values of Eint ranging from -86.2 kJ mol-1 to -99.1 kJ mol-1. For the cases in 

which water interacts with H-O1_1 and H-O1_2, the interaction energy and the interatomic distances 

are relatively similar to those obtained for the corresponding system with isolated Si atoms, SAPO-

34_O1. In the system in which water is adsorbed at H-O3, the interaction is nearly 5 kJ mol-1 weaker 

than in SAPO-34_O3, and the elongation of d(O-H) is reduced. This indicates that protons at the 

border of the aluminosilicate domain are similarly or less positively polarised when compared to those 

in SAPO-34 with isolated silicon atoms. A different situation is found for water adsorbed at H-O1_3, 

visualised in Figure 4: Here, the interaction is stronger than in all other cases considered, and a short 

contact between one of the hydrogen atoms of the water molecule and a framework oxygen atom is 

formed. As can be seen in Figure 4, this oxygen atom participates in an Si-O-Al linkage, whereas the 

secondary HH2O···O contacts in all other systems in which water interacts with H-O1 protons (such as 

the one shown in Figure 3a) involve framework oxygen atoms that form Al-O-P linkages. Due to the 

lower electronegativity of silicon in comparison to phosphorus, the shorter d(HH2O···O) distance and 

the stronger interaction can straightforwardly be attributed the increased negative polarisation of the 

framework oxygen atom. Depending on the proton distribution in the aluminosilicate domain (which 

was not varied in the present study), different local environments in which such favourable 

interactions occur can be envisaged. 

The resulting interaction energies obtained for high water loadings (30 H2O molecules per unit cell) 

are summarised in Table 4. Because each of these values was calculated by averaging over five 

snapshots, the standard deviation is also given (the individual energies for each snapshot, as well as 

selected plots of final structures, are included in the ESI). Of the systems with isolated silicon atoms, 

only SAPO-34_O1 and SAPO-34_O3 were included, since we have seen above that the interaction 

with water is almost independent of the position of the framework proton. The average interaction 

energies obtained for the four defect-free SAPO-34 systems considered fall in a rather narrow range 
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(between -69.6 and -70.9 kJ mol-1), which does not extend beyond the typical standard deviation of 

roughly  +/- 1.5 kJ mol-1. As the interaction strength is practically identical for all systems, there is no 

evidence that the interaction at high water loadings is significantly affected by variations in the silicon 

distribution (isolated silicon atoms vs. silicon islands or aluminosilicate domains). The interaction is 

approximately 20 to 25 kJ mol-1 weaker than at low loadings, and non-dispersive contributions do not 

exceed approximately 70% of the total interaction energy (low loadings: ~78%). This is a consequence 

of the fact that only few of the adsorbed water molecules can directly interact with the framework 

protons through relatively strong hydrogen bonds (in some instances forming hydronium ions, see 

below), whereas the majority of water molecules form weaker hydrogen bonds with framework 

oxygen atoms and other water molecules. Again, the average interaction energy can be compared to 

the heat of adsorption: At water coverages above 50 g kg-1 (> 7 molecules per unit cell) the heat of 

water adsorption of SAPO-34 lies in the range of 62 to 65 kJ mol-1, and is nearly independent of the 

loading.6 The computational predictions are in good agreement with these values. 

 

Adsorption of water in defect-containing SAPO-34 models 

As shown in Figure 2c, there are four protons associated with the defect in SAPO-34_defect_Si(OH)4 

that do not participate in strong hydrogen bonds, and are thus accessible to water molecules. One of 

these protons is attached to a terminal Al-O-H group associated with the defect (H-Of), and the other 

three are part of the extra-framework orthosilicic acid group (H-Os1, H-Os2, H-Os3)  The interaction 

energies obtained for water adsorbed at these protons are listed in Table 5. While there is a 

considerable variation of the interaction energies (from -70.4 to -82.0 kJ mol-1), they are consistently 

smaller than those obtained for the defect-free SAPO-34 systems. The non-dispersive contribution is 

also smaller, and the hydrogen bonds are (in most instances) significantly longer. Apparently, the 

interaction of water with the protons of the Si(OH)4 group or the Al-O-H group is significantly 

reduced when compared to protons associated with Si-O-Al linkages. While these findings indicate 

that the sites at which initial adsorption will occur become less favourable due to the introduction of 

the defect, the average interaction energy obtained for high water loadings (30 H2O molecules per cell) 
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remains nearly unaffected by the partial desilication: It amounts to -70.8 kJ mol-1 (Table 4), and thus 

falls in the same range as the energies obtained for the defect-free models. 

In the completely desilicated model, there is only one framework proton per d6R unit that is accessible 

to guest molecules (Figure 2d). The DFT-D calculations predict the interaction with this system to be 

even weaker than in SAPO-34_defect_Si(OH)4, with Eint = -67.1 kJ mol-1. Interestingly, the average 

interaction energy obtained for 30 H2O molecules per cell in SAPO-34_desilicated is practically the 

same as for a loading of 3 molecules per cell, i.e. the interaction strength is almost loading-

independent. Compared to the defect-free SAPO-34 systems, the interaction at low loadings is 

weakened by approximately 25 kJ mol-1, while it is reduced by a much smaller, but still significant 

amount of 3 to 4 kJ mol-1 at high water loadings. A graphical summary of the interaction energies 

obtained for defect-free and defect-containing systems at low and high water loadings is provided in 

Figure 5. 

It is particularly interesting to compare the SAPO-34_desilicated and AlPO-34, as the framework 

composition of these two systems is identical, with the exception of the defect in the former system, 

where one T atom per d6R unit is replaced by three hydroxyl groups and one aqua ligand. For a 

loading of 30 H2O molecules per unit cell, the interaction energy obtained for AlPO-34 amounts 

to -63.5 kJ mol-1. Thus, the interaction is predicted to be approximately 3.5 kJ mol-1 weaker than in 

SAPO-34_desilicated. The difference arises primarily from a reduced contribution of non-dispersive 

interactions (Table 4). This observation is in line with the more heterogeneous charge distribution in 

the vicinity of the defect in the desilicated SAPO-34 model. Finally, it is worth noting that the 

interaction energy computed for AlPO-34 is in reasonable agreement with the experimental heat of 

water adsorption measured for the chabazite-type AlPO-Tric (triclinic distortion of AlPO-34), which 

amounts to 53.6 kJ mol-1.4  
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Structure and bonding of adsorbed molecules at high water loadings 

As discussed in the introduction, the possibility of a deprotonation of the framework upon water 

adsorption has been the topic of numerous experimental and computational studies.18,25–29 According 

to a recent periodic DFT investigation, the presence of several water molecules is necessary to 

stabilise protonated clusters in the pores of aluminosilicate zeolites, with the protonated tetramer 

(H2O)3·(H3O)+ being the smallest stable species at temperatures near room temperature.29 In order to 

evaluate whether framework deprotonation is predicted to occur in SAPO-34 at high water loadings, 

the DFT-D optimised snapshots used to calculate the average interaction energy at a loading of 30 

H2O molecules per cell were analysed in more detail. 

In the defect-free systems, a framework deprotonation involving some, but not all framework protons 

is the most frequently observed situation. Most typically, one or two protons per unit cell are removed 

from their initial position, forming positively charged (H3O)+ species. These species sometimes appear 

in the direct vicinity of the oxygen atom to which the proton was originally attached, but there are also 

cases where they are located in a completely different region of the pore. A representative example for 

the former situation is shown in Figure 6a. In all cases, the H-O bonds of the hydronium ion vary 

between 1.0 and 1.1 Å, whereas the hydrogen bonds between neighbouring water molecules cover a 

range from 1.4 to more than 2.0 Å. This range agrees well with the extent of the corresponding 

maximum in the O-H radial distribution function of liquid water as obtained from experiments and 

first-principles calculations.48–50 

In the defect-containing systems, the protons of the hydroxyl groups associated with the framework 

defect or the extra-framework Si(OH)4 group do not  relocate to form positively charged hydronium 

ions, as this would lead to strongly undercoordinated oxygen atoms. However, the orientation of the 

hydroxyl groups varies in different snapshots due to the formation of new hydrogen bonds to adsorbed 

water molecules. On the other hand, one of the protons of the aqua ligand may transfer to an adsorbed 

water molecule, leading to the formation of a hydronium ion and a defect surrounded by four hydroxyl 

groups (instead of three OH groups and one aqua ligand). In one rather peculiar case, a proton is 

shared between two hydroxyl groups, with two short O-H bonds (with a length of 1.166 Å and 1.246 
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Å respectively), thereby forming a bihydroxide (H3O2
-) bridge between two aluminium atoms (Figure 

6b).51–53 

MAS NMR studies on SAPO-34 have shown that water molecules coordinate to framework 

aluminium atoms at high water loadings, leading to the formation of octahedrally coordinated Al 

atoms.19 Similar phenomena have been observed in DFT-based MD studies of water-containing 

aluminophosphates, such as fully hydrated AlPO-34 and AlPO-18.54,55 An inspection of the snapshots 

obtained at a loading of 30 H2O molecules per cell reveals that five-coordinated aluminium atoms 

appear in some, but not all of the DFT-D optimised structures. A representative example, taken from 

one of the snapshots obtained for SAPO-34_O3, is shown in Fig. 7. The coordination environment of 

the Al atom corresponds to a (more or less distorted) trigonal bipyramid, with the water molecule in 

one of the axial positions. Characteristically, the distance from the aluminium atom to the axial 

oxygen atom of the coordinated H2O molecule ranges between 1.9  and 2.1 Å, and the other axial Al-O 

bond is elongated with respect to the typical bond length of ~1.75 Å observed for tetrahedrally 

coordinated Al. Among the defect-free systems, formation of five-coordinated Al atoms is found in 

SAPO-34_O1 and SAPO-34_O3, but not in SAPO-34_Si_island and SAPO-34_SiAl_domain. Since 

only five snapshots per system were considered, this observation does not allow for definitive 

conclusions whether a direct coordination of water to framework Al atoms is more likely in systems 

with isolated Si atoms. Nevertheless, it is worth highlighting that an increased likelihood of the 

formation of five-coordinated Al in the SAPO-34 models with isolated Si atoms could be linked to the 

lower hydrolysis stability of these systems: A recent DFT study of the desilication of SAPO-34 by 

Fjermestad et al. indicates that the most likely desilication pathway begins with the formation of five-

coordinated aluminium.23 Because this scenario is energetically less favourable than hydrogen bonding 

of water to a framework proton, it was concluded that the coordination of isolated water molecules to 

framework Al atoms can only occur at high temperatures. However, it was also shown that additional 

water molecules adsorbed in the vicinity may stabilise H2O-Al bonds. While the importance of such 

cooperative effects cannot be quantified on the basis of the present results, the calculations indicate 

that the formation of five-coordinated Al is possible at high water loadings, even when temperature 

effects are not considered. Regarding the defect-containing SAPO-34 models, five-coordinated 
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aluminium is found in several of the DFT-D optimised snapshots. Both coordination of water 

molecules to Al atoms associated with the defect, and to Al atoms located in intact regions of the 

framework occur. In AlPO-34, one case of five-coordinated Al is observed among the five snapshots. 

As a final remark to this section, it has to be considered that static structure optimisations were 

performed in the present work. This approach has inherent limitations: On the one hand, the effect of 

temperature on the interaction strength cannot be quantified directly, so only estimations are possible. 

On the other hand, the methodology does not account for temperature-induced distortions of the 

framework, which might lead to the creation of new adsorption sites. For example, as water molecules 

at the interior of the d6R unit of AlPO-34 have been observed in a previous study,54  it would be of 

particular interest to elucidate to what extent water molecules can diffuse in and out of the d6R units, 

and whether the accessibility of these regions is different in AlPO-34 and SAPO-34. Despite these 

limitations, important phenomena occurring at high water loadings, such as the partial deprotonation 

of the framework and pronounced changes in the coordination environment of the framework 

aluminium atoms could be observed in the DFT-D optimised structures. In order to study these aspects 

in more detail, and to include the contribution of temperature effects, it would be necessary to perform 

ab-initio MD calculations. Important steps in this direction have been made very recently: A DFT-

based MD investigation by De Wispelaere et al. has addressed the behaviour of water and methanol in 

the pores of SAPO-34.56 Based on the calculations, the authors showed that framework deprotonation 

occurs upon adsorption, and that the deprotonation is a highly dynamical phenomenon, i.e. that the 

catalytically active sites are very mobile. Furthermore, they investigated the changes of the 

equilibrium volume as a function of the loading of guest molecules, and found evidence for volume 

changes on the order of a few per cent at a temperature of 350 °C. 
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Conclusions 

The DFT-D calculations performed in this study have delivered atomic-level insights into the 

adsorption of water in defect-free and defect-containing models of SAPO-34, which can be 

summarised as follows: 

1) While a location of the framework proton at the oxygen atom O1 is the energetically most 

favourable situation in SAPO-34 with isolated silicon atoms, the protons may occupy different 

positions at finite temperature due to the small difference in energy. In systems with isolated 

silicon atoms, the interaction with water at both low and high loadings is practically 

independent of the location of the proton, and the DFT-D interaction energies agree well with 

heats of water adsorption determined experimentally. In qualitative correspondence with 

findings from IR spectroscopy, two different binding modes could be identified for low 

coverages, which depend on the location of the framework proton. 

2) Local heterogeneities in the silicon distribution (silicon islands, aluminosilicate domains) lead 

to a moderately stronger interaction with water at low loadings due to the creation of 

particularly favourable adsorption sites. On the other hand, their presence does not affect the 

interaction strength at higher water loadings. Thus, the onset of water adsorption will occur at 

slightly lower relative pressures than in systems with isolated silicon atoms, whereas the heat 

of adsorption at higher loadings should be practically the same. This is in line with the 

experimental observation of very similar heats of adsorption in two different samples of 

SAPO-34 synthesised via the morpholine route (which favours isolated Si atoms) and the 

tetraethylammonium hydroxide route (favouring Si islands), respectively.2  We should note, 

however, that only small 5-atom domains could be investigated in the present study. It can be 

expected that the presence of larger, purely siliceous regions will tend to weaken the 

interaction with water due to the hydrophobicity of these areas. 

3) The presence of defects created through partial or full desilication leads to a drastic weakening 

of the interaction with small amounts of water, and to a modestly reduced interaction at high 

water loadings. It can be concluded that the impact of defects will be twofold: On the one 
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hand, the present results show that defect-containing system will be less attractive for thermal 

energy storage due to the weaker host-guest interactions. On the other hand, the formation of 

isolated defects may constitute a first step towards structural decomposition, i.e. loss of 

crystallinity and porosity. This has been found to be a problem for SAPO-34 samples 

synthesised via the morpholine route, as the water uptake capacity of these samples 

deteriorates rapidly over a few cylces in adsorption-desorption experiments.2 

4) At low water loadings, the adsorbed water molecules are bonded exclusively through 

hydrogen bonds, and there are no indications for framework deprotonation. On the other hand, 

the DFT-D calculations predict a certain degree of framework deprotonation at high water 

loadings. While this finding is in agreement with previous computational studies, only smaller 

amounts of water were considered in these earlier works (at most 4 water molecules per 

proton, compared to ~10 H2O molecules per proton in the present work).27–29 Ab-initio MD 

calculations could be employed to quantify the extent of framework deprotonation, and to 

assess possible differences among systems with isolated Si atoms and local heterogeneities or 

defects. The same applies for the changes in the coordination environment of framework 

aluminium atoms upon water adsorption: The static DFT-D calculations used here provide 

evidence for the formation of five-coordinated Al atoms at high water loadings, but a more 

detailed evaluation would require an MD approach. In particular, it would be interesting to 

assess whether five-coordinated Al atoms retain their trigonal-bipyramidal coordination, or 

whether they constitute an intermediate species that will transform into octahedral 

coordination through interaction with another water molecule. 

There is a body of experimental work pointing to the higher stability of SAPO-34 materials 

incorporating silicon islands in comparison to systems with isolated Si atoms.2,3,21 Due to the positive 

influence of Si islands on the stability, and the absence of a detrimental effect on the water adsorption 

properties, synthesis routes or post-synthesis treatments that lead to the formation of silicon islands 

should be favoured when targeting SAPO-34 materials for applications involving water adsorption. 

While this conclusion had been established already from experiments on a phenomenological basis, 

the present study has provided microscopic insights into the actual impact of local heterogeneities and 
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defects on the water adsorption properties that could not be obtained experimentally. Future 

computational work could aim at a more detailed understanding why systems with heterogeneous 

silicon distributions are more stable than those with isolated silicon atoms, or at a comparison of 

proton-exchanged and cation-exchanged SAPO-34 systems. 
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Table 1: DFT-D optimised lattice parameters for all structures considered. 

 
 

Table 2: DFT-D optimised oxygen-hydrogen bond lengths d(O-H) and associated stretching 
frequencies ν(OH) calculated using the ν(OH)-d(O-H) correlation developed by Nachtigall and co-
workers.47 Systems with frequencies exceeding 3650 cm-1 (high-frequency band, see text) are 
highlighted in italics.a)  

SAPO-34_X, X = … d(O-H) / Å ν(OH)  / cm-1 

O1 0.9735  3656 
O2 0.9753 3632 
O3 0.9754 3631 
O4 0.9756 3628 
Si_island, H-O1_1 0.9737 3653 
Si_island, H-O1_2 0.9737 3653 
Si_island, H-O3 0.9758 3625 
SiAl_domain,H- O1_1 0.9729 3663 
SiAl_domain, H-O1_2 0.9728 3665 
SiAl_domain, H-O1_3 0.9724 3670 
SiAl_domain, H-O3 0.9757 3626 
 

a) As discussed in more detail in the text, the PBE functional used in ref. 47 and the PBE-TS functional 
employed here give O-H distances that vary by up to 5·10-4 Å, leading to an approximate uncertainty 
of 7 cm-1 in the calculated frequencies. 

  

 a / Å b / Å c / Å α / deg β / deg γ / deg 
SAPO-34_O1 13.805 13.805 15.149 90 90 120 
SAPO-34_O2 13.851 13.851 15.012 90 90 120 
SAPO-34_O3 13.856 13.856 15.012 90 90 120 
SAPO-34_O4 13.886 13.886 14.894 90 90 120 
SAPO-34_Si_island 13.840 13.855 15.088 89.92 89.96 120.36 
SAPO-34_SiAl_domain 13.845 13.858 15.131 90.01 89.95 120.23 
SAPO-34_defect+Si(OH)4 13.833 13.754 14.893 88.93 89.92 119.63 
SAPO-34_desilicated 14.188 14.055 14.243 86.76 89.41 122.61 
AlPO-34 13.792 13.792 14.981 90 90 120 
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Table 3: DFT-D results obtained for small amounts of water adsorbed in defect-free models of SAPO-
34. The table includes the interaction energy per H2O molecule (Eint), the non-dispersive contribution 
to the total interaction energy (Eint,nodisp) in absolute and relative terms (in per cent, values in 
brackets), as well as relevant interatomic distances (see text).   

SAPO_34_X, X = … 
Eint /    

kJ mol-1 
Eint,nodisp / 
kJ mol-1 

(%) 

d(H···OH2O) 
/ Å 

d(HH2O···O) / 
Å 

d(O-H) 
/ Å 

∆d(O-H) / 
Å 

O1, H2O@H-O1 -92.8 -71.7 (77) 1.536 2.17; 2.84 1.033 0.059 
O2, H2O@H-O2 -92.3 -71.3 (77) 1.528 2.08; 2.85 1.040 0.064 
O3, H2O@H-O3 -90.9 -72.6 (80) 1.411 1.90; 1.91 1.079 0.104 
O4, H2O@H-O4 -89.9 -69.5 (77) 1.530 2.66; 2.71 1.041 0.065 
Si_island, H2O@H-O1_1 -95.0 -73.8 (78) 1.523 2.34; 2.51 1.035 0.061 
Si_island, H2O@H-O1_2 -95.5 -74.2 (78) 1.519 2.36; 2.42 1.037 0.063 
Si_island, H2O@H-O3 -93.3 -75.0 (80) 1.388 1.86; 1.89 1.090 0.114 
SiAl_domain, H2O@H-O1_1 -91.6 -71.0 (78) 1.535 2.03; 2.86 1.031 0.058 
SiAl_domain, H2O@H-O1_2 -94.0 -72.9 (78) 1.539 2.10; 2.88 1.031 0.059 
SiAl_domain, H2O@H-O1_3 -99.1 -78.6 (79) 1.528 1.92; 2.89 1.035 0.062 
SiAl_domain, H2O@H-O3 -86.2 -69.0 (80) 1.446 1.90; 1.92 1.063 0.087 

 

Table 4: Averaged DFT-D interaction energies (per H2O molecule) obtained for 30 water molecules 
per unit cell adsorbed in different models of SAPO-34 and AlPO-34. The average non-dispersive 
contribution is given in absolute and relative terms. 

 Eint,aver /   kJ mol-1 Eint,nodisp, aver / kJ mol-1 (%) 
SAPO-34_O1 -70.9 +/- 2.0 -49.9 (70) 
SAPO-34_O3 -70.0 +/- 1.6 -48.9 (70) 
SAPO-34_Si_island -70.7 +/- 1.3 -49.7 (70) 
SAPO-34_SiAl_domain -69.6 +/- 1.2 -48.7 (70) 
SAPO-34_defect+Si(OH)4 -70.8 +/- 1.4 -47.6 (67) 
SAPO-34_desilicated -67.2 +/- 1.7 -44.8 (67) 
AlPO-34 -63.5 +/- 0.4 -42.0 (66) 

 

Table 5: DFT-D results obtained for small amounts of water adsorbed in defect-containing models of 

SAPO-34. 

 
Eint /    

kJ mol-1 

Eint,nodisp / 
kJ mol-1 

(%) 

d(H···OH2O) 
/ Å 

d(HH2O···O) / 
Å 

SAPO-34_defect+Si(OH)4, H2O@H-Of -74.9 -51.2 (68) 1.693 2.12; 2.31 
SAPO-34_defect+Si(OH)4, H2O@H-Os1 -70.4 -50.4 (72) 1.715 2.34; 2.70 
SAPO-34_defect+Si(OH)4, H2O@H-Os2 -82.0 -61.4 (75) 1.673 1.90; 2.81 
SAPO-34_defect+Si(OH)4, H2O@H-Os3 -77.7 -52.0 (67) 1.533 1.95; 2.05 
SAPO-34_desilicated, H2O@H-Of -67.1 -47.8 (71) 1.705 2.21; 2.64 
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Figure 1: a) Representation of the structure of SAPO-34 with isolated Si atoms as tetrahedral 
framework. SiO4 tetrahedra are shown in yellow, AlO4 tetrahedra in cyan, and PO4 tetrahedra in light 
purple. b) Enumeration of oxygen atoms employed in this work, taking SAPO-34_O1 as example. The 
environment of one isolated silicon atom is shown in an atomistic representation, whereas the 
remainder of the d6R units is displayed schematically. All structure figures were prepared using 
VESTA 3.0.57 
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Figure 2: Visualisation of models of SAPO-34 that incorporate local heterogeneities or defects. Like 
in figure 1b, Al-O-P linkages are only shown schematically. Protons that are not involved in hydrogen 
bonds, and thus accessible to adsorbed water molecules, are highlighted in blue. Labels refer to the 
oxygen atoms to which the protons are bonded. 
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Figure 3: Environment of the water molecule in SAPO-34_O1 and SAPO-34_O3 as obtained from 
DFT-D calculations for low water loadings. Selected distances are given in Ångström. 

 

Figure 4: DFT-D optimised environment of the water molecule in SAPO-34_SiAl_domain, H2O@H-
O1_3. Selected distances are given in Ångström. 
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Figure 5: Comparison of DFT-D interaction energies for different models of SAPO-34. For each 

system, the blue bar corresponds to the interaction energy obtained for the most favourable 
adsorption site at low water loadings, whereas the orange bar represents the average interaction 
energy at a loading of 30 H2O molecules per unit cell. 

 

Figure 6: a) Representative example of framework deprotonation in SAPO-34_O1. The proton that 
has relocated from the framework to form a hydronium ion is highlighted in blue. Only the two nearest 
water molecules are included, and hydrogen bond distances are given in Ångström. b) Visualisation of 
bihydroxide anion formation observed in SAPO-34_desilicated. The proton at the centre of the H3O2

- 
anion is shown in blue, and surrounding water molecules are omitted for clarity. The figure on the 
right hand side shows the direct environment of the bihydroxide anion: d1 = 1.166 Å, d2 = 1.246 Å. 
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Figure 7: Formation of five-coordinated aluminium in SAPO-34_O3. Surrounding water molecules 
are omitted for clarity. The Al-O bond lengths in the AlO5 coordination polyhedron are shown on the 
right-hand side (in Å). 
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