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A previously unknown thermodynamically stable high-pressure phase of BeF5 has been predicted using the
evolutionary algorithm USPEX. This phase occurs in the pressure range 18-27 GPa. Its structure has C2/c
space group symmetry and contains 18 atoms in the primitive unit cell. Given the analogy between BeFs
and SiO,, silica phases have been investigated as well, but the new phase has not been observed to be
thermodynamically stable for this system. However, it is found to be metastable and to have comparable
energy to the known metastable phases of SiO,, suggesting a possibility of its synthesis.

PACS numbers:
PACS numbers: Valid PACS appear here

I. INTRODUCTION

Beryllium fluoride has many applications, such as
coolant component in molten salt nuclear reactors'2,
production of special glasses®?, manufacture of pure
beryllium®, etc. Structurally, BeF, phases are similar
to the phases of S5iO, (Fig. 1): a-quartz phase of BeFs
and SiOs is stable from 0 to ~2 GPa, and then trans-
forms to coesite phase which persists up to ~8 GPa,
and then transforms to stishovite (rutile-type phase) in
Si05%. However, the behavior of BeF5 experimentally is
not known for pressures above 8 GPa (see Scheme 1 in

Ref.7).

Stishovite

0.0 22 8.1 20.0
Phase diagram of SiO,, GPa

’ Quartz Coesite

Quartz Coesite ?

0.0 18 7.8 20.0
Phase diagram of BeF,, GPa

FIG. 1. Phase diagrams of Si05° and BeFs” at low (up to
room) temperatures.

One of our goals in present paper is to reveal which
phase transitions can occur at higher pressures in BeF's.
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Beryllium compounds are extremely toxic for humans,
and this limits experimentation. Computer simulation
is a safe and cheap alternative to investigate such struc-
tures. In recent ab initio study® authors explored 13
well-known ABs structure types for their possible sta-
bility for BeFy: a-quartz-type (P3421), B-quartz-type
(P6422), «-cristobalite-type (P41212), [-cristobalite-
type (F'd-3m), cubic CaFa-type (Fm-3m), a-PbCls-type
(Pnma), Nigln-type (P63/mmc), coesite-type (C2/c),
rutile-type (Pds/mnm), baddeleyite-type (P2;/c), -
PbOs-type (Pbcn), a-CaCly-type (Pravm) and pyrite-
type (Pa-3) structures. They found that the sequence

of pressure-induced phase transitions of BeF,; up to

50 GPa is as follows: «a-quartz-type 059 GPa, o esite-

type B4 GFa, rutile-type 2L GRay a-PbOs-type struc-

tures. Although BeF5 under pressure has been theoret-
ically investigated by Yu et al.B, we revisit these results
to check for previously unknown structure(s), and we ex-
plore the relevance of these findings for SiO5. Moreover,
recently there has been a renewed interest on the phase
diagram of other related fluoride (CaFs, SrFs, BaF,) and
oxide (UO3) materials®1? at high-P and high-T' condi-
tions, and our results may be relevant to the possibility
of new superionic phases.

Il. COMPUTATIONAL DETAILS

Computer simulations of BeF5 and SiO5 has been per-
formed in two steps: (1) prediction of a new structure
of BeF, using USPEX evolutionary algorithm; (2) calcu-
lation of properties of BeFs and SiO, in the wide range
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of pressures from 0 to 50 GPa with a 1 GPa step using
DFT.

To find stable lowest-energy crystals structures, we
performed fixed-composition search of the BeF5 system
at different pressures (15, 20 and 25 GPa) using the US-
PEX code ™13 in conjunction with first-principles struc-
ture relaxations using density functional theory (DFT)
within the Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation (GGA)!4, as implemented in the
VASP package'®. We employed projector augmented
wave (PAW)16 potentials with 2 valence electrons for Be
and 7 — for F. The wave functions were expanded in
a plane-wave basis set with the kinetic energy cutoff of
600 eV and T-centered meshes for Brillouin zone sam-
pling with reciprocal space resolution of 2rx0.10 A~1.

We used the VASP package to carefully reoptimize
the obtained structures before calculating phonons, elas-
ticity, electronic density of states (DOS), hardness of
BeF5 and SiO,. For these relaxations, we also used the
plane-wave cutoff of 600 eV and k-meshes with resolu-
tion of 0.10 A~', Phonons calculations have been per-
formed using Phonopy!” and Quantum Espresso'® codes
for the relaxed structures at pressures where these struc-
tures are found to be thermodynamically stable. Hard-
ness was calculated using 3 methods: Lyakhov-Oganov
model'® based on the strength of bonds between atoms
and bond network topology, Chen-Niu model®® which
uses elastic constants obtained from DFT calculations
and Mukhanov-Kurakevych-Solozhenko thermodynamic

model of hardness?!.

Ill. RESULTS AND DISCUSSION

USPEX allowed us to find a new structure of BeFs,
stable at 1827 GPa (Fig. 2). The structure has C2/c
space group and contains 12 formula units in the Bravais
cell (6 in the primitive cell) with a=8.742 A, b=8.695 A,
¢=4.178 A and $=66.1° (at 20 GPa). Calculated den-
sity of this new C2/c phase is 4.2% higher than density
of coesite phase, both at 20 GPa. For reference, here
are lattice parameters for BeF,-stishovite at 30 GPa:
a=b=3.986 A, ¢=2.501 A and a=F=v=90°. The value
of the bulk modulus By=22.7 GPa of the C2/c structure
of BeF'5 with its pressure derivative B,=3.9 was obtained
from a least-squares fit using the Murnaghan equation of
state?? (Fig. 3). The zero-pressure unit cell volume was

taken as Vp=213.7 A3.

A. Thermodynamic stability

We have calculated the enthalpies of a-quartz (P3,21),
coesite (C2/c), coesite-11 (C'2/c), stishovite (P4s/mnm),
a-PbOs-type (Pben) structure and our new structure
(C2/¢) for both BeF; and SiOs at different pressures
from 0 to 50 GPa with a 1 GPa step. The results are
presented in Fig. 4.

FIG. 2. C2/c¢ structure of BeFs, stable at 18-27 GPa.

1.0]
— Murnaghan fit (B, = 22.7 GPa, B(Q = 3.9)
e DFT results for BeF, C2/c structure
0.9
<08
0.7
065 5 10 15 20 25 30

Pressure, GPa

FIG. 3. Equation of state of BeFa C2/c structure.

1. BeF: under pressure

For the case of BeFs a-quartz structure is stable from
0 to 4 GPa, followed by coesite structure stable from 4 to
18 GPa, and the C2/c structure is found to be stable be-
tween 18 and 27 GPa, which then gives place to stishovite
structure at higher pressures (Fig. 4(a)). We see transi-
tion from coesite-type to C'2/¢, then to rutile-type, but at
much higher pressure (27 GPa against 6.47 GPa in Ref.%,
where LDA was used). According to Demuth et al.?3, the
LDA approximation used in Ref.® underestimates phase
transition pressures, whereas using the GGA yields more
reliable results. The a-PbOs-type structure is not sta-
ble at any pressure (in the investigated interval from 0
to 50 GPa) for BeF, (though it is close to stability at
~27 GPa), while for SiOs it is indeed stable at pressures
above ~80-90 GPa?*.

2. SiO; under pressure

From Fig. 4(b) it is clearly seen that in SiOs the tran-
sition from a-quartz to coesite occurs at 5 GPa, followed
by transformation to stishovite at ~7 GPa, which con-
tinues to be stable up to 50 GPa. This phase transition
sequence is in good agreement with experiments® and
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FIG. 4. Enthalpies (relative to a-quartz) of (a) BeF2 and (b)
SiOg phases as a function of pressure.

with the GGA results by Demuth et al.?®, Oganov et
al?* and LDA results of Tsuchiya et al.?®; it is known
though?® that the GGA is more accurate than the LDA
for phase transition pressures. The new structure is not
stable at any pressure for SiO,, but at 0 GPa is only
10 meV/f.u. higher in energy than a-quartz, and should
be synthesizable as a metastable phase. Typically, ki-
netic barriers in such covalent tetrahedral phases are very
high, i.e. metastable phases of such type exist in nature
for millions of years. However, it is quite hard to esti-
mate the magnitude of the barrier both theoretically and
experimentally, and this is out of scope of the present
work. Our results of coesite — coesite-11 transition are
in good agreement with recent study of Cernok et al.2,
where they observe coesite at 20.3 GPa, and after an
abrupt change in the diffraction pattern between ~20
and ~28 GPa — coesite-IT at 27.5 and 30.9 GPa.

Physical Chemistry Chemical Physics

3. Metastable structures of SiO-

It is well known that SiO5 a-quartz is thermodynami-
cally stable at ambient pressure. However, there are nu-
merous known SiOs polymorphs which are metastable,
but exist in nature or can be synthesized. We examined
Si0, feldspar, baddeleyite, melanophlogite and mogan-
ite at 0 GPa. El Goresy ef al.?” claimed a baddeleyite-
like post-stishovite phase of silica in the Shergotty mete-
orite, however later that controversial phase turned out
to be a-PbO,-like silica?®. Our calculations confirm that
the baddeleyite-like form of SiO, is very unfavorable at
0 GPa and spontaneously (barrierlessly) transforms into
the a-PbOs-like structure. We have found that SiO,-
feldspar, moganite and melanophlogite are energetically
very close to the stable phase (a-quartz) and to the
new C2/c¢ structure. Differences in enthalpy between
melanophlogite, the new structure and a-quartz are less
than 20 meV/f.u. (see Fig. 4(b)). The fact that complex
open structure of melanophlogite (138 atoms/cell) has a
slightly lower energy than a-quartz, can be explained by
errors of the GGA, which were discussed in details by De-
muth et al.?®. They also found S-cristobalite (Fig. 4(b))
is lower in energy by about 30 meV /SiO; than a-quartz,
confirmed by calculations of Zhang et al.??, showing that
the GGA slightly overstabilizes low-density structures.

B. Lattice dynamics

Since the new structure of BeFy appears to be ther-
modynamically stable, analysis of dynamical stability
(phonon dispersion) has been performed for this struc-
ture as well as for all other structures at pressures where
they were found to be thermodynamically stable. Our
results show that BeFs a-quartz at 0 GPa, coesite at
5 GPa, new structure at 25 GPa and stishovite at 30 GPa
do not have imaginary frequencies. Similar results are ob-
served for SiO5 a-quartz at 0 GPa, coesite at 5 GPa and
stishovite at 10 GPa. Fig. 5 shows dynamical stability of
the new structure of BeF'5 since no imaginary frequencies
are observed in the phonon dispersion plot.

C. Electronic properties

According to Fig. 6, all BeF, phases are insulators,
the DFT band gap increases from ~7 to ~10 eV with
increasing pressure from 0 to 30 GPa and the value of
the gap is in good agreement with data of Yu et al.8.

For Si0O5 (Fig. 7) we also observe insulating behavior,
and the band gap is about 6 eV and remains almost un-
changed with increasing pressure.
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D. Hardness

Three models have been exploited to calculate hard-
nesses — the Lyakhov-Oganov'®, Chen-Niu?® and
Mukhanov-Kurakevych-Solozhenko?! models. First ap-
proach is based on concepts of bond strengths and bond
topology to compute hardness. Detailed description of
the methodology can be found in Ref.!®. This model
has been implemented in the USPEX code, and for
greater convenience has also been implemented as an
online utility available at http://han.ess.sunysb.edu/
hardness/. The second method of hardness calculation
is Chen-Niu model, which is based on elastic tensor com-
ponents and also implemented in the USPEX code. The
third one is a thermodynamic model of hardness.

The results can be seen in Table I. Experimental data
are provided where available — Vickers hardness of SiO,-
quartz3?, SiOs-coesite?! and SiOs-stishovite®!. From Ta-

FIG. 7. Density of states of SiOg in the (a) a-quartz (at
0 GPa), (b) coesite (at 5 GPa) and (c) stishovite (at 10 GPa)
phases.

ble I it is clearly seen that the calculated hardness of
SiOy quartz and stishovite is much higher than one of
BeF> analogs. The hardness of BeFs and SiOs5 in the
new C2/c structure is comparable with the hardness of
a-quartz and coesite.

IV. CONCLUSIONS

We have examined thermodynamic, vibrational, elec-
tronic and elastic properties of BeF', and SiO; phases us-
ing DFT calculations. The sequence of pressure-induced

phase transitions of BeFs up to 50 GPa is as follows: a-

quartz-type £ GFh, coesite-type L &ha, C2/c Lk o}

stishovite (rutile-type) structures. We found a new phase
of BeFs which is thermodynamically stable at pressures
from 18 to 27 GPa. This phase is not observed in SiO,,
but could be synthesized in principle. Electronic proper-
ties analysis has shown BeF'; and SiO, remain insulating
in a wide range of pressures (from 0 to 50 GPa). Hard-
ness of BeF; and SiOs in the new structure is comparable
with hardness of a-quartz and coesite at 0 GPa. Hard-
nesses of metastable SiO, structures have been examined
as well.
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TABLE I. Hardness of BeF2 and SiOs structures at 0 GPa in GPa. For the metastable SiO2 structures we present enthalpies
relative to a-quartz (in meV per formula unit).

Bng SIOQ
Lyakhov-Oganov Chen-Niu Mukhanov et al. * Lyakhov-Oganov Chen-Niu Experiment
Quartz 7.1 7.5 11.0 20.0 12.5 12.0°
Coesite 8.2 8.3 11.7 22.3 8.4 20.0°
New structure 7.3 6.8 13.5 19.1 6.7 —
Stishovite 8.2 12.7 15.1 29.0 28.7 33.0°
Metastable structures (SiOz only):
Relative enthalpy, meV /f.u. Hardness, GPa

Lyakhov-Oganov model Chen-Niu model
Feldspar 47 6.7 11.8
Baddeleyite 726 29.6 28.0
Melanophlogite —13 12.5 3.3
Moganite 3 19.5 12.8

@ Thermodynamic model of hardness (Ref.?!)
b Vickers hardness
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data_findsym-output

_symmetry_space_group_name_H-M ’C 1 2/c 1’
_symmetry_Int_Tables_number 15

Appendix A: Densities of BeF2 and SiO: structures _cell_length_a 8.74241
_cell_length_b 8.69478

Table II shows densities of BeFs structures at 0 and ~ -cell_length_c 4.17800
20 GPa and SiO structures at 0 GPa. -cell_angle_alpha  90.00000
_cell_angle_beta 66.07927

_cell_angle_gamma 90.00000

Appendix B: CIF file of BeF2 C2/c structure at 20 GPa

# CIF file
# This file was generated by FINDSYM (H.T. Stokes)

loop_

_space_group_symop_operation_xyz

X,¥,2
-X,y,-z+1/2
-X,-Y,"2
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x,-y,2z+1/2
x+1/2,y+1/2,z
-x+1/2,y+1/2,-2+1/2
-x+1/2,-y+1/2,-z
x+1/2,-y+1/2,2z+1/2

loop_

_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

Bel Be 0.30175 0.08755 0.27471 1.00000
Be2 Be 0.00000 0.18404 0.25000 1.00000
F1 F -0.11350 0.09592 0.11433 1.00000
F2 F 0.14707 0.43232  0.42082 1.00000
F3 F -0.11681 0.27080 -0.42582 1.00000
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