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An elementary molecular process can be characterized by the flow of particles (i.e., electrons and nuclei) 
that compose the system. The flow, in turn, is quantitatively described by the flux (i.e., the time-sequence 
of maps of the rate of flow of particles though specified surfaces of observation) or, in more detail, by the 
flux density. The quantum theory of concerted electronic and nuclear fluxes (CENFs) associated with 
electronically adiabatic intramolecular processes is presented. In particular, it is emphasized how the 
electronic continuity equation can be employed to circumvent the failure of the Born-Oppenheimer 
approximation, which always predicts a vanishing electronic flux density (EFD). It is also shown that all 
CENFs accompanying coherent tunnelling between equivalent "reactant" and "product" configurations of 
isolated molecules are synchronous. The theory is applied to three systems of increasing complexity. The 

first application is to vibrating, aligned +
2H ( 2

g
 ), or vibrating and dissociating +

2H  

( 2 , 0, 0)g J M   . The EFD maps manifest a rich and surprising structure in this simplest of systems; 

for example, they show that the EFD is not necessarily synchronous with the nuclear flux density and can 
alternate in direction several times over the length of the molecule. The second application is to coherent 
tunnelling isomerization in the model inorganic system B4, in which all CENFs are synchronous. The 
contributions of core and valence electrons to the EFD are separately computed and it is found that core 
electrons flow with the nuclei, whereas the valence electrons flow obliquely to the core electrons in 
distinctive patterns. The third application is to the Cope rearrangement of semibullvalene, which also 
involves coherent tunnelling. An especially interesting discovery is that the so-called "pericyclic" 
electrons do not behave in the manner typically portrayed by the traditional Lewis structures with 
appended arrows. Indeed, it is found that only about 3 pericyclic electrons flow, in contrast to the 6 
predicted by the Lewis picture. It is remarkable that the time scales of these three processes vary by 18 

orders of magnitude: femtoseconds ( +
2H ( 2

g
 )); picoseconds (B4); kilosceconds (semibullvalene). It  is 

emphasized that results presented herein are appearing in the literature for the first time. 
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1 Introduction 
 
An elementary molecular process (e.g., bimolecular collision) consists essentially in the 
rearrangement of the fundamental particles (i.e., nuclei and electrons) that compose the system. 
The specific pathways of the particles constitute the mechanism of the process. For processes 
taking place in the electronic ground state, one typically employs the Born-Oppenheimer 
approximation (See Section 2) and monitors the time-development of the probability densities of 
the particles ( , )t q (i.e., the rate of change of the probability that the particles are observed in 
unit (hyper-) volume about the prescribed configuration q). Though ( , )t q tells one where the 
particles are at a given time, it does not indicate how they get there. More detailed information 
on the pathways can, in principle, be furnished by the flows of electrons and nuclei that attend 
the process. The most detailed quantitative description of the flow is provided by time sequences 
of three-dimensional (vector) maps of the particle flux density, ( , )tj x (i.e., the instantaneous rate 
of flow of particles (electrons or nuclei) per unit area at points of observation x at time t). A less 
detailed description is given by the flux (i.e., the rate of flow of particles through a specified 
surface of observation).  
 
We focus in this Perspective on state-of-the-art theory and calculations of concerted flows of 
electrons and nuclei that accompany intramolecular processes (such as vibration, dissociation 
and isomerization) occurring in the electronic ground state (i.e., at such low energy that the 
coupling to electronic excited states is negligible) of the isolated molecule. On one hand, this 
field of research is relatively new, in that the first highly accurate quantum-mechanical 
calculations of electronic and nuclear fluxes were reported only in 2009 for the simplest 
molecular system, to which we refer subsequently as the “prototype”: vibrating, aligned 

+
2H ( 2

g
 ).1 On the other hand, the current effort has its roots in Schrödinger’s seminal paper of 

1926, in which he not only postulated his equation for the time-evolution of the state of a system 
but also defined the flux density.2 However, since the duration of most molecular processes is 
much shorter than that which could be experimentally resolved in Schrödinger’s day, and indeed, 
for many decades thereafter, the field lay dormant until recently. 
 
It is intuitively obvious that the electrons and nuclei must flow as the system rearranges from the 
reactant to the product configuration during a chemical reaction. These fluxes are generated 
spontaneously. However, detailed features of intramolecular fluxes remain unknown and many 
questions remain unanswered. Do the nuclei and electrons flow synchronously, or sequentially? 
As the original bonds of the reactant are broken and new bonds of the product form, do the 
electrons first flow out of the original bonds and then into the new ones, or are these fluxes 
synchronous? Do all nuclei and all electrons contribute to the fluxes, or only some of them? Do 
electrons and nuclei flow essentially in the same direction, or in oblique directions? What are the 
time scales of the fluxes? This Perspective provides answers to all of these questions, with 
exemplary applications to model systems from physical (Section 3), inorganic (Section 4) and 
organic (Section 5) chemistry. 
 
Fluxes are interesting and important because they provide information that complements that 
given by electronic and nuclear probability densities, which can be monitored by time-resolved 
spectroscopy or scattering. The complementarity of the information given by probability P
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densities and fluxes, or flux densities, can be understood through a simple textbook example. 
Consider a free particle with mass m described by the wave function ( ) exp( / )x N ikx iEt    , 
where k is the wave number and E is the energy. The corresponding momentum and velocity are 
p k  and /v p m . The probability density that the particle is observed at point x at time t is 

2 2( , ) ( , )x t x t N   , whereas the flux (or flux density) observed at point x at time t is 
2( , ) ( , )j x t v x t vN  . The probability density is evidently the same for all particles, 

irrespective of their velocity, whereas the flux density depends on the velocity of the particle. 
Hence, the flux density discriminates among particles with different velocities, all of which have 
the same probability density. This simple example shows that a complete description of the 
evolving system requires knowledge of the flux densities, in addition to the probability densities. 
 
The present, renewed interest in intramolecular fluxes, or flux densities, has been spurred 
indirectly by relatively recent experimental progress in the measurement of such dynamic 
properties as nuclear fluxes in chemical reactions in crossed molecular beams.3,4 Although these 
measurements provide valuable information on the mechanism of the reaction, expressed, for 
example, in terms of cross sections or state-to-state reaction probabilities, they tell one nothing 
about intramolecular fluxes generated during the reaction. Another indirect stimulus of the 
present interest in intramolecular fluxes is the measurement of circular electronic fluxes induced 
by weak magnetic fields in molecules such as benzene.5-7 However, even the strongest available 
magnetic fields (say 10 Tesla) can induce only extremely weak electronic fluxes, say of the order 
of one hundredth of an electron per period of one cycle. In contrast, the spontaneous fluxes that 
accompany intramolecular processes of interest here (See Sections 3-5) are one to two orders of 
magnitude greater, corresponding to transfers of one or more electrons during the process.  
 
Experimental techniques for monitoring intramolecular fluxes directly are just emerging. 
Analysis of data from pump-probe spectroscopy has yielded the first nuclear fluxes only 
recently.8 This fact serves to emphasize how timely a Perspective on this topic is. Until recently 
it has received essentially no attention. Diverse systems remain to be investigated, with the 
possibility of new and surprising discoveries that may provide deeper insights into the 
mechanisms of fundamental molecular processes. For example, ref 8 reports on four new 
quantum effects, one of which is dubbed the "quantum accordion effect" (which, in essence, 
refers to the alternation in direction of the quantum nuclear flux at a fixed time). This effect can 
also be observed in the concerted electronic and nuclear fluxes (CENFs) associated with 
vibration and dissociation in the prototype (See  Section 3). Applications of the theory presented 
in Sections 3-5 reveal many additional, fascinating phenomena. 
 

Theoretical studies related to those of primary concern in this Perspective deal with, for example, 
purely nuclear fluxes during chemical reactions8-22 or purely electronic fluxes during adiabatic23-

29 and diabatic30-38 processes (e.g., electronic ring currents in degenerate electronic excited 
states23-25 or electronic fluxes during diabatic reactions30-38; See also refs. 39-41). The theoretical 
descriptions of purely electronic fluxes associated with these latter processes typically assume 
either that the nuclei are fixed23-25,30or else that classical mechanics can be used to describe 
nuclear motions.31-38 In contrast, ref. 1, which presents for the first time highly accurate 
simulations of CENFs for the prototype, handles the coupled electronic-nuclear motion 
completely by quantum mechanics. Subsequently, we have extended the quantum theory and its P
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applications to more demanding systems, as well as to new phenomena of interest in physical, 
inorganic and organic chemistry, which focus on the relative magnitudes, directions, and 
synchronicities of CENFs.42-53 In addition we have studied interference effects in processes 
involving non-degenerate electronic states50,54 as well as transition current densities.55,56 

 

This Perspective is organized as follows. In Section 2 we develop the basic theory. Sections 3, 4, 
and 5 are given to applications to the prototype, as well as to vibrating and dissociating 

+
2H ( 2 , 0, 0)g J M    (which can be regarded as a “quantum bubble”), to isomerization of B4, 

and to the Cope rearrangement of semibullvalene (SBV) by coherent tunnelling. We note that as 
the complexity of these systems increases, the numbers of electrons and nuclei increase 
accordingly: e n1, 2N N  for +

2H  ; e n20, 4N N   for 4B ; e n56, 16N N  for SBV. It is also 

noteworthy that the durations of these processes range from femtoseconds ( +
2H ) over 

picoseconds (B4) to kiloseconds (SBV). By the way, we emphasize that all of the results shown 
in this Perspective are new, even though some of them are closely related to previously reported 
ones. 

 
2 Theory 
 
In this section we develop the fundamental quantum theory behind CENFs  in a comprehensive, 
self-contained manner. The presentation combines material which has appeared previously42-52 

with important unpublished extensions. Sections 2.1-2.2 describe the system in detail and 
establish the notation and terminology. In Section 2.3 we introduce Hirschfelder's mobile 
coordinates,57-59or analogous mobile-type coordinates, which are particularly advantageous 
because the corresponding nuclear kinetic energy is diagonal. Section 2.4 discusses the reduction 
of the number of coordinates in order to define one-dimensional models involving only a single 
one of the mobile-type coordinates. In Sections 2.5 and 2.6 we define population densities and 
flux densities. We also describe how the continuity equations that relate them can be reduced 
from three dimensions to one. Section 2.7 relates the flux densities in the NCM and internal-
coordinate frames. Section 2.8 focuses on an important special scenario, namely CENFs during 
coherent tunnelling. We emphasize that all of the results of Sections 2.1-2.8 are general, 
depending on no special approximations, in particular the Born-Oppenheimer approximation 
(BOA). Finally, in Section 2.9 we summarize the BOA, pointing out its virtues for standard 
applications, but emphasizing a major fault that is critical for our present purpose: the BOA 
always yields a vanishing electronic flux density. We close Section 2 with a presentation of  two 
fixes of this defect: (1) use of the reduced electronic continuity equation (as described in Section 
2.6); (2) coupled-channels technique.46-49 
 
2.1 Description of the system and Hamiltonians 
  
In the laboratory coordinate representation the complete Hamiltonian of the system comprising 

eN  electrons and nN  nuclei is expressed in the non-relativistic approximation as 
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e n2 2

2 2
T

1 1e

( , )
2 2i a

N N

i a a

H V
m M 

      r R r R
 

, (1) 

where r  and R denote collections of electronic and nuclear Cartesian coordinates and em  and 

aM  stand for the electronic and nuclear masses. The Coulomb potential energy can be written in 

detail as  

 ee en nnV V V V    (2) 

where 

 
2

ee
10

1

8

e eN N

i j i i j

e
V

  




r r
 

             
e n2

en
1 104

N N
a

i a i a

e Z
V

  

 
 r R

 

            
n n2

nn
108

N N
a b

a b a a b

e Z Z
V

  


 R R

     (3) 

e is the magnitude of the charge on the electron, aZ is the atomic number of nucleus a, and 0 is 

the permittivity of vacuum. The spins of particles are ignored, except insofar as they determine 
the permutation symmetry of the wave function. 

 

We transform the Hamiltonian to the total center-of-mass (COM) coordinate system, defined 
according to  

 
e n

1
T e

1 1

N N

i a a
i a

M m M

 

 
  

 
 S r R  (4a) 

                                                   i i q r S      (4b) 

      
n

; n
1 , ,

, 1,2,...,3 3
N

a a
a x y z

Q W R N   



 

      (4c) 

where 

 
n

1
n

1

N

a a
a

M M



 
  

 
S R  (5) 

and  

 e e nM N m M   (6a) 

 
n

n
1

N

a
a

M M


   (6b) 

Here TS stands for the COM of the entire system and S for the COM of the nuclear subsystem 

(i.e., the nuclear center of mass, NCM). The coordinates of the electrons with respect to the 
NCM are given by eqn (4b) and the internal nuclear coordinatesQ by eqn (4c), where ;aW  are 

real constants. The aR  stand for Cartesian components of the laboratory coordinates of the P
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nuclei: 1 1xR X ; 1 1yR Y  1 1zR Z ; 2 2xR X ; ...
n nN z NR Z . The summation on   in eqn (4c) 

runs over the Cartesian components. We note that the internal coordinates are not unique and 
may be chosen for convenience. For example, in the case of the diatomic molecule AB, for 
which 2nN  , one typically takes the internal nuclear coordinates to be: 

1 ax bx a bQ R R X X    ;  2 ay by a bQ R R Y Y    ; 3 az bz a bQ R R Z Z    . We also designate 

the vector distance from nucleus b to nucleus a by 1 2 3x y zQ Q Q  R e e e , where e denotes the 

Cartesian unit vector.  

 

A tedious calculation yields 

 

e e e

T

n n

T

2 2 2
2 2

T
1 1e n

3 3 3 3 2 2

1 1

2
2

2 2 2

( , ),
2

2

i i j

N N N

i i j i

N N

H
M M

V
Q Q

H
M

    





  

 

 

       


 

 

   

 

 

S q q q

S

q Q

  





 (7) 

where H is the "internal" Hamiltonian, the reduced masses are given by 

 e e n e n/( )m M m M    (8a) 

 
n

; ;1

1

N
a a

a a

W W

M
   








  , (8b) 

and q and Q stand for collections of coordinates.  

 

2.2 Wave functions 

Since the total COM contribution to TH separates from the remainder (See eqn (7)), the entire 
wavefunction is factorable as  

 T T T( , , , ) ( , ) ( , , )t t t  S q Q S q Q  (9) 

The “external” COM factor   obeys the Schrödinger equation  

 
T

2
2T

T

( , )
i ( , )

2


  


t

t
t M

 S

S
S

   (10a) 

and the “internal” factor  satisfies  

 
( , , )

i ( , , )


 


t
H t

t

q Q
q Q    (10b) 

The internal Hamiltonian can be written 

 e nH H T          (11) 

where 
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e e e2 2

2
e

1 1e n

( , )
2 2i i j

N N N

i i j i

H V
M   

       q q q q Q
 

             (12a) 

   
n n3 3 3 3 2 2

n
1 1 2

N N

T
Q Q    

 

 


 

   
     (12b) 

The eigenfunctions of the “internal” Hamiltonian satisfy the eigenvalue equation 
 ( , ) ( , )n n nH E q Q q Q  (13) 

where n, which generally stands for a set of quantum numbers, specifies the eigenstate. The 
eigenfunctions comprise a complete, orthonormal set, i.e.,  

 ( , ) ( , )n m nmd d    q Q q Q q Q   (14) 

(We remark that the spectrum includes continua and therefore the Kronecker delta is replaced by 
the Dirac delta where necessary.) The eigenfunctions can be taken to be real, but we note that in 
case of degenerate excited states they can as well be taken to be complex. Any well behaved 
function ( , )f q Q  in the internal e n3( 1)N N  - dimensional coordinate space can be expressed 

as a linear combination of the{ }n . Hence, if the system is prepared in the state ( , ,0) q Q  at the 

initial time ( 0t  ), the wave function at time t can be represented in the basis of eigenfunctions 
of H by 

 ( , , ) exp( i / ) ( , )n n n
n

t c E t   q Q q Q  (15) 

where the constant coefficients are  

 ( , ) ( , ,0)n nc d d   q Q q Q q Q   (16) 

That   given by eqn (15) solves the internal Schrödinger equation can be seen by its direct 
substitution into eqn (10b). We emphasize that, in general, is complex. 

 

The electronically adiabatic processes with which we are concerned proceed without electronic 
excitations. In practice, this means that the summation in eqn (15) includes only eigenstates with 
sufficiently low energies nE . For example, in the case of vibrating aligned +

2H  (See Section 3.1), 

the summation is restricted to eigenstates having energies below the dissociation threshold. For 
dissociating aligned +

2H , the summation includes only eigenfunctions that do not change sign as a 

function of q for fixed Q, although they do so as a function of Q for fixed q. In the cases of 
coherent tunnelling in 4B  and SBV (See Sections 4 and 5) the summations are restricted to just 

the two states that comprise the lowest tunnelling doublet. 

 

2.3  Diagonalization of the kinetic energy 
  
We employ internal nuclear coordinatesQ in terms of which the expression for the nuclear 

kinetic energy is diagonal (i.e., all cross terms    are absent from the expressions in eqns (7), 
(8b), and (12b)). Accordingly, we can rewrite eqn (12b) as  
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n3 3 2 2

n 2
1 2

N

T
Q  






 

 
 (17) 

where 
n

1 1 2
;

1

/
N

a a
a

W M   


  



   . A useful example of such coordinates are the so-called 

“mobile” coordinates introduced by Hirschfelder,57-59which include the three NCM coordinates 
as the subset { , , ,S x y z   } as well as the n3 3N   internal coordinatesQ . Alternative 

examples are found in the application of “mobile-type” nuclear coordinates in Sections 4 and 5.  
To simplify the terminology, we henceforward refer to all sets of nuclear coordinates that 
diagonalize the nuclear kinetic energy as “mobile-type”. They can be expressed compactly by the 
matrix equation 

 Q WR   (18) 
where the n3N -dimensional column matrix comprises the Q  coordinates plus the NCM 

coordinates, the n n3 3N N  matrix W consists of the matrix W supplemented by an additional 

three rows at the bottom, and the n3N -dimensional column matrix R consists of the Cartesian 

coordinates of the nuclei. Specifically, the elements of Q , W  and R are: Q Q  for 

n1 3 3N   ; 
n3 2N xQ S  , 

n3 1N yQ S   and 
n3N zQ S ; ; ;a aW W    for n1 3 3N   ; 

n3 2; n( / )N a a xW M M    ;
n3 1; n( / )N a a yW M M    ; 

n3 ; n( / )N a a zW M M   ; 1 1 1( ) xR X R , 

2 1 1( ) yR Y R , 3 1 1( ) zR Z R 4 2 2, ( ) xR X R , ...,
n n n3( ) N N z NR Z R . The transformation 

(eqn (18)) is generally defined so that det 1W .  

 

By the chain rule for differentiation we have 

 
n3

;
1

/ /
N

a aR W Q   


       (19) 

Multiplying eqn (19) by i  , we recognize that the momenta conjugate to the Cartesian 

laboratory coordinates ( i /a aP R     ) are related to their mobile-type counterparts 

( i /P Q       ) by the matrix equation 

 TP W P   (20) 
where the superscript T denotes the transpose. Insertion of eqn (19) into the expression for the 
kinetic energy in laboratory coordinates yields the sum of the internal nuclear kinetic  
energy and the NCM kinetic energy 

 
n n3 32 2 2 2 2 2

2 2 2
=1 1 n

KE
2 2 2

N N

a a aM R Q M S     





  
    

      
 (21) 

where  denotes the reduced mass associated with the α th mobile-type coordinate. In the 

instance of the diatomic AB, n 2N  , the (internal) mobile-type coordinates are 1 a bQ X X  , 

2 a bQ Y Y  , and 3 a bQ Z Z  , and the reduced mass is 1 2 3 n/ab a bM M M       . The 

general expression in eqn (21) reduces to  P
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2 2 2 23

2 2
1 n

KE
2 2ab Q M S   

 
  

   
 (22) 

where the first term refers to the (internal) kinetic energy of  A relative to B and the second term 
to that of the NCM. For polyatomic molecules consisting of three or more nuclei the mobile-type 
coordinates may be constructed successively as distances between COMs of subgroups of nuclei. 
We consider the triatomic molecule ABC, for example. We suppose that nuclei A and B 
constitute two subgroups and take the first set of mobile-type  coordinates to be 

1 ax bxQ R R  , 2 ay byQ R R  , 3 az bzQ R R  (i.e., the Cartesian components of the vector distance 

between A and B, that is, the distance between the COMs of the subgroups). The associated 
reduced masses are 1 2 3       /( )a b a bM M M M . To get the other mobile-type coordinates 

we form two subgroups: one comprising A and B and the other consisting of just C. The second 
set of mobile-type coordinates is then 4 ( ) /( )a ax b bx a b cxQ M R M R M M R    , etc., and the 

reduced masses are 4 5 6       n( ) /c a bM M M M . This procedure is readily extended to 

larger polyatomic systems. It can be shown that j for the jth mobile-type coordinate is just the 

reduced mass of the subgroups of nuclei connected by j.57-59 

 
Subsequently we employ the following more-or-less standard approximations: 
(i)   The COM is replaced by the NCM. As a consequence, M, TS  and 

T
S in eqns (7), (9) and 

(10a) are replaced by nM , S and byS , respectively; 

(ii)  the so-called mass-polarization contribution to the electronic kinetic energy (third term in 
eqn (7) and second term in eqn (12a)) is neglected; 
(iii) the reduced mass of the electron e  is replaced by the electron mass em in eqns. (7), (8a) and 

(12a). Now with these approximations and a choice of nuclear coordinates that produces a 
diagonal kinetic energy, the original internal Hamiltonian (See eqn (12)) becomes 
 e nH H T   (23) 

where 

 
e2

2
e

1e

( , )
2 i

N

i

H V
m 

    q q Q


 (24a) 

 
n3 3 2 2

n 2
=1 2

N

T
Q  

 
 

 
 (24b) 

For notational simplicity, we use the same symbols H, He, and Tn as for the exact quantities.  

 

2.4  One-dimensional models  

We occasionally employ models in which the number of nuclear degrees of freedom is reduced 
to a single special one. For example, in the case of the diatomic AB, the normal three-

dimensional nuclear kinetic-energy operator is
2 23

n 2
1 2

T
Q  


 

 
. If we assume AB to be 

aligned or oriented parallel to the z-axis (as can be accomplished by methods for alignment60-65 
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or orientation 66-68 of molecules), for example, then nuclear motion in the x- and y- directions is 
suppressed (i.e., we set 1 0a bQ X X    and 2 0a bQ Y Y   ). That is, the  

dimensionality of the nuclear motion is reduced from three (3D) to one (1D). As a consequence 

the kinetic-energy operator becomes 
3

2 2

n 2
32

T
Q


 



(See Section 3.1). 

 

In general, we define a 1D model by fixing all internal nuclear coordinates, save a special one, 
say Q , and the NCM{ 0}x y zS S S   . The inversion of eqn (18) then gives 

 1
;[ ]a aR Q   

 W   (25) 

which provides a map of the movements of the special internal nuclear coordinate onto those of 
the Cartesian components of the nuclei in the NCM frame. Equations (24) become 

 
e2

2
e

1e

( , )
2 i

N

i

H V Q
m 



    q q


 (26a) 

 
2 2

n 22
T

Q 


 



 (26b) 

and the wave function satisfies the Schrödinger equation 
 e ni ( , , ) ( ) ( , , )    Q t t H T Q t q q  (27) 

The applications of the 1D model to the prototype, B4, and semibullvalene in Sections 3, 4, and 5 
provide illustrations. 
 
 
2.5  Population densities and flux densities 
The generic classical expressions for the particle population density and particle population flux 
density are, respectively 

 ( , ) [ ( )]i
i

t t  x x r  (28a) 

 ( , ) [ ( )] ( )i i
i

t t t j x x r r   (28b) 

where ir and ir are the position and velocity of particle i , respectively, and x is the point of 

observation. The quantum formulas are given by expectation values of the corresponding 
operators. However, we normally wish to compute these quantities with respect to “internal” 
reference points, instead of the laboratory origin. In particular, the NCM serves as the most 
common reference. (We note that the role of translation of the NCM in the laboratory frame has 
been previously investigated.69,70) Thus, the electronic population density (EPD) is   
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ee

e

1

e,NCM
1

2

1

2

e
1

( , ) ( ) ( ) ( )

( , , )

( , , )

e

i

N

i
i

NN

j
i j i

N

j
j

t t t

d d t

N d d t

 



 




   

 

 



  

 

q x

q x

x x q

Q q q Q

Q q q Q

    (29a) 

where iq  is the distance of the ith electron from the NCM and x is the distance of the point of 

observation from the NCM. The third line of eqn (29a) invokes the equivalence 
(indistinguishability) of the electrons. Likewise the electronic flux density (EFD) can be shown 
to be 49 

 
e

e,NCM
1

( , ) Re{ ( ) ( ) ( ) }
N

i i
i

t t t


   j x x q q   

1 1 1e
1e

[ ]
2i j

j

N d d
m

 




       q q q xQ q


 (29b) 

(See also Appendix A.) 
 
The probability density and flux density for a particular nucleus a in the NCM frame are given 
respectively by 

 ,NCM ( , ) ( ) [ ( )] ( )a at t t     x x R S  (30a) 

 ,NCM ( , ) Re{ ( ) [ ( )]( ) ( ) }a a at t t     j x x R S R S  (30b) 

 
2.6  Continuity equations in three and one dimensions 

The EPD and EFD satisfy the three-dimensional (3D) continuity equation (CE)71  

 e,NCM e,NCM( , ) / ( , ) 0t t t    xx j x   (31a) 

which can be written explicitly in Cartesian coordinates as 

 
( , ) / ( , ) / ( , ) /

( , ) / 0

x y

z

t t j t x j t y

j t z

        

   

x x x

x
  (31b) 

where we temporarily drop the subscript “e,NCM” to lessen the notational burden. The 3D CE is 
a direct consequence of the Schrödinger equation (eqn (10) or eqn (A.2) of Appendix A). The z-
component of the EFD, for example, is given by 

 
1e

1e 1 1

( , ) [ ]
2iz j

j z z

j t N d d
m q q

 




 
    

   q xx Q q


  (32) 

 
It is unfortunate that one cannot, in general, solve eqn (31b) to obtain formulas for the 
components of the EFD in terms of the EPD. Nevertheless, useful expressions for the electronic 
probability flux can be derived. For example, integrating eqn (31b) over the infinite plane normal 
to the z-axis yields P
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( , ) ( , )

                                          ( , )

                                          ( , )

x

y

z

dx dy t t dx dy j t x

dx dy j t y

dx dy j t z


   

   

 

 

 

 

      

   

  

   

 

 

x x

x

x

  (33) 

The first two terms on the right side of eqn (33) vanish. Consider the first term, for which the 
integration on x can be done in closed form to give 

 
( , ) [ ( , ) ( , ) ]

                                          =0

x x x x xdx dy j t x dy j t j t
  

   
     x x x

  (34) 

The second line is a consequence of the localization of the EFD in space (or, equivalently, of the 
property that the wave function is square integrable). Hence, eqn (31b) reduces to the one-
dimensional (1D) CE 

 
1D,

1D,

( , ) ( , )

( , ) ( , )

z

z z

z t dx dy t t
t

dx dy j t z j z t
z

 
 

 

 

 


  




     


 

 

x

x
  (35) 

In eqn (35) 1 , ( , )D z z t  is the population (probability) density of electrons in the range dz about 

z, regardless of their position in the plane normal to the z-axis and 1 , ( , )D zj z t  is the flux of 

electrons in the range dz about z. (The subscripts on 1D, ( , )z z t and 1D, ( , )zj z t  are intended to 

distinguish these 1D quantities from the 3D ones, ( , )t x  and ( , )zj tx , respectively.) 

Integration of eqn (35) gives 

 e,NCM ;1D, e,NCM ;1D,( , ) ( , )
z

z zj z t dz z t
t




   
    (36) 

where we again invoke the localization of the EFD in space and append the subscript “e,NCM” 
to remind one that the formula pertains to the EFD in the NCM frame. Equation (36) tells us that 
the flux of electrons parallel with the z-axis at the plane of observation (z) is equal to the rate of 
loss of electrons from the region z z    (See ref. 1). Analogous expressions for nuclear 
fluxes associated with a 1D reaction coordinate have been derived and applied previously.10-12 
 

In Section 3.2 we consider vibrating and dissociating +
2H  in the state 2 ( 0)g J M   . To handle 

this system, we start from the electronic continuity equation in spherical coordinates72 

 

2e
e2

e e

( , , , ) 1
( ( , , , ) )

1 1
(sin ( , , , ) ) ( ( , , , ) ) 0

sin sin

r

r t
r j r t

t r r

j r t j r t
r r 

  
 

    
   

 
 

 
 

 
 

 (37) 

where we again momentarily drop the subscript “NCM” for economy of notation. For this 
special state, the EPD is isotropic (i.e., e e( , , , ) ( , )r t r t    ) and, as a consequence, so is the P
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EFD.52 Therefore, the angular components of the EFD vanish and the continuity equation 
reduces to the radial CE 

 2e
e2

( , ) 1
( ( , ) ) 0r

r t
r j r t

t r r

 
 

 
 (38) 

Equation (38) can be solved for the radial component of the EFD: 

 2 2
e,NCM ; 1 , e,NCM0

( , ) [ ( , ) ]
r

D rj r t r dr r r t
t

    
   (39) 

The vanishing of e,NCM ; 1 , ( , )D rj r t in the limit 0r  is implicit in this formula. Equation (39) is 

the analogue of eqn (36). An analogous expression obtains for the radial component of the 
nuclear flux density in terms of the isotropic nuclear probability density (NPD): 
  

 2 2
n,NCM;1 , n,NCM0

( , ) [ ( , ) ]
R

D rj R t R dR R R t
t

    
    (40) 

For the applications of the theory to isomerization of B4 and SBV in Sections 4 and 5 we employ 
cylindrical coordinates ( , , )r z , where r now signifies the distance from the z-axis. The 
electronic continuity equation for the valence electrons is then72 

 ee e e
( , , , )( , , , ) ( ( , , , ) ) ( , , , )1 1

0r z
j r z tr z t r j r z t j r z t

t r r r z
    


  

   
   

 (41) 

Operating upon eqn (41) with 
0

...dz dr r
 

  yields 

 

e,NCM ;1D, e0

e e,NCM ;1D,0

( , )  ( , , , )

( , , , ) ( , )

j t dz dr j r z t

dz dr r r z t t
t t

 



 
 

   

 



 



 
 

 
 

   
 

 

   (42) 

which is analogous to eqn (38). Integrating eqn (42) with respect to  gives the 1D angular CE 

 
0

e,NCM ; 1D, e,NCM ; 1D, 0 e,NCM ; 1 ,

e,NCM ;1D 0

( , ) ( , ) ( , )

( , , )

Dj t j t d t
t

P t
t



  
    

 

    



 



 (43) 

where e,NCM ;1D 0( , , )P t  signifies the probability of observing an electron (or, equivalently, the 

population of electrons) in the cylindrical sector bounded by half-planes at  and 0 (the planes 

are separated by 0     ). Equation (43) shows that the 1D angular flux depends not only on 

the rate of change of the population in the sector but also on the angular flux through the 
reference plane at 0 . In the applications to B4 and SBV in Sections 4 and 5, we invoke 

molecular symmetry to find a reference plane on which e,NCM ; 1D, 0( , ) =0j t  .26,44 

 
The 1D models described in Section 2.4 obey the following continuity equations for the electrons 
and for the special internal nuclear coordinate Q  (See Appendix A): P
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 e,NCM e,NCM( , ) / ( , ) 0t t t    xx j x  (44a) 

 ( , ) / ( , ) / 0Q t t j Q t Q        (44b) 

In eqns (44) e,NCM ( , )t x and e,NCM ( , )tj x are given by eqns (29), with Q replaced by Qα; the 

corresponding quantities for the special internal mode are 

 
2

( , ) ( , , )
Q Q

Q t d Q t


 


  q q  (45a) 

 

( , [ ( , , ) ( , , )
2i

( , , ) ( , , )]Q Q

j Q t d Q t Q t
Q

Q t Q t
Q 

  
 

 









   




 


 q q q

q q



 (45b) 

From eqn (44b) we deduce the analogue of eqn (43):  

 
0

0

0

( , ) ( , ) { ( , ) }

( , , )

Q

Q
j Q t j Q t dQ Q t

t

P Q Q t
t

  



    



 



 (46) 

We note that the parameter Q means the particular value of the special coordinate Q  at which 

the observation of the relevant quantity is made. In practice, we choose the reference 0Q  such 

that 0( , ) 0j Q t . 

 

In the applications of Sections 4 and 5 the total EPD e,NCM ( , )t x  is decomposed into 

contributions from core and valence electrons. Since these are additive, the related fluxes of core 
and valence electrons are also additive. The individual contributions obey continuity equations 
analogous to eqn (44). 
 
The units of the various probability densities and flux densities that have been thus far 
introduced are listed in Table 1. We note that in the limit that the generalized CE is reduced to 
one dimension, the resulting flux densities ( j ) are equivalent to fluxes (F) and both have 
dimensions of reciprocal time. 
 
 
2.7  Relation between nuclear flux densities in the NCM and internal coordinate frames 
 
We often desire to examine the flux densities associated with the Cartesian coordinates of 
individual nuclei in the NCM frame. Thus, we seek to express the latter in terms of the flux 
densities associated with the special internal nuclear coordinate, which is more conveniently 
computed using eqn (46).  For the sake of convenience we take the NCM to be at the origin of 
the laboratory frame (i.e., we set 0x y zS S S   ).  

 
We begin with the classical formula for flux density associated with the   Cartesian component 
of nucleus a 
 ( )a a aj R R R      (47) P
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where R, a parameter in the 1D space of the Cartesian component aR  , signifies the point at 

which the flux is observed, aR R  . The corresponding quantum flux density is  

 

( , ) Re{ ( ) ( ) ( ) }

( )[ ]
2i

a a a

a
a a a

j R t t R R R t

d dQ R R
M R R

  

 
 








   

 
   

  q



  (48) 

where we consider the 1D model with the special coordinate Q . The second line of eqn (48) 

relies on the relation i /a a aM R R      . According to eqns (18) and (19), we have  

 1
;[ ]a aR Q   

 W  (49a) 

 T
;[ ]a

aR Q 
 

 


 
W  (49b) 

Substitution of these expressions into eqn (48) gives

 

1
;

T T
; ;

( , ) [ ( ) ]
2i

( , , ) ( , , )
                   { ( , , )[ ] ( , , )[ ] }






  

 
 

 

 a a
a

a a

j R t d dQ R Q
M

Q t Q t
Q t Q t

Q Q

    

 
     

 

q W

q q
q W q W

 

 
(50) 

Using the property of the Dirac distribution that 
1

( ) ( )ax a x  , we rewrite eqn (50) as    

 
1

;

1 1
; ;

T T
; ;

T
;

1 /[ ]
;

T
; 1

;1
;

( , ) [ ( ) [ / ( ) ]
2i

{ [ ] [ ] }

[ ]
[ ]

2i [ ]

[ ]
( / [ ] , )

[ ]

a

a a a
a

a a

a

Q R
a a

a
a

a a

j R t d dQ Q R
M

Q Q

d
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M
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 
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



 
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


 




   

 
 

 

 
  

 



 

 W

q W W

W W

W
q

W

W
W

W



  

 









  (51a) 

where the third line depends on eqn (45b). Setting aR R   and using eqn. (49a), we get 

 ;

1
;

[ ]
( , ) ( , )

[ ]

T
a

a a
a a

j R t j Q t
M

 
   

 





W

W


   (51b) 

Thus, the fluxes of the individual nuclei a along Cartesian coordinates aR   are proportional to the 

fluxes associated with the internal nuclear coordinate  . In Section 4, we show how to 
determine the factors of proportionality without a knowledge of 1W . 
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2.8  Concerted electronic and nuclear fluxes during coherent tunnelling 
 
Coherent tunnelling can be generally described by a wave function that consists of a coherent 
superposition of just the two lowest eigenstates 0  and 1 of H (See eqn (13)). These form the 

tunnelling doublet with a splitting of energy levels of 
 1 0 = E E E   (52a) 

and a related tunneling time 
 /h E     (52b) 
and tunneling rate  
 1 /k    (52c) 
Following the treatment by Hund73 of coherent nuclear tunnelling during isomerization reactions, 
we define reactant (R) and product (P) states by 
 R 0 1( , ) = ( , ) ( , )N N  q Q q Q q Q  (53a) 

 P 0 1( , ) = ( , ) ( , )N N   q Q q Q q Q  (53b) 

where the normalization constant is 1/ 2N  . The wave functions at time t corresponding to 
the initial R and P states are given, respectively, by 
 R 0 0 1 1( , , ) = ( , ) exp( i / ) ( , ) exp( i / )t N E t N E t    q Q q Q q Q   (54a) 

 P 0 0 1 1( , , ) = ( , ) exp( i / ) ( , ) exp( i / )t N E t N E t     q Q q Q q Q   (54b) 

The corresponding e n3 3( 1)N N N   -dimensional probability densities are   

 
2 2

R R R( , , )= ( , , ) = ( ) + ( , ) sin ( / )t t t     q Q q Q q,Q q Q  (55a) 

 
2 2

P P P( , )= ( , , )  = ( ) ( , ) sin ( / )t t t     q,Q q Q q,Q q Q  (55b) 

where  

 
2

R R( ) ( , ) q,Q q Q   (56a) 

                                                         
2

P P( ) ( , ) q,Q q Q   (56b) 

and 
 P R( , ) ( ) ( )    q Q q,Q q,Q   (56c) 

is the difference between product and reactant probability densities. These expressions are 
entirely analogous to those derived for coherent nuclear tunnelling.18,19 The corresponding 3D 
EPD difference is given by  

 
e

1e,NCM e
1

( ) ( , )
N

j
j

N d d  


    q xx Q q q Q  (57a) 

and the n3( 1)N  D NPD difference by  

 n ( ) ( , )d   Q q q Q  (57b) 

Likewise the 3D EPDs evolve as 

 2
e,NCM e,NCM e,NCMR R

( , ) ( )  + ( ) sin ( / )t t     x x x   (58a) 

 2
e,NCM e,NCM e,NCMP P

( , ) ( ) ( ) sin ( / )t t      x x x  (58b) 

and the NPDs as  
 2

n n nR R
( , ) ( )  + ( ) sin ( / )t t     Q Q Q   (59a) P
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 2
n n nP P
( , ) ( ) ( ) sin ( / )t t      Q Q Q   (59b) 

It is apparent that the expressions for the total probability densities, as well as those for the 
electronic and nuclear densities, have the same form: a superposition of the densities of reactant 
(R) or product (P) and a sinusoidal time dependence. Thus, as time increases from 0t   to 

/ 2t  , half the tunneling time, P increases as 2sin ( / )t   and R decreases as 2cos ( / )t  . At 
time / 2t   only product is present. Accordingly, negative and positive values of the difference 

P R( , ) ( ) ( )    q Q q,Q q,Q  over the 3N D configuration space indicate the disappearance of 

reactants and the appearance of products during tunneling from R to P. This observation suggests 
that a reasonable definition of the main direction of the flux is from the centers of the negative 
domains of ( , ) q Q  to the centers of positive ones. Analogous arguments hold for the main 
directions of the electronic and nuclear fluxes (i.e., they flow from negative to positive domains 
of ( )e x  and ( )n Q , respectively). We anticipate that different patterns of the electronic 

( e ( ) x ) and the nuclear ( n ( ) Q ) flux densities imply different main directions of the 

fluxes of the electrons and the nuclei.  
 
Concerning the main directions of the nuclear fluxes, we suggest an approximation based on the 
rather large nuclear masses (compared with the electron). The more massive the nuclei, the more 
localized are their probability densities. In the limit that the masses tend to infinity, the 
difference of the NPDs of P and R can be approximated by the expression ,P( )aR R   

,R( )aR R  , where ,PaR and ,RaR are the classical positions of the product and reactant. Hence 

the main directions of the fluxes of the individual nuclei (with the NCM fixed at the origin) are 
from their classical positions for R to those for P. It is reasonable to define one of the nuclear 
mobile-type coordinates, say 1Q , to correspond to the Cartesian component of the main directions 

of the fluxes, with the corresponding first row of the transformation matrix W  (See eqn (18)). 
The nuclear flux associated with 1Q  then lies approximately along the nuclear main direction. 

Hence, for models in reduced 1D dimensionality, the special coordinate 1Q  should satisfy this 

criterion. Examples are presented in Sections 4 and 5 on coherent tunnelling in 4B  and SBV. In 

these examples, the main directions of the fluxes are illustrated by arrows. Symmetric molecules 
such as 4B have symmetry-adapted sets of arrows for the main directions. We remark that the 

small electron mass implies delocalized electronic probability densities that do not lend 
themselves to the sort of classical analysis of the main directions for the nuclei. Instead, one has 
to compute the e ( ) x , from which the main directions of electronic fluxes are seen to be from 

the (symmetry-adapted) centers of the negative domains to the positive ones. 
 
In the applications of Sections 4, 5, the total EPD is a sum of core plus valence electron densities. 
The additivity of the individual contributions implies the additivity of corresponding fluxes of 
core and valence electrons, all of which satisfy expressions analogous to eqn (58). 
 
In the remainder of this Section, we focus on this type of 1D model, with the single nuclear 
coordinate 1Q representing the coordinate for the main directions of the (symmetry-adapted set 

of) nuclear fluxes. Explicitly, the 1D NPD difference is P
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11 1( ) ( , ) Q QQ d Q     q q  (60) 

and the corresponding NPDs are 
 2

1 1 1 1 1 1R R
( , ) ( )  + ( ) sin ( / )Q t Q Q t        (61a) 

 2
1 1 1 1 1 1P P
( , ) ( )  ( ) sin ( / )Q t Q Q t         (61b) 

Expressions analogous to those in eqn (61) are derived for the core electrons of 4B  in Section 4. 

 
For the applications to B4 and SVB in Sections 4 and 5 we choose cylindrical coordinates and 
evaluate the angular valence EFDs according to eqn (43) as 

 
e,NCM ; 1D 0 R

e,NCM ; 1D, e,NCM ; 1D, 0R R

( , , )
( , ) ( , )

P t
j t j t

t 

 
 


 


 (62a) 

 
e,NCM ; 1D 0 P

e,NCM ; 1D, e,NCM ; 1D, 0P P

( , , )
( , ) ( , )

P t
j t j t

t 

 
 


 


 (62b) 

where e,NCM ; 1D 0 R
( , , )P t  and e,NCM ; 1D 0 P

( , , )P t   stand for the populations of electrons in the 

cylindrical sector bounded by half planes at 0  and   that result from the initial reactant and 

product states. We exploit the molecular symmetry, which allows us to choose the reference 

angle 0  so that e,NCM ;1D, 0 R
( , ) 0j t    or e,NCM ;1D, 0 P

( , ) 0j t   . Inserting the results for the 

corresponding reduced densities into eqn (62), we obtain 

 0
e,NCM ; 1D, eR 0

( , ) ( , , ) ( / )sin(2 / )

                     

j t d dr r dz r z t


 
       

 


       (63a) 

 0
e,NCM ; 1D, eP 0

( , ) ( , , ) ( / )sin(2 / )

                     

j t d dr r dz r z t


 
       

 


      (63b) 

The angular flux is thus a product of an angular factor times a periodic function of the time, with 
period . Likewise, from eqns (46) and (61) we get 

 
1

10
1 1 1 1 1R
( , ) ( ) ( / )sin(2 / )

Q

Q
j Q t dQ Q t         (64a) 

 
1

10
1 1 1 1 1P
( , ) ( ) ( / )sin(2 / )

Q

Q
j Q t dQ Q t        (64b) 

where the reference value 10Q  is chosen such that 1 10 R
( , ) 0j Q t  or 1 10 P

( , ) 0j Q t  . The 

analogues of eqn (64) are derived in Section 4 for the core electrons of 4B . In summary, all of 

the reduced electronic and nuclear fluxes associated with the special internal nuclear coordinate 

1Q  consist of a simple product of a function of the coordinates and the same periodic temporal 

factor. Analogous expressions hold for the reduced fluxes associated with any other internal 
coordinate Q (See Appendix A). Thus, in the lowest tunnelling doublet the electronic and 

nuclear fluxes are always synchronous. 
 
We note that our definition of the main directions of the nuclear fluxes is similar to that of Makri 
and Miller's choice of the tunnelling path as the "straight line that connects.....the initial and final 
state in the shortest possible way."74 In fact, in the limit of very massive nuclei, the two P
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definitions agree. Nevertheless, we emphasize that the "main directions of the fluxes during 
tunneling" and the "tunneling path" are different concepts and serve different purposes. Thus, 
"tunneling paths" are often defined as paths that allow efficient semiclassical evaluations of 
tunnelling splittings, times and rates (See eqn (52)).74-77 For that purpose, curvilinear tunnelling 
paths may be more appropriate than straight ones.75-79 In contrast, the present "main directions" 
are properties of the fluxes. The applications below reveal different main directions for nuclear 
and electronic fluxes. These differences confirm that one cannot necessarily identify the main 
directions of the fluxes with the tunnelling path. 
 
 
2.9 The triumphs and the defeat of the Born-Oppenheimer approximation 
 
The development of the theory is thus far based upon the formally exact solution of the 
Schrödinger equation (eqn (10b)), except where the customary approximations (i)-(iii) 
summarized at the end of Section 2.3 are invoked. We emphasize that all the results which are 
derived until this juncture (e.g., the synchronicity of electronic and nuclear fluxes during 
coherent tunnelling) are rigorous analytical results. In particular, they do not depend on the Born-
Oppenheimer approximation (BOA).80,81 We would rather not refer to such results as "non-Born-
Oppenheimer", since this latter phrase assigns the BOA the role of a reference, which it does not 
merit. Instead, we call them "without Born-Oppenheimer" results. The dogma that synchronicity 
of the CENFs during tunnelling is a consequence of the BOA is simply wrong.82 Nevertheless, in 
the treatment of electronically adiabatic processes, it is common practice to invoke the BOA, in 
which the internal wave function is taken to be a simple product  
   BOA( , , ) ( , , ) ( ; ) ( , )t t t   q Q q Q q Q Q     (65) 

where ( ; ) q Q is an eigenfunction of the electronic Hamiltonian 

    e ( ; ) ( ) ( ; )H E  q Q Q q Q       (66a) 

and ( , )t Q satisfies the nuclear Schrödinger equation 

    n

( , )
i [ ( )] ( , )

t
T V t

t


 


 Q

Q Q       (66b) 

where ( ) ( )V EQ Q is the effective potential energy for nuclear motion. For linear and nonlinear 

molecules, two or three of the internal nuclear coordinates, say the last ones ( 3 5nN Q ), 3 4nN Q , 

3 3nN Q  describe rotations, or orientations. Though the potential energy does not depend on these 

coordinates, we nevertheless keep the general notation ( )V Q to facilitate descriptions of 
molecules in external fields, where ( )V Q  includes interactions with those fields. The electronic 
eigenfunction ( ; ) q Q depends parametrically on the internal nuclear coordinates Q. For non-
degenerate electronic states, in particular the electronic ground state, ( ; ) q Q is real. (We note 
that for systems having degenerate electronic excited states, one can prepare the system in a 
complex superposition of such states and therefore compute a non-zero EFD.23-25) 

 

The stationary nuclear energy states satisfy the eigenvalue equation   P
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 n[ ( )] ( ) ( )T V E    Q Q Q  (67) 

whose solution yields the eigenfuctions ( ) Q  and eigenenergies E  labeled by nuclear 

quantum numbers  . The nuclear wavefunction can be expressed in terms of these nuclear 
eigenfunctions by 
 ( , ) exp( i / ) ( )t c E t  



  Q Q  (68) 

where the constant coefficients are  

 ( ) ( ,0)c d    Q Q Q   (69) 

Equations (68) and (69) are analogous to eqns (15) and (16). We note that the nuclear 
wavefunction is generally complex. 
  
Triumphs of the BOA. On one hand the BOA possesses virtues that are documented in myriads 
of applications, many of which are ensconced in the standard textbooks on quantum chemistry. 
In many instances the BOA provides excellent approximations to time-independent properties, 
which can be calculated from the BOA energy eigenvalues E  (See eqn (67)) and the BOA 

eigenfunctions ( ; ) ( ) q Q Q (i.e., the product of the electronic energy eigenfunction and a 

nuclear eigenfunction, usually that for the rotational-vibrational ground state 0 ( ) Q ). For 

example, in the BOA the splitting of the lowest tunnelling doublet is 1 0E E E     

BOA 1 0E E E     ; the related tunnelling time in the BOA is BOA BOA/h E   ; the mean energy 

of the doublet is 1 0( ) / 2E E E    .  

   
Furthermore, for many systems, the nuclear Schrödinger equation (eqn (66b)) yields excellent 
approximations to time-dependent nuclear properties, which are expressed as expectation values 
of the relevant nuclear observables with respect to ( , )t Q . In particular, the probability density 

for observing the internal nuclear coordinate Q  in the range dQ  about the point Q  is given by 

  

 
n BOA

2

( , ) ( ; ) ( , ) ( ) ( ; ) ( , )

                    ( , )
Q Q

Q t d dQ t Q Q t

dQ t


 
 


 

   










   



 



q q Q Q q Q Q

Q
  (70a) 

 and the corresponding flux density 

 

BOA
( , ) [ ( ; ) ( , )( / ) ( ; ) ( , )

2i

( ; ) ( , ) / ) ( ; ) ( , )]

( , ) ( , )
[ ( , ) ( , ) ]  

2i

Q Q

Q Q

j Q t d dQ t Q t

t Q t

t t
dQ t t

Q Q





  
  




   

 


 

  















     

   

 
 

 

 



q q Q Q q Q Q

q Q Q q Q Q

Q Q
Q Q





  (70b) 

Defeat of the BOA. On the other hand, the BOA fails if one attempts to compute the EFD for the 
electronic ground state using the BOA wave function (eqn (65)). Direct substitution of 

BOA ( , , )t q Q into eqn (29b) yields P
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 1 1 1

2

e,NCM e 0 0 0 0BOA
1e

( , ) ( , ) [ ]
2i

                         0

j
j

t N d t d
m

 


      



  q q q xj x Q Q q


 (71) 

The right member of eqn (71) vanishes because the electronic ground-state energy eigenfunction 

0    is real. A consequence of eqn (71) is that the electronic continuity equation (eqn (31a)) 

becomes, in the BOA, 

 e,NCM BOA
( , ) / 0t t  x  (72) 

where 

 
1

2 2
e,NCM e 0BOA

1

( , ) ( , ) [ ( , )]
eN

j
j

t N d t d  


   q xx Q Q q q Q  (73) 

Equation (72) is obviously inconsistent with eqn (73) and, to state the matter bluntly, indicates a 
massive defect in the BOA. In order to bypass eqn (72) and yet exploit the vast infrastructure of 
quantum chemistry and dynamics that is founded on the BOA, we follow two pathways.  
 
Beyond the BOA. On the first we simply postulate that eqn (31a), which follows rigorously from 
the Schrödinger equation (See Appendix A), continues to hold. Hence, we define a "beyond 
BOA" (bBOA) flux density such that 

 e,NCM e,NCMBOA bBOA
( , ) / ( , ) 0t t t     xx j x  (74) 

By reducing this 3D continuity equation to one dimension we can utilize such expressions as 
given by eqns. (36), (39), (43), (62) and (63) with the exact EPD e replaced by its BOA 

counterpart, which we know to be quite accurate. In this fashion we are able to compute the 
reduced electronic fluxes beyond BOA, while using the BOA results for the electronic densities. 
 
The bBOA scheme yields CENFs in excellent agreement with those produced by highly accurate 
simulations of the prototype.1 At present this simple system is the only one that allows 
comparison of bBOA and numerically “exact” fluxes. Extended comparisons are presented in 
Section 3.  
 
Coupled-channels theory. The second pathway is rather more general than the first, in that it 
aims for the 3D EFD itself. It is based on the idea that the principal contribution to the EFD is 
due to the quasi-static movement of electrons that are associated with the nuclei. Here we follow 
a "quasi-classical" route48 to the general expressions for the EFD. Thus, rather than start from the 
strictly classical expression for the EFD (eqn (28b)), we begin by supposing that effective EPDs 
can be assigned to the nuclei and define a quasi-classical EFD in the laboratory frame by 

 
n

e,L
1

( , ) ( ; ( )) ( )
N

a a
a

t t t


j x x R R  (75) 

where ( )tR  stands for the nuclear configuration and ( )a tR  for the velocity of nucleus a. The 

EPDs associated with the nuclei, determined by the LCAO-MO method, are given by 
 ( )( ; ) ( ; ) ( ; )i

a i a i
i

n  x R x R x R  (76) 

where the summation on i runs over the occupied MOs, in  is the number of electrons in the ith 

MO, and  P
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 ( ) ( ) ( )
,( ; ) ( ; )i i a

a a l l
l

c
 



 x R x R  (77a) 

 ( )( ; ) ( ; )i
i a

a

 x R x R  (77b) 

That is, ( )i
a  is the component of the ith MO attributed to atomic orbitals ( )a

l
  centered on 

nucleus a. We refer to the formula in eqn (75) as “quasi-classical” because the quantum 
dynamical character of the electrons in the BOA is implicit in the EPDs. Only the explicit 
classical dynamics of the nuclei remains. The EFD, which entails the quantum nature of the 
nuclei, is then given by the expectation value of the operator corresponding to e,L ( , )tj x , which 

can be computed from the BOA nuclear wave packet ( , )t Q  alone. (Note that the meaning of 
the term "quasi-classical" here differs from that of the same term used in other contexts to mean 
"semi-classical.")  
 
In the case of the one-electron diatomic molecule AB, the coupled-channels theory gives46,48 

 e,NCM 1 1 n 1 n , 1CC BOA
( , ) [ ( ; ) / ( ; ) / ] ( , )b a a b a bt d M M M M t   j x Q x Q x Q j Q  (78) 

where  

 
1 1, 1 1 1 1 1BOA

( , ) [ ( , ) ( , ) ( , ) ( , )]
2 ia b

ab

t t t t t   


    Q Qj Q Q Q Q Q


 (79) 

is the flux density of nucleus a with respect to nucleus b, which is determined accurately in the 
BOA (See eqn (70)). [Note that the term "coupled-channels" in the present context refers simply 
to the form of the EFD, i.e., the difference between contributions of channel a (defined as 
"internal" atom a "colliding" with nucleus b) and channel b (internal atom b colloding with 
nucleus a) to the EFD, as seen in eqn (78); this coupled-channels theory of the EFD is an 
approximation to the traditional quantum-dynamical description of collisions.] Recall that 

1 a b Q R R (See discussion below eqn (6)). The EPDs corresponding to the singly occupied 

lowest-energy MO 1  are 

 (1)
1 1 1 1( ; ) ( ; ) ( ; )a a  x Q x Q x Q  (80a) 

 (1)
1 1 1 1( ; ) ( ; ) ( ; )b b  x Q x Q x Q  (80b) 

where 
 (1) (1)

1 1 1 1( ; ) ( ; ) ( ; )a b   x Q x Q x Q  (81a) 

 (1) (1) ( ) (1) (1) ( )
1 , 1 1 , 1( ; ) ( ; ); ( ; ) ( ; )a b

a a l l b b l l
l l

c c
   

 

     x Q x Q x Q x Q  (81b) 

For the particular instance of the homonuclear diatomic, eqn (78) becomes 

 e,NCM 1 1 1 , 1CC BOA

1
( , ) [ ( ; ) ( ; )] ( , )

2 a b a bt d t  j x Q x Q x Q j Q  (82) 

The application in Section 3.1 to vibrating oriented +
2H  utilizes the coupled-channels EFD, along 

with the electronic continuity equation and a scaling procedure51 to obtain good agreement with 
the benchmark calculation based on the B-spline spectral method.50 
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3  Application of the theory to the hydrogen-molecular ion 
 
3.1 The prototype: vibrating aligned +

2H in the electronic ground state 2
g
  

This Section serves two purposes: (1) to establish a highly accurate standard (to which we 
henceforward refer simply as “benchmark”) for the testing of approximate methods, in particular 
“beyond BOA” and the scaled coupled-channels technique; (2) to reveal new phenomena 
exhibited by CENFs in the prototype. 
 
Since alignment of the nuclei corresponds theoretically to the constraint that the nuclei move on 
a straight line, our model is 1D, insofar as nuclear motion is concerned. The electron is not, of 
course, so constrained. In this special case eqn (26) reduces to 

 
2 2

2
e

e 0

1 1 1

2 4 / 2 / 2z z

e
H

m R R R
 

        
r r e r e


 (83a) 

 
2 2

n 22
T

R


 



 (83b) 

where r q , a bR Q Z Z   , p / 2M  , and pM  is the mass of the proton.  According to eqn 

(15) the exact wave function is 
 ( , , ) exp( i / ) ( , )n n n

n

R t c E t R  r r  (84) 

where the vibronic energy eigenfunctions satisfy  
 e n( ) ( , ) ( , )n n nH T R E R  r r  (85) 

We utilize the B-spline spectral method50 to determine the eigenstates. For this purpose it is 
convenient to employ a spherical coordinate system whose origin coincides with the NCM 
(Figure 1). The polar angle   is measured from the positive z-axis. Nucleus a lies at / 2zRe  and 

nucleus b at / 2zR e . Because of the cylindrical symmetry of the state 2
g
  the vibronic 

eigenfunctions depend only on r, , and R. The initial state can be prepared by exposure of 2H  

in the electronic ground state to short, intense, near-infrared laser pulses; for simplicity it is taken 
here to be the vibronic ground-state eigenfunction with the nuclear coordinate R displaced 
arbitrarily by R  (i.e., 0( , , ,0) ( , , )r R r R R     ). For the results to be presented here, we 

set 02.0R a . 

 
The general expression in eqn (29b) for the EFD becomes 

 e,NCM 0
e

( , ) [ ]
2i

t dR
m

  
      r r r xj x


  (86a) 

Exploiting the symmetry of the wave function, we can rewrite eqn (86a) as72 
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e,NCM 0
e

0
e

e,NCM, e,NCM,z

cos
( , ) [ ( , , , ) sin ( , , , ) c.c.]

2i

sin
[ ( , , , ) cos ( , , , ) c.c.]

2i

( , ) ( , )

z

z

t dR r R t r R t
m r r r

dR r R t r R t
m r r r

j t j t

  

  

 
 

 


 

          
        

 





r x

r x

j x e

e

x e x e




  (86b) 

where the second line of eqn (86b) defines the radial ( e  stands for the unit vector perpendicular 

to the z axis) and z-components of the electronic flux density in cylindrical coordinates. The flux 
density of nucleus a at observation point R  relative to the NCM is  

 
2 2

,NCM 20 0 0
( , ) sin [ ( , , , ) ( , , , ) c.c.]

2ia R Rj R t d d dr r r R t r R t
R

 
    


 


    
  


  (87) 

Henceforth we refer to ,NCM ( , )aj R t as the NFD, or simply nuclear flux, recalling that for the 

1D model flux density and flux are the same.  
 
Figure 2 exhibits plots of the NFD versus time at several points of observation on the positive z-
axis. Note that at 00.5z a  and 02.5z a the NFD is negligible, since the wave function itself is, 

for this particular state, negligible outside the range 0 00.5 2.5a z a  . Negative and positive 

fluxes correspond to contraction and expansion of the bond. Figure 2 indicates that the bond 
undergoes one expansion-contraction cycle during the first 22.3 fs. This cyclic process repeats 
itself until 70fst  , though scrutiny reveals that the relative magnitudes and phases of the fluxes 
at the three points shift slightly with increasing time. Beyond 70fst  a chaotic period ensues, 
during which the magnitudes and phases appear to get thoroughly shuffled, presumably as a 
consequence of the spreading of the wave packet and its consequent self-interference. After 
about 225fst  the desultory character of the NFDs declines relatively quickly, until at 300fst   
the pattern of the fluxes essentially matches that observed at 0t  . The wave packet appears to 
have recovered its initial compact form (or global synchronicity). Scrutinous examination shows 
that, though the wave packet has been completely reconstructed, it is out of phase with the initial 
packet by . Since the time at which the packet comes into phase with the initial packet (i.e., the 
revival time revT ) is about 600 fs, the observed reconstruction at 300 fs actually corresponds to 

the half-revival time rev / 2T , which is also observed experimentally.84 Indeed, it can be shown 

that reconstructions of the wave packet generally occur at times rev /t pT q , where p and q are 

integers and p/q is irreducible.85 Such fractional revivals are also seen experimentally for 2D 86 

and for 2Br .87 

 
The left inset in Fig. 2, which displays the plots on a finer scale in the range from 20 to 40 fs, 
shows that the NFDs evolve nearly in phase. In contrast, the right inset shows that the nuclear 
fluxes are out of phase in the range from 221 to 225 fs. Such strong shifts in the relative phases 
of the NFDs have been reported recently for 2D  and 2Na .8 

 
Figure 3 exhibits plots of the z-component of the EFD versus time at the same points of 
observation used for the NFDs. Because of the symmetry of the 2

g
 state, the EFDs observed at P
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00.5a , etc., are the negatives of those observed at 00.5a , etc. The same is true of the flux of 

nucleus b with respect to the NCM. We note that for the first 70 fs, the pattern of the EFDs 
mirrors that of their nuclear counterparts (i.e., as one expects intuitively, the EFDs are 
synchronous with the NFDs). However, in the period from 70 to 225 fs the EFDs remain 
synchronous, whereas the phases of the NFDs are jumbled. The absence of strong dephasing of 
the EFDs compared with the NFDs is a consequence of the relatively broad spread of the EPD 
compared with the nuclear density.  
 
The right inset in Fig. 3, which displays the EFDs in the range from 221-225 fs, is especially 
interesting, as it reveals for the first time multiple reversals in the direction of the EFD. The 
phenomenon is reminiscent of the previous discovery of multiple reversals in the direction of the 
NFD, an effect which has been coined “quantum accordion”.8 We interpret this observation to 
indicate that, shortly before the half-revival time, the electron reacts to the highly 
inhomogeneous distribution of the nuclear density.  
 

Figure 4 shows vector plots of e,NCM, e,NCM,z( , ) ( , ) zj t j t  x e x e  at several times within the 

short-time range shown in the left insets in Figs. 2 and 3. The results of the scaled coupled-
channels (SCC) technique,51 which is based on the BOA, are compared with the highly accurate 
results (benchmark) obtained by the B-spline spectral procedure.50 We observe that when the 
EFDs take extreme values (i.e., at 22.2 and 38.0 fs) the SCC accords very well with the 
benchmark. However, to put it charitably for the SCC, we remark that when the EFDs are small, 
then the agreement in not so good. The disagreement is due not only to approximations inherent 
in the SCC, but also to differences between BOA and benchmark nuclear dynamics, which are, 
in turn, traceable to disparities between BOA and benchmark vibronic eigenstates. Finally in Fig. 
5 we exhibit the vector plot showing several reversals in the direction of the EFD at 222.6 fs (See 
the right insets in Figs. 2 and 3), which are characteristic of the “quantum accordion” effect.8 
 
It is instructive to compare the performance “beyond BOA” (See Section 2.9, eqn (74)) with that 
of the benchmark in the calculation of the electronic flux through a plane normal to the 

internuclear (z-) axis. Hence, operating upon eqn (41) with  
2

0 0
...

z
dz d dr r







   , we obtain the 

formally exact relation e,NCM;1D,z ( , )j z t   e,NCM;1D,z ( , ) /
z

dz z t t


   , which is analogous to 

eqn (42). If we use the BOA to compute the EPD, then the exact relation is approximated by 

 e,NCM;1D,z e,NCM;1D,zbBOA BOA
( , ) ( , ) /

z
j z t dz z t t


      (88) 

where  
2 2

e,NCM;1D,z 0BOA 0 0
( , ) 2 ( , ) [ ( , ; )]z t dr r dR R t r z R  

 
   (See eqn (73)). Though the 

exact relation can as well be used to compute the benchmark flux, it is somewhat more 

convenient in practice to employ the relation  e,NCM;1D,z e,NCM( , ) ( , , )
S

j z t dS r z t  n j  , where 

the surface S is the plane normal to the internuclear axis at z and zn e  is the normal to the 

element dS .  From eqn (86b) we get 
2

e,NCM;1D,z e,NCM0 0
( , ) ( , , )zj z t d dr r r z t





   e j  
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e,NCM, 0
2 ( , , )zdr r j r z t


  . Using the bBOA and benchmark formulas derived here, we 

generate the contour plots displayed in Fig. 6, which indicate superb overall agreement (compare 
panels (a), (b) and (d)). The “beyond BOA” technique accords semi-quantitatively with the 
benchmark even at times when the wave packet is concentrated near a classical turning point and 
the flux is accordingly very small (See panel(c)). These new results confirm quantitatively the 
CENFs reported for the prototype in ref. 1. We are aware of no other reports of CENFs for the 
prototype, or any other system, by the bBOA or any other benchmark method.    
 
 
3.2 Vibrating, dissociating +

2H as a “quantum bubble” in the spherically symmetric 

electronic ground state 2 ( 0, 0)g J M    

 
The symmetry of this special state dictates that both the EPD and EFD are spherically 
symmetric.52 Therefore, according to eqn (39), we have   

 2 2
e,NCM;1D, e,NCMbBOA BOA0

( , ) [ ( , ) ]
r

rj r t r dr r r t
t

    
   (89) 

where 

  
2 221

e, NCM 0BOA 0 0 0
( , ) (4 ) ( , ) sin ( ,cos ; )r t dR R t d d r R

       
 

   ,  (90) 

0  is the ground-state eigenfunction of the electronic Hamiltonian (See eqn (66a)) and ( , )R t  

is the nuclear radial wave function, which is related to the nuclear wave packet by 
 1/2( , ) (4 ) ( , )R t R R t    (91) 
In eqn (90) we take the polar axis (z-axis) to lie on the vector r from the NCM to the point of 
observation. The BOA flux density of nucleus a with respect to the NCM, which also satisfies 
eqn (39), can be written explicitly as 

 2 2
,NCM;1D, ,NCMBOA BOA0

( , ) [ ( , ) ]
R

a R aj R t R dR R R t
t

    
    (92) 

where the NPD is  

 
21 2

,NCM BOA
( , ) 2(4 ) (2 , )a R t R R t      (93) 

Identical formulas (with a replaced by b) obtain for the nucleus b.  
 
The initial wave packet is prepared through photo-ionization of 2H  in the electronic ground state 
1 ( 0, 0)g J M   , which produces 2H in the electronic ground state 2 ( 0, 0)g J M   with the 

relative nuclear motion highly excited.53 Hence, the nuclear radial wave function can be written 
as  

 

v

v

0

v d

( , ) exp( i / ) ( )

exp( i / ) ( ) ( , ) ( , )

N

N

R t c E t R

c E t R R t R t

  


  


 

  




 

   








  (94) 

where νN  is the number of vibrational bound states and the summation over states νN   

constitutes a discrete representation of the continuum in terms of box-normalized eigenfunctions. P
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We determine the radial eigenfunctions by solving the radial eigenvalue equation 
2 2 2[( / 2 ) / ( )] ( ) ( )R V R R E R         , using the B-spline spectral procedure on the 

interval 00 100R a  .50 The constant coefficients in eqn (94) are determined by the initial wave 

packet: 
0

( ) ( ,0)c dR R R  


  . Making use of the partitioning of the radial wave function into 

“vibrational” (v) and “dissociative” (d) contributions (See eqn (94)), we can express the radial 
probability density as 

 
2 2 2

v d ν d( , ) ( , ) ( , ) 2 Re[ ( , ) ( , )]R t R t R t R t R t         (95) 

Substitution of this expression into eqns (90) and (93) gives  

 e,NCM e,NCM;v e,NCM;d e,NCM;intBOA BOA BOA BOA
( , ) ( , ) ( , ) ( , )r t r t r t r t        (96a) 

 ,NCM ,NCM;v ,NCM;d ,NCM;intBOA BOA BOA BOA
( , ) ( , ) ( , ) ( , )a a a aR t R t R t R t        (96b) 

where the vibrational, dissociative and “interference” (int) contributions to the probability 
densities are separated. Plugging these formulas into eqns (89) and (92) yields a similar 
decomposition of the flux densities: 

e,NCM; e,NCM;1 , ,v e,NCM; 1 , ,d e,NCM;1 , ,intBOA BOABOA BOA
( , ) ( , ) ( , ) ( , )r d r d r d rb bb b

j r t j r t j r t j r t    (97a) 

,NCM; ,NCM;1D, ,v ,NCM;1D, ,d ,NCM;1D, ,intBOA BOA BOA BOA
( , ) ( , ) ( , ) ( , )a R a R a R a Rj R t j R t j R t j R t    (97b) 

Note that the EFD, as expressed by eqn (97a), must go beyond the BOA (“bBOA”) in the 
manner described in Section 2, because in the BOA the electronic flux vanishes identically (See 
eqn. (71)).  
 
Figure 7 displays contour plots of the various contributions to the EFD and NFD at two times. At 
the shorter time of 8 fs the electron and the nuclei are essentially confined to a sphere of radius 

06a . One might conceive of this condition as the interference between a pulsating "bubble" and 

an exploding one. In other words, the bound vibrational states (pulsating) interfere destructively 
with the continuum states (exploding). At 80 fs multiple reversals of direction of the NFD 
indicate strong dephasing of the radial wave packet. In contrast, however, the EFD displays no 
such reversal. These observations are consistent with our findings for the aligned 2H  (See 

Section 3.1).  
 
We note that at the longer time (80 fs) the dissociative contributions to the CENFs are 
delocalized over the shell from 5a0 to 20a0, while the vibrational contributions remain confined 
to a sphere of radius 4a0. The interference contribution (also confined to a sphere of radius 4a0) is 
essentially ignorable (compare the magnitude of the interference component at 8 fs and 80 fs), 
which suggests that the vibrational and dissociative contributions are no longer overlapping (i.e., 
the pulsating and exploding bubbles are well separated). Hence, at 80 fs, the dissociative part 
already represents two protons traveling in opposite directions, each carrying the electron with .5 
probability. This analysis suggests that the flux density is a valuable tool for separating the 
vibrational and dissociative components. For example, one can judge either whether these 
components overlap, or, in an equivalent way, whether the interference is sufficiently small to 
indicate a proper separation of the components. This analysis is also consistent with the “virtual 
detector” method,88 which computes the nuclear momentum distribution from the NFD. 
 P
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4. Concerted electronic and nuclear fluxes in tunnelling isomerization of B4 
 
This section serves two purposes: (1) to present the first quantum results on CENFs that 
accompany the isomerization of a small inorganic molecule in the electronic ground state; (2) to 
exemplify the general quantum-theoretical approach (Section 2) applied to systems more 
demanding than the prototype (See Section 3). Tunnelling isomerization, first investigated by 
Hund in 1927,73 remains an important topic in experimental and theoretical reaction 
dynamics.89,90 Specifically, we consider tunnelling isomerization of the boron cluster B4 in the 
electronic ground state from its D2h rhombic structure91-93 ("reactant", R) through the D4h square 
transition state (TS) to another, equivalent D2h rhombic structure ("product", P), as illustrated in 
Fig. 8. 
 
The rhombic B4 unit (also the triangular B3 unit) is a key structural block for building boron 
clusters /0/Bn

  , which have been confirmed experimentally to be planar, quasi-planar, or tubular 

in a wide range of sizes up to /0
40B , 41B , and 2

42B  , the first cage-like all-boron fullerenes (or 

borospherenes).94-104 Double-chain boron ribbons105-107 and atomically thin 2D boron sheets and 
nanotubes108-111 also appear to consist of rhombic B4 building blocks. Owing to the electron 
deficiency of boron [1s22s22p1] compared to carbon [1s22s22p2],105-107 the role of B4 in building 
larger Bn species is analogous to that of the C2 unit in building carbon fullerenes and 
hydrocarbons. Isomerizations of B4 fragments also contribute to the molecular rearrangements of 
the larger boron clusters.112 
 
The importance of B4 calls for in-depth investigations of its properties. Its geometry, the 
coplanarity of R, P and the transition state TS, the distortion of the square TS (D4h) to the D2h 
structures of R and P due to the pseudo-Jahn-Teller effect, the conservation of the D2h symmetry 
in the transition from R to P, as well as the nature of the chemical bonding in B4, which features 
both   and    aromaticity, have already been elucidated.91-93 Moreover, since the energies of 
the first excited electronic triplet and singlet states at 1.1 and 3.1 eV, respectively, are much 
higher than the rather low value VTS ( 0.031 0.035 eV ) at the TS,92,93it is safe to assume that 
the tunnelling isomerization of B4 proceeds in the electronic ground state. The favorable 
properties of B4 make it an ideal candidate for discovering the first CENFs during tunnelling 
isomerization of a small inorganic molecule.  
 
 
In the development of the theory in Section 2 we distinguish among several levels of 
approximation as “without BOA”, “with BOA,” and “beyond BOA.” These are exemplified in 
the present treatment of tunnelling isomerization of B4. We now summarize the results of our 
study that are acquired through 11 steps detailed below. (1) We emphasize that synchronicity of 
the CENFs (See eqns (63) and (64)) is an analytical consequence of the Schrödinger equation 
(eqns (10) and (A.2)) “without the BOA.” Complementary results “with BOA” include the 
following: (2) the structures of R and P at the minima of the symmetric double-well potential in 
the electronic ground state; (3) the symmetry-adapted set of main directions of the NFDs from R 
to P; (4) the construction of the internal mobile-type coordinates 1 9,...,Q Q (See eqn (18)) for the 

nuclear motions; (5) the construction of a 1D model; (6) evaluations of the tunnelling splitting P
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BOAE  and the related tunnelling time BOA BOA/h E    ; (7) computation of the NPDs of R and 

P, their difference and (8) the resulting NFDs in the main directions from R to P ; (9) 
computation of the EPDs of R and P and their difference; (10) determination of the symmetry-
adapted set of the main directions of the EFDs. (11) in contrast with steps (2)-(10), the EFDs in 
the main directions from R to P are evaluated “beyond the BOA”, because the BOA would yield 
zero EFDs (See eqn (71)). Steps (9)-(11) also involve an extension beyond the general theory of 
Section 2 and its application to the one-electron prototype in Section 3, i.e., we adopt a common 
practice of quantum chemistry, which is valid for B4 and many other molecules, and express the 
EPD as a sum of contributions from electrons in core and valence orbitals. These are related to 
corresponding fluxes of core and valence electrons.44  
 
Step 1.From the outset all EPDs and NPDs during coherent tunnelling of B4 evolve as 
superpositions of the densities of R and P [See eqns. (55), (58), (59) and (61)]. All of them are 
periodic (i.e., starting from R at 0t   , arriving at P at / 2t  , and returning to R at t  , etc.) 
with the same period . Likewise, all electronic and nuclear fluxes in any direction, in particular 
in the main directions, evolve periodically with the same period . This means perfectly 
synchronous CENFs during coherent tunnelling isomerizations. All CENFs can be expressed as 
products of spatial factors and the same temporal factor, namely ( / )sin(2 / )t    . Thus, for 
tunnelling isomerizations starting from R at 0t  , all CENFs vanish at 0, / 2,t   , etc. After 
pointing “forward” from R to P during the period0 / 2t   , all CENFs change sign and point 
“backward” from P to R during the period / 2 t   , etc. Maximum amplitudes of all CENFs 
are observed halfway between R and P or (with opposite directions) halfway between P and R, at 
the times / 4t  and 3 / 4t  , whensin(2 / ) 1 or 1t     , respectively. 
       
Step 2. For the purpose of determining the structures of R and P at the two minima of the double-
well potential, the electronic energy eigenvalue problem [See eqn (66a)] is solved by means of 
the coupled-cluster technique with single, double and perturbative triple excitations 
(CCSD(T))113 combined with Dunning's augmented triple-zeta correlation-consistent basis set 
(aug-cc-pVTZ)114. The corresponding canonical molecular orbitals (CMOs) are pictured in Fig. 9. 
It is convenient to set the values of the potential energy surface (PES) at the potential minima 
equal to zero. The result for R is the rhombic structure shown in Fig. 8. For convenience we 
assume that the NCM is at the origin of the laboratory-fixed coordinate system, and that the long 
and short molecular principal axes of R are aligned parallel with the laboratory x- and y-axes 
(horizontal and vertical directions in Fig. 8), respectively (e.g., by means of the methods of refs. 
60-65). Furthermore, we assume that the molecule does not rotate and that its D2h symmetry is 
preserved in the transition from R to P.91-93 This implies that the structures of R and P are 
equivalent and coplanar, but with interchanged alignments of the long and short axes (See Fig. 8). 
Accordingly, on the way from R to P the pair of nuclei labeled 1 (right) and 3 (left), as well as 
the pair labelled 2 (top) and 4 (bottom), move in opposite directions parallel with the x- and y-
axes, respectively. The nuclei of the 1-3 pair are equidistant from the NCM; the same is true of 
the 2-4 pair. 
   
We note in passing that conservation of D2h symmetry91-93 implies conservation of the ring 
structures (See Fig. 8) (i.e., non-ring geometries are not feasible during coherent tunnelling from 
R to P). As a consequence, the relevant molecular symmetry group is a very small subgroup of P
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the complete nuclear permutation inversion group, namely G (B4, tunnelling) = {E,(14)(23)*}, 
which is isomorphic with Cs(M). The eigenfunctions 0  and 1  of the lowest tunnelling doublet 

transform according to its irreducible representations A' and A", respectively. 
  
Step 3. The symmetry-adapted set of the main directions of the nuclear fluxes from R to P are 
illustrated in Fig. 10a by arrows pointing from the positions of the nuclei 1, 2, 3 and 4 in R to 
their positions in P. Fig. 10a also depicts the difference between the NPDs of P and R (See 
Section 2). 
 
Step 4. The 3Nn = 12 nuclear coordinates, which consist of nine internal nuclear mobile-type 
coordinates Q1,Q2,…,Q9 in the NCM frame, supplemented by the three coordinates Sx , Sy , Sz of 
the NCM (See eqn (18)), are determined as follows. The general theory of Section 2 suggests 
that the first coordinate Q1 corresponds to the main direction of the fluxes of the nuclei during 
coherent tunnelling isomerization from R to P. According to the results of steps 2 and 3 
(summarized in Fig. 8 and Fig. 10a), the nuclei of the 1-3 pair and the 2-4 pair move in 
opposition.  Hence we define the internal nuclear coordinate as 
  

 1 1 2 3 4

2 4 1 3( ) ( )

Q X Y X Y

Y Y X X

    
   

   (98) 

Note that by definition Q1 is symmetry-adapted (i.e., motion along Q1 conserves the rhombic 
shape of B4 (D2h)). The second line of eqn (98) shows that Q1 is the difference between the y-
coordinates of nuclei 2 and 4 and the x-coordinates of nuclei 1 and 3. The values Q1R and Q1P for 
the R and P configurations are negative and positive, respectively, with the same absolute values 
(i.e., 1 1R PQ Q ). Halfway between R and P, the value of Q1 is 1 1 1( ) / 2 0b R PQ Q Q   , 

corresponding to square geometry of B4 at the potential barrier. Using the diagonal version of the 
general expression for the reduced mass (given just below eqn (17)), we obtain the reduced mass 
associated with Q1:

2 2 2 2
1 B B1 / (1 / )[( 1) 1 1 ( 1) ] 4 /M M        .  

  
The construction of Q1 as a mobile-type coordinate is also apparent in eqn (98). Thus, the pair of 
nuclei 1 and 3 and the pair 2 and 4 may be regarded as diatomic subgroups oriented 
perpendicularly to each other, with corresponding internuclear distances 1 3( )X X and 2 4( )Y Y , 

respectively, and with reduced masses B B B B B/ ( ) / 2M M M M M    . The mobile-type 

coordinate Q1 (eqn (98)) may then be interpreted as the "distance" from one quasi-particle (the 1-
3 pair) with reduced mass   and “coordinate” 1 3( )X X  to the other quasi-particle (the 2-4 pair) 

with reduced mass   and “coordinate” 2 4( )Y Y . The reduced mass of the subsystem comprising 

the diatomic subgroups is then 1 B/ ( ) / 2 / 4M          .  

 
Another way to rationalize the reduced mass associated with Q1 is based on an Ehrenfest-type 
picture, according to which the kinetic energy of motion along Q1 with associated mass 1 from R 

to P should account for the separate kinetic energies of the boron atoms, all having mass MB. 
That is, we should require that 

2 2 2 2 2

1 1 B 1 2 3 4/ 2 ( ) / 2Q M X Y X Y          . The synchronicity of the nuclear motions 
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implies equivalent time evolutions of the form 

1 1 1R
( ) ( )Q t Q Q t   ,

R
( ) ( )i i iX t X X t   , and  

R
( ) ( )i i iY t Y Y t   , 

where 1Q , iX  and iY  stand for the mean values of the distances of Q1, Xi, and Yi from 

R to P and 2( ) sin ( / )t t    (See eqn (59a)). Hence, we have 

 
2 2 2 2 2

1 1 B 1 2 3 4( )Q M X Y X Y             (99a) 

The symmetry of B4 implies that 1 2 3 4X Y X Y           . Thus, eqn (98) yields 

1 4Q   . Using eqn (99a), we obtain 
2 2

1 B4 4M    and consequently 1 B / 4M  . 

We note that eqn (99a) is well approximated by the classical limit 
 2 2 2 2 2

1 1 B 1 2 3 4( )Q M X Y X Y            (99b) 

where 
 1 1 2 3 4 1 2 3 4Q X Y X Y R R R R                    (99c) 

The reduced mass 1 associated with Q1 is thus rather small. Below we employ the isotope 11B, 

which has mass B 11.009uM   Hence, 1 2.752 u  . The small reduced mass, together with the 

low potential barrier, yields an extremely short tunnelling time (See eqn (52b) and step 6 below). 
Incidentally, the coordinate Q1 is equivalent to a normal coordinate of B4, namely the 
antisymmetric stretch. 
  
There are many ways to construct the remaining mobile-type coordinates 2 9,...,Q Q . We choose 

2 6,...,Q Q  and 7 9,...,Q Q  to correspond with the other normal vibrational modes, and with 

rotations, respectively. The mobile-type coordinates, 1 9,...,Q Q , together with the coordinates Sx , 

Sy , Sz of the NCM, are defined explicitly by 
 

1

2

3

4

5

6

7

8

9

1 0 0 0 1 0 1 0 0 0 1 0

0 0 1/ 2 0 0 1/ 2 0 0 1/ 2 0 0 1/ 2

1/ 2 0 0 0 1/ 2 0 1/ 2 0 0 0 1/ 2 0

0 1/ 2 0 0 1/ 2 0 0 1/ 2 0 0 1/ 2 0

1/ 2 0 0 1/ 2 0 0 1/ 2 0 0 1/ 2 0 0

0 1 0 1 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0

x

y

z

Q

Q

Q

Q

Q

Q

Q

Q

Q

S

S

S

   
 

  
    

  
    
   

 
 

  
 
 
 
 
 
  
 

1

1

1

2

2

2

3

3

3

4

4

4

0 0 0 1 0 0 0

0 1/ 2 0 1/ 2 0 0 0 1/ 2 0 1/ 2 0 0

1/ 4 0 0 1/ 4 0 0 1/ 4 0 0 1/ 4 0 0

0 1/ 4 0 0 1/ 4 0 0 1/ 4 0 0 1/ 4 0

0 0 1/ 4 0 0 1/ 4 0 0 1/ 4 0 0 1/ 4

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

  
  
  
  
  
  
  
  
  
  
  
  
      
  
  
  
  

  

  (100) 

  
  
or in compact matrix notation Q WR [See eqn (18)]. The movements of individual nuclei 
associated with the modes 1 2, ,... zQ Q S are illustrated in Fig. 11. The coordinate Q2 describes the 

out-of-plane bending mode ("butterfly"), Q3 the symmetric stretch, and so on. Likewise, Q7, Q8, P
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and Q9 correlate with rotations about the x-, y- and z-axes, respectively, and Sx, Sy, and Sz describe 
translations of the NCM in the x-, y-, and z- directions, respectively. Hence the PES should 
depend on 1 6,...Q Q , but not on Q7, Q8, and Q9 or Sx, Sy, and Sz. 

 
Using eqn (20) and the masses 1 2 3 4 BM M M M M    , we can write the kinetic energy 

operator as 

 

2 2 2 2 2
n 1 B 2 B 3 B 4 B 5 B

2 2 2 2
6 B 7 B 8 B 9 B

2 2 2
10 B 11 B 12 B

/ 2( / 4) / 2 / 2 / 2 / 2

/ 2( / 4) / 2 / 2 / 2

/ 2(4 ) / 2(4 ) / 2(4 )

T P M P M P M P M P M

P M P M P M P M

P M P M P M

     

   

 

 (101) 

The procedure is detailed in Appendix B. The diagonal form of Tn confirms the definitions of the 
coordinates 1 9, ...Q Q as mobile-type coordinates. The associated reduced masses appear in the 

denominators in eqn (101). In particular, that 1 B / 4M  validates the construction of Q1 

described above. 
  
The rotational coordinates Q7, Q8, and Q9 are set to zero (i.e., these "frozen rotations" correspond 
to the present model of the oriented B4, as illustrated in Fig. 8). Likewise, the NCM coordinates 
Sx, Sy, and Sz are set to zero. The two minima of the PES corresponding to R and P are then 
located at 

 

1R 2R 3R

4R 5R 6R

1P 1R 2P 2R 3P 3R

4P 4R 5P 5R 6P 6R

0.53Å, 0, 8.68Å,

0,

, , ,

, ,

Q Q Q

Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

   
  
   
  

   (102) 

The Cartesian coordinates related to Q1 under the constraints of eqn (102) are given by 
1

R R
R W Q  and 1

P P
R W Q , according to eqn (18). The corresponding structures of R and P 

are pictured in Fig. 8. 
 
  
Step 5. For the purpose of reducing the full 12D model to the 1D model described in terms of 
only Q1, we impose the following 11(=12-1) constraints: the NCM is fixed at the origin, i.e., 

0x y zS S S   ; the molecular orientations are also fixed at 7 8 9 0Q Q Q   ; conservation of 

D2h symmetry implies 2 4 5 6 0Q Q Q Q    ; 3 3R 3P 8.68ÅQ Q Q   . This last constraint 

corresponds to replacing the intrinsic reaction coordinate (IRC) by a straight line. The IRC 
embedded in the 2D section 1 2 3 4 5 6( , 0, , 0)V Q Q Q Q Q Q    of the PES is shown in Fig. 12a. 

The IRC is evidently almost linear (i.e., the constraint 3 3R 3PQ Q Q   is an excellent 

approximation). Henceforward we refer to the resulting 1D cut of the PES, 

1 2 3 3R 3P 4 5 6( , 0, , 0)V Q Q Q Q Q Q Q Q      , illustrated in Fig. 12b, simply as 1( )V Q .  

  
Thus we arrive at the 1D model having the Hamiltonian n eH T H  and Schrödinger equation 

specified in eqns (26) and (27). With the internal and NCM coordinates Q2,…,Sz fixed as P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 33

indicated above, eqn (25) yields the Cartesian coordinates of all nuclei in the NCM frame as a 
function of Q1. These nuclear motions are indicated by the arrows in Fig. 10a. 
  
In the 1D model, the momentum operator 1 1/P i Q    is taken into account explicitly, whereas 

all other momenta are disregarded (i.e., 2 3 12... 0P P P   ) . Under these constraints eqn (20) 

relates the Cartesian components of the nuclear momenta in the NCM frame to the internal 
momentum P1 and eqn (51) expresses the Cartesian components of the fluxes of nuclei observed 
in the NCM frame in terms of the internal flux 1j . 

   
Step 6. If the physics underlying the present 1D model is adequate, it should account for the 
essential properties of the tunnelling isomerization of B4. As a test of the model, we compare the 
tunnelling splitting of B4 of the full 12D model with that of the reduced 1D model. This test is 
motivated by the validation of the 1D model for tunnelling isomerization of another four-atom 
molecule, namely ammonia, under analogous constraints: fixed NCM, fixed orientation, 
conservation of symmetry, and approximate conservation of one specific internal nuclear 
coordinate (the mean NH bond length in C3v symmetry). The validation of the 1D model is based 
on excellent agreement of the computed tunnelling splittings with the experimental (i.e., 
inherently the full D) ones.115 
 
To calculate the tunnelling splitting BOAE and the related tunnelling time BOA BOA/h E   for B4, 

we take the 6D (corresponding to full 12D with fixed NCM and orientation) quantum-
mechanical result for the tunnelling splitting 1

BOA 21.9 hccmE   , which has been reported in 

ref. 93, as a reference. The calculations of ref. 93 are based on the qualitatively correct 6D PES, 
which is a polynomial fit (to fourth order) of 643 ab initio energies obtained at the CCSD(T)/cc-
pVQZ level of quantum chemistry. Using the same polynomial PES as ref. 93, we performed 1D 
calculations by setting all coordinates except Q1 to the values at R and P (See eqn (102)). The 
resulting 1D tunnelling splitting 1

BOA 21.7 hccmE   is in excellent agreement with the 6D 

reference. This validates the 1D model. Next, we replace the polynomial fit of ref. 93 by the 1D 
potential curve 1( )V Q  calculated at the same level of quantum chemistry. The resulting 

tunnelling splitting is 1
BOA 13.5 hccmE   . Alternatively, if we use 1( )V Q evaluated at the 

present level of quantum chemistry (CCSD(T)/(aug-cc-pVTZ)), then we get 
1

BOA 11.5hc cmE     Comparisons of the 6D and 1D results based on the polynomial fit to the 

PES, and the 1D results based on the potential curves 1( )V Q at different levels of quantum 

chemistry, show that in the case of B4 the tunnelling splittings are far less sensitive to 
approximations (i.e., reduced dimensionality or level of quantum chemistry) compared with low-
(fourth-) order polynomial fits to the PES. Below we use the value 1

BOA 11.5hccmE   , 

corresponding to the tunnelling time BOA 2.9 ps  . That this value is between those for ammonia 

(42 ps)115,116 and malonaldehyde (1.5 ps)117 suggests that the predicted tunnelling time of B4 
could be confirmed experimentally by means of analogous measurements, or by the techniques 
developed in refs. 118-120. The dependence of the tunnelling times on the levels of the quantum 
chemistry and on the dimensionality of the model will be reported elsewhere. In the subsequent 
expressions here, we use the notation , dropping the subscript "BOA" to simplify the notation. P

hy
si

ca
lC

he
m

is
tr

y
C

he
m

ic
al

P
hy

si
cs

A
cc

ep
te

d
M

an
us

cr
ip

t



 34

                                                                     
Step 7. To evaluate the NPDs of R and P, and their difference in the BOA, we use the general 
expressions given by eqns (56c) and (57b), from which we derive 
  

 
2

1 1 R 1BOA,R
( ) ( )Q Q     (103a) 

 
2

1 1 P 1BOA,P
( ) ( )Q Q    (103b) 

 1 1 1 1 1 1BOA BOA,P BOA,R
( ) ( ) ( )Q Q Q       (103c)  

where 
 R 1 0 1 1 1( ) [ ( ) ( )]Q N Q Q      (103d)  

 R 1 0 1 1 1( ) [ ( ) ( )]Q N Q Q        (103e) 

are the nuclear wavefunctions representing R and P in terms of the eigenfunctions 0 1( )Q  and  

1 1( )Q of the lowest tunnelling doublet. The normalization constant is 1 / 2N   . The 1D NPD 

difference 1 1 BOA
( )Q  is shown in Fig. 12b together with the arrows indicating the main 

directions of the nuclear flux from negative to positive domains of 1 1 BOA
( )Q . The time 

evolution of the NPD, given by the BOA analogue of the exact formula (See eqn. (61a)), 
 2

1 1 1 1 1 1BOA,R BOA,R BOA
( , ) ( ) ( ) sin ( / )Q t Q Q t        (104) 

is shown as a contour plot in Fig. 13. The transformation from 1Q  to the Cartesian coordinates X1, 

X2, X3, and X4 of the nuclei 1, 2, 3, and 4 (See eqn (25)) yields the corresponding time evolutions 

of the probability densities of the individual nuclei during tunnelling. This is also shown in Fig. 

13 exemplarily for the tunnelling of nucleus 3 from R to P. 

 
Step 8. We determine the nuclear flux using the result of step 7 in the BOA expression, 

 
1

10
1 1 1 1BOA,R BOA
( , ) ( ( / )sin(2 / )

Q

Q
j Q t dQ Q t          (105) 

which is analogous to the exact formula given by eqn (64a). Robust results are obtained for a 
conservative choice of the lower limit of integration   1( 1.7Å)Q   . The time evolution of the 

resulting nuclear flux observed at 1Q  is also shown in Fig. 13, together with the corresponding 

nuclear fluxes at X3. As expected, the fluxes are directed from R to P during the 
period 0 / 2t   , and then from P to R during the period / 2 t   . The maximum 
amplitudes of 1 1 BOA,R

( , / 4)j Q t  are plotted in Fig. 12c.The nuclear flux evidently achieves its 

maximum value at the potential barrier. On first glance this is counterintuitive because the NPDs 
at the barrier are exceedingly small. The result may be rationalized as follows.20 The nuclei do 
not “like” to tunnel; they “prefer” to be at R or P rather than the potential barrier. But since 
quantum mechanics dictates that they must tunnel,73 they move through the barrier as fast as 
possible, thus maximizing the NFD at the barrier. 
 P
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The nuclear flux observed at point Q1 in the 1D internal frame can be related to the Cartesian 
components of fluxes of the individual nuclei in the NCM frame. According to eqn (51b), the 
flux of nucleus 3 in the x-direction observed at X3, for example, is proportional to the flux 
observed at 1

1 3 3 ;1/ [ ] xQ X  W  : 

 
T

3 ;1 11
3 3 1 1 3 3 ;11

3 3 ;1

[ ]
( , ) ( / [ ] , )

[ ]
x

x x

x

j X t j Q X t
M

 


 
W

W
W




   (106) 

The proportionality constant in eqn. (106),
T

3 ;11
1

3 3 ;1

[ ]

[ ]
x

x

c
M





W

W


 , can be calculated directly from the 

matrix W (See eqn (100)). The result is 1c  (See Appendix C). It is worthwhile, however, to 
present an alternative, more intuitive derivation that avoids the substantial work of inverting W . 
We exploit the fact that the NFD that accompanies coherent tunnelling in any direction can be 
written as a product of a spatial factor times the temporal factor, ( / )sin(2 / )t    (See Section 
2.8). It therefore suffices to determine the constant c at a single, arbitrary time t, and at single, 
arbitrary points of observation of the related coordinates ( Q1 and X3 ). The same constant then 
applies at all other times and related points of observation. For convenience we consider the time 

/ 4t  (i.e., half of the time required for tunneling from R to P), when the temporal factor 
achieves its maximum value ( /  ). We take the point of observation to be at the potential 
barrier halfway between R and P at Q1 = Q1,b = 0 or X3,b = .5 (X3,R + X3,P), where the spatial 
factors attain their maxima. Because of the symmetry of the system, for this time and point of 
observation the nuclear yield is ½ (i.e., the time integral of the flux associated with Q1 at point of 
observation Q1,b over the interval [0, / 4] , yields the value ½, as does the analogous time 
integral of the flux associated with X3). Since the temporal factor is common to both, the spatial 
factors of the NFDs along Q1 and X3 at Q1,b and X3,b must also be the same. As a consequence, c 
= 1. Strictly speaking, this analysis rests on the assumption that at t = 0 and at t = τ/2, the wave 
packet is localized in the respective domains of R and P, but this is an excellent approximation, 
in accord with the observed negligible values of the NPD at the barrier for R at t = 0 and for P at 
t = τ/2. (A generalization of this analysis is given in Appendix D.)  
 
Hence, we have    
 3 3 1 1( , ) ( , )xj X t j Q t   (107) 

Further, by virtue of the symmetry of Q1, we also have 

 1 1 1 1 2 2 4 4( , ) ( , ) ( , ) ( , )x y yj Q t j X t j Y t j Y t        (108)                        

for the other nuclei. 
    
Step 9. According to eqn (73), the 3D EPD of R (P) in the BOA is given by 
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   (109) 

where the second line depends on eqn (103). Exploiting the form of 0 as a Slater determinant of P
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canonical molecular spin-orbitals (CMOs) (i.e., a product of a one-electron spatial 
function 1( ; )k i Q q and a spin eigenfunction, where e1,2,..., / 2k N ), we can cast the quantity in 

braces in eqn (109) as 

 
e e /2

2
0 1 1 1

1 1

[ ( ; )] ( , ) 2 ( , )
i

N N

j k
i j i k

d Q Q Q 
  

    q xq q x x    (110) 

where  
 2

1 1( , ) [ ( ; )]k kQ Q x x    (111) 

is the probability density of an electron in the kth CMO (with the internal nuclear coordinate 
fixed at Q1) at the point of observation x in the NCM frame. Note that, since the CMOs are 
normalized, we adopt the standard normalization 

 

e

e
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1 1
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
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   (112) 

The CMOs for B4, computed at the present (CCSD(T))/(aug-cc-pVTZ) level of quantum 
chemistry, are shown in Fig. 9 for R and P at 1 1RQ Q and 1 1PQ Q . Four core CMOs 

( 1,2,3,4k  ) can be distinguished from six valence CMOs ( 5,6,7,8,9,10k  ). Hence, the total 
EPD (at nuclear configuration Q1) can be partitioned into core and valence contributions: 

 
4

core 1 1
1

( , ) 2 ( , )k
k

Q Q 


 x x    (113a) 

 
e /2 10

val 1 1
5 1

( , ) 2 ( , )
N

kQ Q 




 x x    (113b) 

It follows from eqns (112) and (113) that  

 core 1( , ) 8d Q  x x    (114a) 

 val 1( , ) 12d Q  x x    (114b) 

It is instructive to express the population density of core electrons as 
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core 1 , 1
1
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, 1
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   (115)  

in terms of orbitals , 1( , )c a Q x that are localized at the nuclei a (=1,2,3,4): 

  

 ,1 1 1 1 2 1

1
( ; ) [ ( ; ) ( ; )]

2
c Q Q Q   x x x   (116a) 

 ,2 1 3 1 4 1

1
( ; ) [ ( ; ) ( ; )]

2
c Q Q Q   x x x   (116b) 

 ,3 1 1 1 2 1

1
( ; ) [ ( ; ) ( ; )]

2
c Q Q Q   x x x  (116c) 

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 37

 ,4 1 3 1 4 1

1
( ; ) [ ( ; ) ( ; )]

2
c Q Q Q   x x x   (116d) 

Using eqns (109), (110) and (111), we can express the EPDs associated with the core and valence 
contributions to R and P by 

 
1

1
e,NCM; cat 1 cat 1 1 1 BOA,RBOA,R

( ) ( , ) ( )
u

l

Q

Q
dQ Q Q   x x   (117a)  

 
1

1
e,NCM; cat 1 cat 1 1 1 BOA,PBOA,P

( ) ( , ) ( )
u

l

Q

Q
dQ Q Q   x x    (117b) 

 e,NCM; cat e,NCM; cat e,NCM; catBOA BOA,P BOA,R
( ) ( ) ( )    x x x    (117c) 

where the subscript “cat” (for category) refers to core, valence , or perhaps all, electrons. The 
lower and upper integration limits in eqns (117a) and (117b) are chosen so that the NPDs 

1 1 BOA,R
( )Q and 1 1 BOA,P

( )Q are negligible outside the domain [Q1l , Q1u]. In practice we 

set 1 1 1.3Åu lQ Q   . The resulting differences of the EPDs of the core electrons (occupying 

orbitals , 1( , )c a Q x ), which are localized at the nuclei (cat = a =1, 2, 3, 4), are shown in Fig. 14. 

The difference of the EPD for core electrons (cat = core), valence electrons (cat = val) and all 
electrons are shown in Figs. 14 and 10. 
   
Step 10. From eqns (114), (116) and (117) we deduce 

 
4

e,NCM e,NCM;c,a e,NCM; valBOA,R BOA,R BOA,R
1

( ) ( ) ( )
a

  


 x x x    (118a) 

 
4

e,NCM e,NCM;c,a e,NCM; valBOA BOA BOA
1

( ) ( ) ( )
a

  


    x x x    (118b) 

Combining eqns (118) and the BOA version of eqn (58a), we can express the time evolutions of 
the EPDs associated with specific core electrons (i.e., those occupying the orbital localized on 
nucleus labeled a) and (all) valence electrons as 
    

 2
e,NCM;c,a e,NCM;c,a e,NCM;c,aBOA,R BOA,R BOA

( , ) ( ) ( ) sin
t

t
  


     
 

x x x   (119a)  

 2
e,NCM;val e,NCM;val e,NCM;valBOA,R BOA,R BOA

( , ) ( ) ( ) sin
t

t
  


     
 

x x x   (119b)  

These formulas permit us to examine the EFDs that are due to the individual categories of 
electrons. 
   
According to the general theory of Section 2, the main directions of the EFDs for electrons in 
core orbitals localized at the nuclei are from the negative to the positive lobes of 

e,NCM;c,a BOA,R
( ) x (i.e., along the – x, + y , +x and –y directions; See Fig. 14). These are parallel 

to the directions of the nuclear fluxes. This situation is pictured in Fig. 10b. Comparison with Fig. 
10a shows that the core electrons flow synchronously with the nuclei, confirming our chemical 
intuition.  
    
The main directions of the fluxes of valence electrons are deduced from the difference between P
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the EPDs of P and R, e,NCM;val BOA,R
( ) x , which is shown in Fig. 10c. Symmetry implies that 

there are altogether four angular fluxes with alternating clockwise and counterclockwise 
directions in the cylindrical quadrants. The results for the core (Fig. 10b) and valence (Fig. 10c) 
electrons are displayed in Fig. 10d. 
  
Step 11. The decomposition (eqn (118)) of the total EPD into contributions from core and 
valence electrons suggests the analogous decomposition of the EFD, and of the continuity 
equation (eqn (74), “beyond BOA”). Thus, we have   
  

 e,NCM; c,a e,NCM; c,aBOA,R bBOA,R
( , ) / ( , ) 0t t j t    xx x    (120a)  

 e,NCM; val e,NCM; valBOA,R bBOA,R
( , ) / ( , ) 0t t j t    xx x    (120b)  

for the core and valence electrons. We can also write the EFD as  

 
4

e,NCM e,NCM; c,a e,NCM; valbBOA,R bBOA,R bBOA,R
1

( , ) ( , ) ( , )
a

j t j t j t


 x x x   (121)  

The individual components can then be reduced to 1D fluxes along arbitrary directions. Most 
interesting are the 1D fluxes along the main directions. For example, the 3D-to-1D reduction of 
the flux of the electrons in the core orbital localized at nucleus a = 3 in the main direction (i.e., in 
the x-direction) yields  
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        
 

      
 

  



r

   (122) 

The difference between the reduced 1D EPDs of R and P for the core orbital centered at nucleus 

3, e,NCM; c,3,1D,x BOA
( )x  , is plotted in Fig. 12b. The resulting 1D flux (eqn (122)) of an electron 

in the core orbital localized at nucleus 3 is plotted in Fig. 12c at time 4t   . The time evolution 
of the probability density and the flux of an electron in the core orbital localized at nucleus 3 are 
illustrated by contour plots in Fig. 13b. Equivalent results, analogous to those given in eqns (107) 
and (108), are obtained for the EPDs and EFDs associated with the other core orbitals localized 
on nuclei 1, 2 and 4.  
 
Figures 12b, 12c and 13a, 13b also allow the comparison between the probability densities and 
fluxes for nucleus 3 and the associated core electrons. The overall shapes are evidently the same, 
but the NPDs are more localized than the EPDs of core orbitals because of the larger mass of the 
nuclei compared with the electrons. The maximum values of the nuclear fluxes are therefore 
larger than those of the core electrons, which travel with the nuclei. The maxima of all fluxes 
occur at the barrier. 
    
For the angular fluxes of the valence electrons, we use eqns (62a), (63a) subject to two 
constraints: (i) tunnelling in the electronic ground state; (ii) conservation of D2h symmetry during 
tunnelling. Accordingly, the angular flux of the valence electrons is zero at 0 0    (and also 
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at / 2 , and 3 / 2    ); otherwise, either the D2h symmetry would be broken or perhaps a 

ring current in an electronic excited state28 would be present. Thus, we set 0 0    in eqn (62a) 

and evaluate the angular flux of the valence electrons according to eqn (63a): 

 

e,NCM; val,1D, e,NCM; valbBOA,R BOA0 0

2

2
e,NCM; val,1D, BOA0
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   
 
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 
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      
 

  



r

  (123) 

In practice the infinite limits on the integrations on rand z are replaced by sufficiently large 
finite values so that the integrals converge. The corresponding time evolution of the 1D angular 
population density of the valence electrons is obtained by analogous integration of the 3D 
densities in eqn (119b),  

 
,NCM;val,1D, ,NCM;val,1D,BOA,R BOA,R

2
,NCM;val,1D, BOA

( , ) ( )

2
( ) sin

e e

e

t

t

 



   

 


 

   
 

 (124)                                 

The reduced 1D angular density difference of the valence electrons of P and 

R, ,NCM;val,1D, BOA
( )e    , is plotted as a function of observation angle φ in Fig. 15, together with 

the resulting angular flux e,NCM; val,1D, bBOA,R
( , / 4)j t   . The time evolutions of the angular 

densities and fluxes of the valence electrons are shown in Fig. 13c.  
 
This section presents the first example of the perfect synchronicity of the CENFs during 
tunnelling isomerization. We have rationalized the counterintuitive result that all fluxes achieve 
their maximum values at the time / 4t   , at the potential barrier halfway between R and P. 
Another key discovery is that the core electrons flow with the nuclei, whereas valence electrons 
may flow in oblique directions. In the specific case of B4, the opposing pairs of nuclei 1- 3 and 2- 
4 flow in orthogonal directions. Apparently, the opposing nuclear fluxes drive angular fluxes of 
the valence electrons. This effect is reminiscent of that produced by two laser pulses with 
different, approximately perpendicular polarizations, which drive angular fluxes in ring-shaped 
molecules.121,122 
 
 

5. Concerted electronic and nuclear fluxes during the Cope rearrangement of 
semibullvalene in the tunnelling domain 
 
The importance of tunnelling reactions in organic chemistry has been discussed recently.89, 120,123-

125  Here we focus on a typical example of a pericyclic reaction,  specifically the degenerate 3,3-
sigmatropic shift, or Cope rearrangement126 of  semibullvalene (SBV), as depicted in Fig. 16a.  
Our choice of SVB is motivated by several considerations. From a general perspective, SBV and 
several of its derivatives have already served as touchstones for the study of various aspects of 
pericyclic reactivity: synthesis;127-131spectroscopy;132-136kinetics;132,137,138 electronic  P
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structure;129,130,134,135,139-148 thermochromicity;129-131,135,149; ab initio molecular dynamics;150 
quantum dynamics of laser control.149,151-153 Thermochromicity of SBV, for example, is a 
consequence of the low potential barrier between the reactant (R) and product (P) and the large 
gap between the potential energy surfaces (PES) of the electronic ground and first excited 
states.135,143,144,151 Hence, the low barrier promotes tunnelling in SBV and it is safe to assume that 
tunnelling proceeds in the electronic ground state. Tunnelling is also enhanced by the rather low 
effective mass associated with the reaction coordinate, which has been estimated to be 

1 C H( ) / 4M M   .133    

 
For the specific purpose of this Perspective (i.e., the computation of CENFs),  pericyclic 
reactions offer a  model for the discovery of new phenomena16,27,44 and particularly for the 
quantitative interpretation of the traditional representation of electron transfer by curved arrows 
attached to Lewis structures. Many applications are documented in textbooks of organic154-161, 
inorganic162,163 and  biochemistry.164,165 In general, the arrows indicate the breaking and making 
of chemical bonds through loss and gain of valence electrons. Those valence electrons that make 
the dominant contribution to this type of "pericyclic" electron transfer are called "pericyclic" 
electrons below; the  corresponding EPD and EFD are also called "pericyclic."  The term 
"pericyclic" suggests that the "pericyclic"  electrons are transferred in a cyclical manner along 
the molecular perimeter,  typically indicated by a cyclic (clockwise or counterclockwise) 
sequence of curved arrows in the Lewis structure.154-165 Previous theoretical  investigations of 
pericyclic reactions have focussed on the Woodward-Hoffmann rules for the conservation of 
orbital symmetry,166 analyses of transition-state structures or intermediates,167-169 and 
assignments of concerted (or synchronous), as opposed to sequential,  mechanisms.148,167-169 
Through quantum simulations we have recently provided a quantitative interpretation of the 
arrows in Lewis structures describing the Cope rearrangement of SVB.27,44 We find that  the 
"pericyclic" electrons do not flow strictly either clockwise or counterclockwise about the 
perimeter, but rather in clockwise and counterclockwise segments (referred to as "pincer-wise 
motion"). In other words, "pericyclic" reactions do not really occur  "pericyclically," as it 
were.27,28,44 Moreover, we have determined the numbers of pericyclic electrons transferred 
during the "pericyclic" reactions, which turn out to be much smaller than assumed by the 
traditional rule154-165 (i.e., two electrons per curved arrow, or one per single-headed arrow 
symbolizing "pincer-wise motion"). In contrast to the previous  investigations,27,44 which concern 
CENFs associated with states having energy well above the potential barrier, the present focus is 
on tunnelling states below the barrier, which are also considered in ref. 27.  
 
SBV may be formally regarded as a derivative of 1,5-hexadiene, as a reference. The SBV 
comprises the (hexadiene) chain of six carbon atoms C6=C7-C8-C2-C3=C4  (reactant, R, 
clockwise notation, (See Fig. 16)), susceptible to the Cope  rearrangement to C2=C3-C4-C6-
C7=C8 (product P, keeping the labels of the  carbon atoms), plus the bridge of two carbon atoms 
C1 and C5. On first glance the bridge may appear as a complication that makes the structure of 
SBV more unwieldy than the reference. For the present purpose of calculating CENFs during a 
pericyclic reaction, however,  the bridge is quite helpful in that it keeps the configurations of R 
and P close to each other. As a consequence, the six relevant C atoms (C6,C7,C8,C2,C3,C4) 
move over rather short distances during the tunnelling from R to P. This is illustrated in Fig. 16b, 
which depicts the  superposition of R and P for the model with oriented C-C bridge. The inset 
shows the rather short direct way of the carbon atom C4 from R to P. Moreover, Fig. 16b P
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indicates that the attached protons (with corresponding labels H6,H7,H8,H2,H3,H4) likewise 
travel only short distances from R to P.  
 
In summary, the Cope rearrangement of SBV serves as an ideal model system for the possible 
discovery of new features of  CENFs during a pericyclic reaction in the tunnelling domain. The 
corresponding tunneling time, τ = 1940 s,  has already been determined.123 ( Note that in refs. 16, 
27, and 44, τ = 970 s is the time required for tunnelling just one way from R to P.) Similar rather 
long, or even much longer (perhaps hours), tunnelling times have been measured recently for 
several other tunneling reactions.170,171 In the remainder of this section we derive the CENFs 
associated with the Cope rearrangement of SBV, following the same procedure used in Section 4 
for tunneling isomerization of B4. 
 
Step 1. We emphasize one of the fundamental results of Section 2:  the Schrödinger equation 
yields synchronous EPDs and NPDs as well as EFDs and NFDs during coherent tunnelling 
isomerization of any molecule between symmetrically equivalent R and P. This theorem 
provides an answer to the title question of ref. 148, "Electron-nuclear motion in the Cope 
rearrangement of SBV: ever synchronous?" The simple answer is, "yes, in the domain of 
coherent tunnelling!" The theorem also explains the specific result discovered in ref. 27, namely 
that the electronic flux out of the old single bond that is broken (C4-C6 in Fig. 16) is 
synchronous with the electronic flux into the new bond that is formed ( C2-C8). That this result 
is not at all trivial is supported by the opposite asynchronous behavior of  electronic fluxes for 
non-tunnelling states at energies above the potential barrier.27,44,148 The present theorem goes 
much beyond the result of ref. 27, however, by proving that all CENFs associated with the 
tunnelling Cope rearrangement of SBV are pefectly synchronous.  
    
Step 2. Fully optimized structures of the equivalent R and P for SVB shown in Fig. 16 are 
achieved by means of the second-order multi-reference perturbation theory using triple-zeta basis 
sets (RS2/cc-pVTZ), including a refinement at the RS3/cc-pVTZ172 and MRCI+dav/cc-pVTZ173-

175 levels of quantum chemistry (See  ref. 148 for the details). The results agree well with B3LYP 
density functional calculations.148,176,177 The B3LYP valence density is then partitioned by 
transformations into localized orbitals, according to the Pipek-Mezey method.178 The  Cs 
symmetries of R and P suggest conservation of Cs symmetry during tunnelling. We assume that 
the NCM remains at the origin of the laboratory coordinate system. We also assume that the C1-
C5 carbon-carbon bridge is aligned with the x-axis (horizontal in Fig. 16), for example, by means 
of the  methods of refs. 60-65. The y-axis is vertical and the z-axis is perpendicular to C1-C5 
bridge, pointing out of the plane of the page in Fig. 16. Hence, the x-z plane serves as Cs 
symmetry plane (perpendicular to the plane of the page in Fig. 16). Below, we shall also employ 
cylindrical coordinates , ,r z  ( See Fig. 16a), as in the treatment of coherent tunnelling of B4 in 
Section 4.     
    
Step 3. The symmetry-adapted set of the main directions of the NFDs, which point from the 
positions of the nuclei of R to those of P, are illustrated in Fig. 16b for C4. These main directions 
may be expressed in terms of unit vectors ae  in the direction of the distance ,P ,Ra a a a  R R e , 

where ,P ,Ra a a  R R . For example 4e = (.078, .780, .626) and 0.479 Åa   for carbon 

nucleus C4 (See the inset in Fig. 16b). The  position halfway between R and P corresponds to the P
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barrier,  , ,R ,P / 2a b a a R R R . The pathway of nucleus a along the main direction from R to P 

can be expressed as a, a,R a a   R R e , where   increases from 0 at R to 1 at P. Alternatively, 

we can write a, a,b a a   R R e  where   increases from -.5 at R to +.5 at P. Conservation of Cs 

symmetry implies the equality of the main directions of various pairs of nuclei: C1 C5 x e e e , 

C2 C6e e ,  C3 C7 x  e e e , C4 C8e e  (See Fig. 16b). Similar equalities hold for the main 

directions of the attached protons, denoted H1 H5e e , etc., and for the centers of mass of the 

related CH bonds, denoted 1 5e e , etc. Furthermore, the main directions of C2 and C4 ( as well 

as H2 and H4) are mirror images of those of C8 and C6, respectively. Accordingly, symmetry 
implies the following equalities relating nuclear displacements during the tunnelling from R to P 
 C1 C5     

 C2 C4 C6 C8         

 C3 C7     (125a) 

 H1 H5   ,  etc. (125b) 

 1 5 1,5       

 2 4 6 8 2,4,6,8           

 3 7 3,7       (125c) 

 
Step 4. The  3  3  45nN    internal nuclear mobile-type coordinates Q1, Q2,...,Q45 may be 

constructed in many ways.  For example, one may employ the method developed in ref. 179.  
Basically, it consists of two steps. In the first one defines a suitable mobile for the eight carbon 
nuclei and eight attached protons according to the rules of Hirschfelder57-59(e.g., the mobile 
illustrated in Fig. 17). Here the carbon nuclei and protons of the eight CH bonds are assembled in 
diatomic subsets (C1,H1), (C2,H2), ... , (C8,H8) with corresponding 8 3 24   mobile 
coordinates H1,X C1,XR R ,  H1,Y C1,YR R , ... , H8,Z C8,ZR R . This is indicated by the 

corresponding labels 1,2,...,8 on the horizontal lines connecting pairs of atoms (C2,H2), etc. in 
Fig. 17. At the next level of the mobile the diatomic subsets 1 (C2,H2), 3 (C4,H4) and 5 (C3,H3) 
are connected with their respective mirror images 2 (C8,H8), 4 (C6,H6) and 6 (C7,H7) in the x-z 
plane and the bridge pairs 7 (C5,H5) and 8 (C1,H1) are joined to form four subsets of two 
diatomics each (labelled 9, 10, 11, and 12 in Fig. 17).  The corresponding 4 3 12   additional 
mobile coordinates are the x- y- and z- Cartesian components of the distances from the center of 
mass of one CH bond to that of its symmetrically related partner. Analogous constructions of the 
remaining 45 24 12 9 3 3      mobile coordinates corresponding to Cartesian components of 
distances between centers of mass of successively larger subsets of nuclei can be deduced from 
Fig. 17.  We finally arrive at the highest level labelled 16, which corresponds to the coordinates 
Sx, Sy, Sz of the NCM. The 48 48  matrix W for the transformation from the laboratory 
Cartesian coordinates to mobile coordinates, which is given explicitly in ref. 179, is block-
diagonal, comprising three identical 16 16  blocks correlating with the x-, y- and z-components.  
 
In the second step we retain the 3 NCM and 24 (internal) mobile coordinates for the diatomic 
subsets (C1,H1), (C2,H2), and so on, but replace the remaining 12 + 9  internal mobile 
coordinates by a linear combination, Q1, that accounts for the motions of all nuclei during P
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tunnelling from R to P. In practice, Q1 is constructed by a sequence of unitary transformations of 
W .179 For the present purpose, however, it is not necessary to carry out these transformations. 
Rather we can take a straightforward shortcut to Q1 (shown immediately below in Step 5) that 
exploits the conservation of  Cs symmetry during tunneling from R to P.  
  
Step 5. To derive the 1D model for tunnelling from R to P along the coordinate Q1, we construct 
the mobile according to the sequence of steps outlined in Step 4,  but we also introduce the 
following 3 8 3 27    constraints: 
 0x y zS S S     (126a) 

  Ca Ca Ha Ha a a a C Ca H Ha C H( ) / ( )M M M M         e e e e  (126b)  

Figure 16b shows that this approximation is reasonable. The shifts of the centers of mass of the 
CH bonds, a , are fixed by the structures of R and P, which are determined in Step 2. As a 

consequence, Q1 should describe motions of all nuclei subject to the constraints (eqn(126)). 
Hence, Q1 is a linear combination of the remaining 21 mobile coordinates, which in turn are 
linear combinations of the centers of mass of the CH bonds. A derivation analogous to that 
leading to eqn. (99c) for B4 then yields an expression for the shift of Q1 from R to P as a sum of 
the shifts of those centers of mass, namely  

 
8

1 2,4,6,8 3,7 1,5
1

4 2 2a
a

Q


           (127) 

The second equality in eqn (127) is a consequence of the conservation of Cs symmetry. 
Moreover, an Ehrenfest-type argument, analogous to the one that leads to eqn (99b), gives  

 

8 8
2 2 2 2

1 1 C Ca H Ha C H
1 1

2 2 2
C H 2,4,6,8 3,7 1,5

( ) ( )

( )(4 2 2 )

a
a a

Q M M M M

M M


 

       

      

 
  (128) 

The second and third equalities in eqn (128) are consequences of the approximation (eqn (126b)) 
and the conservation of Cs symmetry, which implies the relations in eqn (125). From  eqns (127) 
and (128) we obtain the reduced mass associated with Q1   

 
2 2 2

C H 2,4,6,8 3,7 1,5
1 2

2,4,6,8 3,7 1,5

( )(4 2 2 )

(4 2 2 )

M M


     


    
  (129a) 

Inserting the values 2,4,6,8 0.479Å  , 3,7 0.089Å   and 1,5 0.012Å   obtained from Step 2, 

we get 
 1 C H0.208( )M M    (129b) 

The reduced mass 1  is clearly dominated by the large shifts 2,4,6,8  associated with the 

movements of the nuclei that participate in breaking the old C4-C6 bond of R and making the 
new C2-C8 bond of P; all other shifts are much smaller. Neglecting those other shifts, we have 
the approximation 
 1 C H( ) / 4M M     (129c) 

which is derived in ref. 133 by exclusive consideration of the motions of the nuclei that 
participate in bond breaking and bond making, and is also used in refs. 16, 27, and 44. Finally, 
from eqns (128)  and (129c) we obtain   
 1 2.072ÅQ    (130) 
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The convention 1, 0bQ   at the barrier implies that the collective internal nuclear coordinate 1Q  is 

given by the expression 
 1 1 / 2Q Q    (131a) 

which is related to the motions of the individual nuclei by  
 a a,b a a  R R e   (131b) 

The special values R 0.5    and P 0.5  give the coordinates corresponding to R and P, 

respectively.  
We note that the assumed orientation of the C1-C5 bridge parallel with the x-axis implies that 
during tunneling the molecule rotates about the y-axis by a few degrees. If we fixed the overall 
rotations instead, then the C1-C5 axis would rotate about the y-axis by a few degrees, thus 
compensating the opposite small-angle rotations of the "ring" of carbon nuclei C2-C3-C4-C6-
C7-C8. Either choice leads to the same conclusions. 
  
Step 6. The tunnelling time τ = 1940 s for Cope rearrangement of SBV is taken from ref. 123.  
 
Step 7. The NPDs of R and P, their difference, and the time evolution of the NPDs during 
tunnelling isomerization of SBV from R to P and back are computed for the 1D model, in a 
fashion entirely analogous to that of Step 7 of Section 4 for the tunnelling isomerization of B4. 
The resulting difference of the NPDs of P and R is shown in Fig. 18a,  embedded in the double 
well potential 1( )V Q , where 1 1 / 2Q Q  (See eqn (131a)). The time evolution of the NPD is 

illustrated by the contour plot in Fig. 18b. These results for SBV are entirely analogous to those 
for B4 (compare Figs. 18a and 18b with  Figs. 12b and 13 (top left panel), respectively). 
 
Step 8. The calculation of the NFDs along the main directions during tunnelling isomerization of 
SBV is also entirely analogous to that described in Step 8 of Section 4. The result for SBV is 
shown as a contour plot in Fig.18c, which is analogous to Fig. 13 ( top right panel) for B4. Figure 
18c confirms the counterintuitive effect that was first reported in ref. 16: the maximum values of 
the nuclear fluxes are observed at the potential barrier, halfway between R and P. 
    
Step 9. The EPDs of R and P and their difference, which are evaluated by the methods described 
in Step 2, are partitioned into different categories ("cat") based on the localized molecular 
orbitals.178 We distinguish the core electrons (localized at the carbon nuclei a = 1,2,....,8 ( cat = 
c,a)), six pericyclic electrons that contribute to pericyclic electron transfer, correlating with 
changes in the Lewis structures of R and P (cat = peri), and the other valence  electrons (cat = 
oval) that account, for example, for the CH bonds not associated with changes in the Lewis 
structures of R and P.44 

 
Step 10. The symmetry-adapted main directions of the EFDs during tunneling isomerization of 
SBV are determined separately for each category of electrons, as in Step 10 of Section 4 for the 
tunneling isomerization of B4. We consider first the electrons in core orbitals localized at the 

carbon nuclei. For a given nucleus a, the corresponding electron densities e,NCM;c,a BOA,R
( )x  of 

R and e,NCM;c,a BOA,P
( )x  of P are localized  and centered at a,RR  and at a,PR . The localized core 

EFDs therefore point from a,RR  to a,PR  ( i.e., in the same directions Cae  as the shift in carbon P
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nuclei) in tunnelling from R to P. This confirms an important result of Step 10 of Section4, i.e., 
that the core electrons flow with the nuclei. 
  
Next we focus on the symmetry-adapted main directions of the EFDs of pericyclic electrons. 
(Some important properties of the EFDs of the other valence electrons have already been 
reported in ref. 44.) These EFDs point from centers of the negative regions of the population 

density difference  e,NCM;peri e,NCM;peri e,NCM;periBOA BOA,P BOA,R
( ) ( ) ( )    x x x  to positive 

regions. These centers of positive or negative difference are arranged on the molecular perimeter, 
essentially along the ring of carbon nuclei C2-C3-C4-C6-C7-C8-C2 about the z-axis. The way 
along this ring may be mapped onto the cylindrical coordinate  . Integrating the pericyclic  

product and reactant densities e,NCM;peri BOA,P
( ) x  and   e,NCM;peri BOA,R

( ) x , as well as their 

difference e,NCM;peri BOA
( ) x , over the complementary cylindrical coordinates r and z ( as in 

eqns (123)), we obtain the corresponding 1D angular pericyclic electron densities 

e,NCM;peri,1D, BOA,P
( )  , e,NCM;peri,1D, BOA,R

( )  , as well  as their difference 

e,NCM;peri,1D, BOA
( )  . These  are illustrated in Fig. 19a. The symmetry-adapted main angular 

flux directions point from the negative to the positive domains of the pericyclic EPD difference. 
Apparently there are six major domains with alternating positive and negative signs of  

e,NCM;peri,1D, BOA
( )  . The nodes between these domains are located close to the positions of 

the carbon nuclei C2, C3, C4, C6, C7, C8.  From this intermediate result we may already 
speculate that Cope rearrangement of SBV in the tunnelling domain should involve six domains 
of pericyclic angular EFDs with alternating directions. This conjecture is supported by 
comparison of Fig. 19a showing the difference of the angular pericyclic electron densities of R 
and P of SBV with the upper panel of Fig. 15 showing the difference of the angular densities of 
the valence electrons of R and P of B4. The latter has four domains with alternating signs and 
nodes at angular positions halfway between the boron nuclei, thus giving rise to four angular 
EFDs with alternating directions during tunneling isomerization of B4 (See the lower panel of 
Fig. 15). 
  
Step 11. We determine the EFDs of different categories of electrons along their main directions 
during tunnelling isomerization of SBV by integrating the differences of the corresponding 
electronic densities of P and R determined in Step 10 over the appropriate complementary 
coordinates to obtain the 1D flux. Again, this step is entirely analogous to its counterpart for the 
tunnelling isomerization of B4 (See Section 4).   
 
We consider first the EFDs of core electrons. As for B4, the underlying population density 
differences of P and R resemble those for the nuclei (i.e., they have bell-shaped negative and 
positive distributions centered at positions of the nuclei a corresponding to R and P). The EPDs 
are slightly broader, with slightly lower peaks compared with the NPDs, essentially because of 
the greater delocalization of core electrons compared with the nuclei. Integrating these density 
differences ( multiplied  by -1) over the complementary coordinates yields the corresponding 
characteristic symmetric shapes of the ( beyond BOA) fluxes (1D EFDs) of core electrons during 
tunneling isomerization of SVB from R to P, analogous to those for B4 . We note in passing that P
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ref. 44 presents selected results for the fluxes of core electrons along angular directions. It is 
emphasized, however, that these angular directions are not the main directions of the fluxes of 
core electrons. Hence, the results for core electrons in ref. 44 are less relevant compared with the 
present results.  
       
Finally, we examine the angular EFDs of pericyclic electrons. According to the general theory of 

Section 2.8, a prerequisite for the calculation of any angular EFDs e,NCM;1D, ( , )j t   is 

knowledge of its value e,NCM;1D, 0( , )j t   for at least one specific angle 0  ( See eqns (62a) and 

(63a)). In the case of tunnelling isomerization of SBV, we employ conservation of Cs symmetry 

to deduce the result e,NCM;1D, 0( 0, ) 0j t    , for all categories of electrons, including  

pericyclic electrons. Otherwise the electronic fluxes would either break Cs symmetry or they 
would have contributions from ring currents in electronic excited states.  Because of the 

symmetry of the system, the condition  e,NCM;1D, 0( 0, ) 0j t     implies that the angular fluxes 

of all categories of electrons must also vanish at 0   . Below we point out two additional pairs 

of special angles for zero pericyclic electron fluxes, which can be expessed as symmetry-adapted 
sets { 0  and 0   }. Although their existence can be predicted by means of the selection rule 

for the directions of pericyclic angular fluxes,28 there is no a priori way to deduce the value of 

0 . Using the angle 0 0  , we apply eqn (123) to evaluate the pericyclic electron flux  

e,NCM;peri,1D, bBOA,R
( , )j t   in the "beyond the BOA" approximation.  The calculation is completely 

parallel with that of the angular fluxes of valence  electrons during tunneling isomerization of B4. 
The result is shown in Fig. 20 as contour plot, together with a contour plot for the time evolution 

of the pericyclic EPD e,NCM;peri,1D, bBOA,R
( , )t   (Compare with the analogous expression in eqn 

(124) for B4). The vertical arrows in Fig. 20 indicate the angular positions of the carbon nuclei, 
in cyclic order 1,2,...,8,1, at the potential barrier halfway between R and P. The angular 
pericyclic flux during tunneling from R to P apparently consists of six parts with alternating 
a,c,a,c,a,c directions, indicated by horizontal arrows ---->  (clockwise, a) or <----- 
(counterclockwise, c). Extreme values are attained at t = τ/4 (i.e., at half the tunnelling at time 
from R to P). The angular positions of the extreme values of the fluxes coincide with the 
positions of the carbon nuclei  C2, C3, C4, C6, C7, C8 at the barrier, which can be seen in the 
plot of Fig. 19b on a finer scale. Apparently, conservation of Cs symmetry implies equal absolute 
values of the maximum fluxes of pericyclic electron fluxes through observation planes at the 
barrier positions of nuclei C2 (a), C4 (a), C6 (c) and C8 (c). Smaller local maximum values are 
obtained at C3 (c) and C7 (a). The corresponding arrows are mapped in Fig. 19c onto the series 
of six curved arrows with alternating a, c, a, c, a, c directions embedded in the Lewis structure of  
R. In contrast to the diagrams in most textbooks on organic chemistry, they do not show the 
cyclic c or ac patterns, but rather a pincer-type pattern of alternating a and ac parts.  
 
In order to quantify the curved arrows in the Lewis structure of R symbolizing pericyclic 
electronic fluxes during tunnelling from R to P, we determine the number of pericyclic electrons 
that are transferred. These numbers, commonly referred to as yields, are evaluated as time 
integrals of the pericyclic electron fluxes from t = 0 (R) to t = τ/2 (P). The corresponding time  
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integral of the temporal factor  2( / )sin 2 /t     of e,NCM;peri,1D, bBOA,R
( , )j t   ( See eqn (123) ) 

is equal to / 4  . As a  consequence, the yields are obtained by simply scaling the angular 

factors of  e,NCM;peri,1D, bBOA,R
( , )j t   by the factor / 4 . The absolute values of the maximum  

numbers of pericyclic electrons transferred from R to P at the barrier positions of carbon nuclei 
C2,C3,C4,C6,C7,C8 are .63 , .23, .63, .63, .23, .63, respectively (See Fig. 19b). These numbers 
are attached to the curved arrows in the Lewis structure of R in Fig. 19c. The maximum total 
number of pericyclic electrons transferred during Cope rearrangement of SBV in the tunnelling 
domain is thus equal to 2.98. For comparison, we note that the number of pericyclic electrons 
transferred from one bond of R to the neighbouring bond of P through an observation plane that 
moves from R to P, is of course smaller than 2.98; specifically it is equal to 1.1.27 In any case, 
the  result of the present quantum computation of the number of pericyclic electrons transferred 
between neighbouring bonds during the model Cope rearrangement of SBV suggests that the 
textbook rules154-166 (i.e., cyclic series of curved arrows symbolizing the transfer of two electrons 
per curved arrow) need significant refinements. As we demonstrate, the number of transferred 
electrons that result from application of this rule in the present case of SBV, namely 6, is far too 
large. 
 
 
6  Summary and Conclusions 

In Section 2 we develop the quantum theory of concerted electronic and nuclear fluxes (CENFs) 
that accompany electronically adiabatic processes. Its applications in Sections 3-5 leads to 
important new insights into the nature of the CENFs associated with fundamental processes such 
as vibration and dissociation of single-electron diatomics (Section 3), as well as more complex 
processes such as chemical rearrangements of polyatomic inorganic (Section 4) and organic 
(Section 5) molecules. 

A key development in Section 2 is the derivation of practical formulas for 1D flux densities (or 
fluxes) in specific directions. The derivation starts with the Schrödinger equation, whose formal 
solution yields a multi-dimensional continuity equation (CE).  The multi-dimensional CE can 
then be reduced to a 1D CE that relates the rate of change of the probability density to the (1D) 
divergence of the corresponding flux density. The reduction is achieved by integration of the 
multi-dimensional CE over all coordinates, except the special one that describes the specific 
process of interest. The formula for the relevant 1D flux density (flux) is then obtained by 
integrating the rate of change of the (reduced) probability density over the special coordinate and 
invoking an appropriate boundary condition on the resulting 1D flux. This route to 1D fluxes was 
pioneered by Miller10-11 for applications to nuclear fluxes on the reaction coordinate of adiabatic 
reactions; here it is generalized for CENFs. The derivation employs mobile type coordinates that 
diagonalize the nuclear kinetic energy operator in the nuclear center of mass (NCM) frame.57-59 It 
invokes standard approximations (i.e., it neglects the effects of relativity and mass polarization 
and neglects the difference between the NCM and the total center of mass and between the 
electronic reduced mass and the electron mass). But it does not invoke the Born-Oppenheimer 
approximation (BOA), since all electronic fluxes vanish identically within the BOA.  This 
approach, which reveals electronic fluxes “ beyond BOA,” is validated in Section 3, where it is 
applied to the prototype (aligned, vibrating 2

2H ( )g
   ), yielding CENFs in excellent agreement P
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with benchmark results obtained by accurate, fully quantum B-spline spectral technique.50 We 
are aware of no other successful comparisons of independent numerical computations of CENFs 
analogous to the one described here. Section 3 also presents an encouraging comparison of 3D 
CENFs obtained by the scaled coupled-channels theory51 with accurate benchmark results,50 
again for the prototype.  

A significant finding of Section 2 is the synchronicity of all CENFs associated with coherent 
tunneling between equivalent reactant (R) and product (P) configurations of isolated molecules. 
A practical definition of the main directions of CENFs during coherent tunneling is also 
introduced in Section 2. It is found that the CENFs point from negative to positive domains of 
the difference of the densities of P and R. For NFDs, these directions are well approximated by 
the (vector) difference between classical equilibrium positions of the nuclei in R to P. Yet 
another illuminating concept is the partitioning of EFDs into different categories corresponding 
to the character of the electrons (e.g., EFDs for core and valence electrons, corresponding to 
(reduced) densities of core and valence electrons).44 This partitioning relies on the possibility of  
expressing the total electron density approximately as a sum of ( canonical) molecular orbital 
densities. 
 
Specific new phenomena have been demonstrated for all model systems considered in Sections 
3,4, and 5. Thus for the prototype we show the EFDs to be rather smooth compared with highly 
structured NFDs. This disparity is a consequence of the much lower mass of the electron 
compared with the nuclei, which leads to greater delocalization of the electrons compared with 
the nuclei. Nevertheless, even the EFDs may exhibit rich structure (e.g., multiple changes of the 
direction at a given instant). We might call this alternation of direction of the EFDs in space as 
the "electronic accordion effect" by analogy to the "nuclear accordion effect".8 Furthermore, we 
can distinguish competing CENFs corresponding to vibration and dissociation, as well as 
interference between the two, in the case of isotropic 2

2H ( ( 0, 0))g J M     ( the "quantum 

bubble").  
 
For the relatively simple, but highly didactic, process in a model inorganic system, namely the 
isomerization of B4 in the tunneling domain, we demonstrate in Section 4 that core electrons 
flow with the nuclei. This confirms chemical intuition. In contrast, however, valence electrons 
may flow in oblique directions. We discover beautiful angular flux patterns of the valence 
electrons, with alternating a-c-a-c directions ("a" = clockwise, "c" = counterclockwise). Of 
course, all CENFs are synchronous, in accord with the general theorem derived in Section 2. 
 
In a more demanding treatment of coherent tunneling in a model organic system in Section 5, we 
compute the CENFs associated with the Cope rearrangement of semibullvalene (SBV), a so-
called “peri-cyclic” reaction. The several phenomena discovered for B4 are also observed for 
SBV, suggesting the following extrapolation to tunnelling isomerizations in arbitrary systems: 
the synchronicity of all CENFs and the flow of core electrons  in concert with the nuclei, in 
contrast with "pericyclic" electrons, which exhibit alternating clockwise and counterclockwise 
angular flux patterns, corresponding to “pincer-type” movement represented by a sequence of 
curved arrows in alternating directions in the Lewis structure of R. This implies that "pericyclic" 
reactions are not really pericyclic. We find that the maximum yield of “pericyclic” electrons for 
the Cope rearrangement of SBV is a little less than 3, whereas the textbook rule would predict a P
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transfer of 6 pericyclic electrons.154-165 The discrepancy can be traced back to incorrect 
assignments of two and one pericyclic electrons localized in double and single bonds of the 
traditional Lewis structure of R. In fact, the "pericyclic" electrons turn out to be delocalized 
beyond the double or single bonds (i.e., they penetrate into the domain of the neighboring 
bonds). As a consequence, they already partially occupy the region of the new bonds before 
flowing. It is not necessary for them to flow. Hence, the total number of electrons that actually 
flow is only approximately half of the numbers of transferred electrons estimated by the textbook 
rule. 
 
The wealth of new discoveries documented in this Perspective reflects the youth of the field of 
study of CENFs. It is easy to predict that future investigations will lead to exciting discoveries of  
rich, new phenomena associated with electronically adiabatic reactions in highly idealized model 
systems as well as practically important organic and inorganic systems.There is also plenty of 
room for additional fundamental and methodological development. Extensions to asymmetric 
systems (e.g., coherent tunneling in molecules exposed to a symmetry-breaking laser dipole 
interaction180) or to multi-dimensional models come easily to mind. A specific challenge is to 
observe the predicted CENFs experimentally. The recent deduction of the first experimental 
NFDs associated with vibrations of Na2 and D2

+, derived from pump-probe spectroscopy,8,181,182 
suggests possible analogous observations of EFDs. This is supported by recent developments of 
experimental techniques for the study of electron dynamics183-186, in particular for specific 
categories of electrons that contribute to electron transfer.187 Work along these lines is in 
progress.  
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Table 1   SI and atomic units for probability densities, flux densities and fluxes. 
____________________________________________________________________________ 
property  eqn number  dimension  SI  atomic units 
____________________________________________________________________________ 
 
    (28a), (58)  3D   3m   3

0a  

 
j    (28b)   3D   2 1m s    2 1

0 ha E  a 

  
 
Fb   ----   3D   1s   1

hE     

 

1 ,D z    (35)              1D   1m   1
0a  

 

1 ,D zj    (35)               1D   1s   1
hE   

 

1 ,D zF    -----   1D   1s   1
hE   

 

1 ,D     (42)   1D   1rad   1rad  

 

1 ,Dj     (42), (63)  1D   1s   1
hE   

 

1 ,DF     -----   1D   1s   1
hE   

 
                                  (A. 3), (55)                  3ND c                          m-3N                  3

0
Na  

 

iJ                                 (A. 7a)                         3ND                            m-3N+1s-1           3 1 1
0 h

Na E    

aJ                                 (A. 7b)                         3ND                            m-3N+1s-1           3 1 1
0 h

Na E     

 
F                                    ------                           3ND                             s-1                               1

hE   

____________________________________________________________________________ 
a Eh stands for twice the (absolute value of the) energy of electronic ground state of the hydrogen 

atom (“hartree”). 
 

b F stands for the flux, which is generally expressed as a surface integral,
S

F dS  n j . The 

dimension of the surface is one less than the dimension of space. 
c

n3( ) eN N N or n3( 1)N N N  e  with or without, respectively, the coordinates of the 

NCM.
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Appendix A 
 
A.1 Multi-dimensional continuity equation 
The transformed Hamiltonian (see eqn (24)) can be written 

 
e n32 2 2

2
2

1 =1e

( , )
2 2i

N N

i

H V
m Q  


    

 q q Q
 

  (A.1) 

where the “squiggle” over Q
  indicates that the summation on α includes the NCM coordinates 

as well as the “internal” nuclear coordinates. The multi-dimensional Schrödinger equation is  

 
( , , )

( , , ) i
t

H t
t


 


q Q

q Q
    (A.2) 

where q and Q respectively stand for collections of electronic and nuclear coordinates. The 

probability density for observing the system to be in the configuration ( , )q Q  at time t is  

 
2

( , , ) ( , , )t t  q Q q Q    (A.3) 

We take   to be normalized. Differentiating eqn (A.3) with respect to time, we obtain 

 

( , , ) ( , , ) ( , , )
( , , ) ( , , )

i

t t t
t t

t t t

H H

 


 

  
  

  

       

q Q q Q q Q
q Q q Q

   



 (A.4) 

where the second line follows from eqn (A.2). Substitution of the explicit expression for H (eqn 
(A.1)) into eqn (A.4) yields 

 
e n3

2 2 2 2 2 2

1 1e

[ ] [ / / ]
2i 2ii i

N N

i

Q Q
t m  

 




   

 


              

  q q

      (A.5) 

where the contributions from the potential energy cancel each other. Equation (A.5) can be 
rewritten 

 
e n3

1 1

0
i

N N

i
i

J
t Q 

 


 

 
    

  q J    (A.6) 

where  

 
e

( , , ) [ ]
2i i ii t

m
      q qJ q Q

   (A.7a) 

 ( , , ) [ / / ]
2i

J t Q Q  


      q Q
    (A.7b) 

Equation (A.6) is the multi-dimensional continuity equation (CE). The quantities defined in eqn 
(A.7) can be regarded, respectively, as electron and nuclear flux densities in the 3N D space 
(where e nN N N  )  of particle coordinates. All flux densities have dimensions 3 11 / NL T .  

 
A.2  Reduction of the multi-dimensional continuity equation 
Integrating eqn (A.6) over all nuclear coordinates and all electronic coordinates except those of 
the “first” electron, we obtain 
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1 1

1 1 1 1

1

( , , ) /

0

kj k j k j
j k j k j

j
j

d d t t d d d d d

dQ dQ d J
Q  

  


    

 

        






         

    

q qQ q q Q q Q q J Q q J

q

   

 


 (A.8) 

The second and fourth terms of eqn (A.8) vanish. We can recast the second term as 

 
1 1

1 1

1 1

( , , )

( , , )

k kk j k k k
k j k

kS

d d d d t

dS t

  

    

 

    



q qq Q q J q f q q

n f q q


  (A.9) 

where the vector function f1 is defined implicitly and we exploit the divergence theorem to get 
the second line, regarding the vector 1q  as a parameter. The surface S must be at an infinite 

remove, as the integration on kq runs over an infinite volume. Since   is normalized, the 

surface integral must disappear. In a similar way the fourth term disappears according to the 
following:  

 

1
1

1 1

( , )

( , ) ( , )

0

j
j

dQ dQ d J dQ F Q
Q Q

F Q F Q

     
    

   


 

 


 

     



      



q q

q q

  
 

  (A.10) 

where the ancillary function F  is defined implicitly. The continuity equation (eqn (A.6)) then 

reduces to 

 
1

1 1
1 1

( , )
( , ) 0

t
t

t


  

 q

q
j q   (A.11) 

where 

 1 1( , )t q  
1

( , , )j
j

d d t

 Q q q Q   (A.12a) 

 
1 11 1

1e

( , ) [ ]
2i j

j

t d d
m

 



       q qj q Q q
   (A.12b) 

are, respectively, the probability density of observing electron 1 in volume element 1dq  about 1q  

and the flux density of electron 1 at point of observation 1q . We can derive the analogue of eqn 

(A.11) for the other electrons, so that for any particular electron i we can write  

 
( , )

( , ) 0i
i

t
t

t


  

 x

x
j x   (A.13) 

where  

 ( , ) ( , , )
ii j

j i

t d d t  


   q xx Q q q Q   (A.14a) 

 
e

( , ) [ ]
2i i i ii j

j i

t d d
m

 




       q q q xj x Q q
   (A.14b) 

where x  denotes a point in 3D space. Summing eqn (A.13) over all electrons and invoking the 
equivalence of electrons, we get eqn (31a).  
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Integration of the multi-dimensional CE (eqn (A.6)) over all electronic coordinates produces 

 

( , , ) /

0

kk j k
k j k

d t t d d

d J
Q 

 




     






   

 

qq q Q q q J

q





  (A.15) 

Again appealing to the divergence theorem and the normalization of the wave function, we 
deduce that the second term of eqn (A.15) is zero. Thus, we obtain a reduced CE for the nuclear 
coordinates: 

 n n( , ) / ( , ) 0t t J t
Q 

 

 
   

Q Q 
   (A.16) 

where we define 

 n ( , ) ( , , )t d t  Q q q Q    (A.17a) 

 n ( , ) ( , , )J t d J t  Q q q Q    (A.17b) 

By integrating eqn (A.16) over all except one of the nuclear coordinates, say Q , we get  

 

n n

n

( , ) / ( , )

( , ) 0

dQ t t dQ dQ J t
Q

dQ J t
Q

   
      

 
 

  
    



   
         

 
    

    



Q Q

Q

   


 


  (A.18) 

The second term of eqn (A.18) disappears as a consequence of the same reasoning applied to the 
fourth term of eqn (A.8). Hence, eqn (A.18) reduces to the 1D CE 

 
( , )

( , ) / 0
j Q t

Q t t
Q

 
 






   





   (A.19) 

Note that the dimensions of the terms are1 / LT . For the 1D model (see Section 2.6) eqn (A.19) 
is equivalent to eqn (44b). 
 
By manipulations paralleling those employed above we can derive the version of the 3N D CE in 
the laboratory coordinates: 

 
e n

1 1 , ,

0
i

N N

i a
i a x y z a

J
t R 

 


  

 
    

   q J   (A.20) 

Here  labels Cartesian components of the nuclear coordinates and the 3N D nuclear flux density 
is given by 

 ( , , ) [ / / ]
2ia a a

a

J t R R
M  

      r R


  (A.21) 

 
A.3 Relation between nuclear flux densities in the laboratory and internal frames 
To compute the flux density associated with the Cartesian component aR   of nucleus a at point 

of observation R (i.e., the flux of nucleus a in the -direction at point of observation having the 

Cartesian component aR R  ), we multiply eqn (A.21) by the Dirac distribution ( )aR R    and 

integrate over all laboratory coordinates. This procedure gives P
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( , ) ( ) ( , , )

( )[ / / ]
2i

[ / / ]
2i a

a a a

b a a a a
b aa

b a a a R R
b aa

j R t d d R R J t

d dR dR R R R R
M

d dR dR R R
M 

  

    
 

   
  



  




 
 

 

 

      

     

 
   

   

r R r R

r

r





 (A.22) 

We now transform from laboratory to internal nuclear (plus NCM) coordinates. From eqns (18) 
and (19), we have  
 1

;[ ]a aR Q   


  W    (A.23a) 

 T
;[ ]a

aR Q 
 

 


  W    (A.23b) 

Substituting these relations into the second line of eqn (A.22), we get 

 

1
;

T
;

1
;

T
;

( , ) [ [ ] ]
2i

[ ] [ ]

1
[ [ ] ]

[ ] [ ]
2i

a a
a

a

a
a

a

j R t d d R Q
M

Q Q

d d R Q
M

Q Q

   


 
  

  


  
   


















  

 
 

 

  

 
 

 

 



 



q Q W

W

q Q W

W

  


 

 


 

  (A.24) 

where we note that the Jacobian is
1

det( ) 1

W . We next integrate over Q

 . For this purpose, 

we recast the Dirac distribution as 

 

1
;1 1

; ; 1 1
; ;

1
;

1 11
; ;;

( )
[ [ ] ] { ( ) [ ]}

( ) ( )

( )1
{ [ ]}

( ) ( )( )

a
a a

a a

a

a aa

R
R Q Q Q

R
Q Q

 
      

     

 
 

     

 




 

 




 


    

  

 



W
W W

W W

W

W WW


   

 


 

 

  (A.25) 

where the second line relies on the identity
1

( ) ( )ax a x  . Plugging eqn (A.25) into eqn 

(A.24) and integrating on Q  yields 

 1 1 1
; ; ;

T
;

1
;

/( ) ( ) /( )

[ ]1
( , )

[ ]

[ ]
2i a a a

a
a

a a

Q R Q

j R t
M

d dQ
Q Q        

 

 
 

  


   



   








 


 

 
   



  W W W

W

W

q    




 
    (A.26) 

For the 1D model, which involves only a single special coordinate, eqn (A.26) reduces to  
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T

; 1
;1

;

[ ]
( , ) ( / [ ] , )

[ ]
a

a a
a a

j R t j R t
M

 
   

 

 



W

W
W




   (A.27) 

in accord with eqn (51). 

 
A possible alternate route to the relation between laboratory and internal nuclear fluxes is the 
following. From eqn (A.23b) we have  

 T
;

1
[ ]

i ia
a a aM R M Q  

  




  
  

  W
    (A.28) 

where we pre- and post-multiply by   and  , respectively. Adding eqn (A.28) to its complex 
conjugate yields  

 T
;

1
[ ] [ ] [ ]

2i 2ia
a a a aM R R M Q Q  

    




 
    

    
    W

 
    (A.29) 

Using the definitions in eqns (A.7b) and (A.21), we can cast eqn (A.29) as 

 T
;

1
( , , ) [ ] ( , , )a a

a

J t J t
M    



 r R W q Q   (A.30) 

or, in matrix form as  
 1 T

L I
J M W μJ   (A.31) 

where the subscripts I and L are intended to distinguish between “internal” and “laboratory.” 
Incidentally, one could take eqn (A.30) as the starting point for the derivation of eqn (A.26). That 
is, one could multiply both sides of eqn (A.30) by ( )aR R   and integrate the resulting equation 

over all electronic and nuclear coordinates. 
 
 
Appendix B 

Our purpose here is to provide a brief derivation of eqn (101). We begin by observing in eqn 
(100) that the mobile-type coordinates 2 7 8 9{ , , , }Q Q Q Q depend only on the z-components of the 

laboratory Cartesian coordinates of the atoms; the remaining mobile-type coordinates 

1 3 4 5 6 9{ , , , , , , , }x yQ Q Q Q Q Q S S depend only the x- and y-components of the atomic coordinates. As 

a consequence the rows of eqn (100)  may be reordered so that W assumes block-diagonal form: 
a 4 4 block corresponding to the first subset of mobile-types and an 8 8  corresponding to the 
second subset.  
 
To demonstrate the procedure, we consider the set of four equations, which can be written 
explicitly as  

 

2 1

7 2

8 3

4

1/ 2 1/ 2 1/ 2 1/ 2

0 1 0 1

1 0 1 0

1/ 4 1/ 4 1/ 4 1/ 4z

Q Z

Q Z

Q Z

S Z

     
        
    
    

    

 (B.1) 
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The determinant of the reformed 4 4 sub-matrix is unity. From eqns (20) and (B.1) we have the 
following relation between the components of momentum conjugate to laboratory and mobile 
coordinates: 

 

21

72

83

4

1/ 2 0 1 1/ 4

1/ 2 1 0 1/ 4

1/ 2 0 1 1/ 4

1/ 2 1 0 1/ 4

z

z

z

Szz

PP

PP

PP

PP

     
         
    
    

     

 (B.2) 

where we note that the matrix in eqn (B.2) is just the transpose of that in eqn (B.1). The 
contribution to the nuclear kinetic energy of the four z-components of the laboratory momenta 
can then be written in terms of the mobile momenta as  

 

1 2 2 2 2
4 1 2 3 4

1 2 2
2 8 2 7

2 2
2 8 2 7

(2 ) [ ]

(2 ) [( / 2 / 4) ( / 2 / 4)

( / 2 / 4) ) ( / 2 / 4) ]

z z z z

Sz Sz

Sz Sz

T M P P P P

M P P P P P P

P P P P P P





   

       

     

 (B.3) 

where the coefficients of the mobile components for a given laboratory z-component are just the 
elements of the corresponding row of the matrix (see eqn (B.2)). It is straightforward, but 
arduous, to show that the cross terms in 4T vanish, leaving the direct contribution 

 2 2 2 2
4 2 B 7 B 8 B B/ 2( ) / 2( / 2) / 2( / 2) / 2(4 )SzT P M P M P M P M     (B.4) 

 
Applying the same procedure to the second set of eight equations, we obtain  

 
2 2 2 2

8 1 B 3 B 4 B 5 B

2 2 2 2
6 B 9 B B B

/ 2( / 4) / 2( ) / 2( ) / 2( )

/ 2( / 4) / 2( ) / 2(4 ) / 2(4 )Sx Sy

T P M P M P M P M

P M P M P M P M

    

  
 (B.5) 

Equations (B.4) and (B.5) are so written as to indicate the reduced masses associated with the 
mobile coordinates, which are: 1 6 B 2 3 4 5 9 B/ 4; ;M M              

7 8 B B/ 2; 4Sx Sy SzM M         . The sum 4 8T T  is equal to nT given by eqn (101).  

 
It is instructive to derive expressions for the reduced masses of the mobile coordinates via the 
intuitive approach described in the text just below eqn (22) or eqn (98).  For example, we 
consider 2Q , the out-of-plane bending vibration. According to the schematic diagram in Fig. 11, 

atoms 1 and 3 move in the negative z-direction as atoms 2 and 4 move in the positive z-direction. 
We regard the 1-3 and 2-4 diatomic pairs as pseudo-atoms. The motion of their centers of mass 
with respect to each other along the z-axis constitutes a vibration, whose associated reduced mass 
is 2 B B B B B2 2 /(2 2 )M M M M M     , which agrees with the analytic result obtained above. 

The diagram for 7Q  (see Fig. 11) depicts rotation about a line (i.e., the x-axis) passing through 

atoms 1 and 3. The atoms 2 and 4 constitute a pseudo-diatomic rotating in the x-y plane.  The 
associated moment of inertia is 2

7I R  2 2
B[( / 2) ( / 2) ]M R R  , where each of the atoms of 

the diatomic is a distance / 2R removed from the axis of rotation. We conclude that 7 B / 2M  , 

which is in accord with the analytic result. A similar argument can be applied to 8Q , which is 

rotation about the y-axis. The translation of the whole molecule in the z-direction is described by 

zS . The associated reduced mass must therefore be the mass of the whole molecule, B4
zS M  . 
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Similar rationales can be used to derive the reduced masses of the modes in the second set of 
mobile-types.  
 
 
Appendix C 
 
According to eqn (51b), 

 ;

1
;

[ ]
( , ) ( , )

[ ]

T
a

a a
a a

j R t j Q t
M

 
   

 





W

W


  (C.1) 

the fluxes of the individual nuclei a along Cartesian coordinates aR   are proportional to the fluxes 

associated with the mobile-type coordinate  . Our purpose here is to show that, for the 

particular case of B4 treated in Section 4, the constant of proportionality is given by 

 ;
;1

B ;

[ ]
sign([ ] )

[ ]

T
a T

a

a

c
M

 
 

 




 
W

W
W




  (C.2) 

where we have set BaM M  for all atoms. 

 

We start with the observation that the rows of W are orthogonal, although they are not 

normalized (see eqn (100)). This condition can be expressed by  

 [ ] [ ] 0,ik jk
k

i j  W W   (C.3a) 

 2[ ] [ ] ,ik ik i
k

a i j  W W   (C.3b) 

where we condense the notation temporarily, letting i and j stand for a and k for  . Equations 

(C.3) can be rewritten succinctly as 

 

2 T 2[ ] [ ] / [ ] [ ] /ik jk j ik kj j
k k

ij

a a







 W W W W   
 (C.4) 

from which it follows that  
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1 T 2

T

2

[ ] [ ] /

[ ]

[ ]

kj kj j

kj

jl
l

a 




W W

W

W

 




 (C.5) 

We now insert this latter expression for the inverse into that for c in eqn (C.2), obtaining 

 ; 2 2
; ; ;T

B B;

[ ]
sign([ ] ) [ ]

[ ]

T
a T

a a a
a aa

c W
M M

  
     

  

 
   

   

  
W

W W
W


  

  (C.6) 

From eqn (20) we have, in the present notation, the relation between the momenta conjugate to 

the Cartesian laboratory components and the momenta conjugate to the mobile-type coordinates: 

 T
;[ ]a aP P   



 W  (C.7) 

Hence, we can write the total nuclear kinetic energy as  

 

2 T 2
n B ; B

2

/ 2 [ [ ] ] / 2

/ 2

a a
a a

T P M P M

P

   
  

 




 



  



W

 (C.8) 

where the second line follows from the results of Appendix B. By the same procedure we 

employed in Appendix B, we find that the cross terms vanish, leaving the direct contribution 

 T 2 2
n ; B{ [ ] / 2 }a

a

T M P  
 

   W  (C.9) 

Comparing the coefficients of 2P in eqns (C.8) and (C.9), we conclude that 

 T 2 B
,[ ]a

a

M
 

 
 W  (C.10) 

Equation (C.2) follows immediately from eqns (C.6) and (C.10).  

 

In the specific case where 3a x  and 1  , ; 3 ;1[ ] [ ] 1T T
a x   W W   (see eqn (100)). Therefore 

the proportionality constant in eqn (106) is 1c  . 

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 65

APPENDIX D 
 
In eqn (106), 3 3( , )xj X X t  is the flux density of nucleus 3 in the x-direction at the point of 

observation 3X X  in the NCM frame;  1
1 1 3 ;1( / [ ] , )xj Q Q X t  W is the flux density in the 

direction of the internal coordinate Q1 at the corresponding point of observation 
1

1 3 ;1/ [ ] xQ Q X   W in the internal frame. Now instead of evaluating the constant of 

proportionality  

 
T

3 ;11
1

3 3 ;1

[ ]

[ ]
x

x

c
M





W

W


   (D.1) 

in eqn (106) directly, which requires the considerable effort of inverting the matrix W , we infer 
that it must equal unity through the following rationale. Note that the sign of c is determined by 
the sign of T

3 ;1[ ] xW (see Appendix C), which is positive. 

 
We assume that the nuclei remain sufficiently well localized that they can be treated classically. 
Hence, the flux densities are given by  
 3 3 3( , ) [ ( )] ( )xj X t X X t X t     (D.2a) 

 1 1 1( , ) [ ( )] ( )j Q t Q Q t Q t     (D.2b) 

where 3( )X t and 3( )X t are the position and velocity of nucleus 3 in the NCM frame and 1( )Q t  

and 1( )Q t are the respective counterparts in the internal frame. During the time interval 1 2[ , ]t t  the 

coordinates X3 and Q1 traverse the space intervals 3 1 3 2[ ( ), ( )]X t X t  and 1 1 1 2[ ( ), ( )]Q t Q t . Every 

3( )X t  in 3 1 3 2[ ( ), ( )]X t X t  maps into a 1( )Q t  in 1 1 1 2[ ( ), ( )]Q t Q t during this time interval, according 

to the transformation 
 1

1 3 3 ;1/ [ ] xQ X  W   (D.3) 

Likewise, if the point of observation X lies in 3 1 3 2[ ( ), ( )]X t X t , then the corresponding point of 

observation Q lies in 1 1 1 2[ ( ), ( )]Q t Q t .  

 
The classical ensemble average of the mean flux density at point of observation X in the NCM 
frame during time interval 2 1t t t    can be expressed as  

 
2

1

( ) ( )
3 3 3

1

1
( , ) [ ( )] ( )

t i i
x t

i

j X t dt X X t X t
t




  
 





 (D.4a) 

and its internal counterpart as  

 
2

1

( ) ( )
1 1 1

1

1
( , ) [ ( )] ( )

t i i

t
i

j Q t dt Q Q t Q t
t




  
 





 (D.4b)  

where   is the number of members (trajectories) of the ensemble, which are labelled by index i. 
Thus, ( )

3 ( )iX t [ ( )
1 ( )iQ t ] defines the trajectory of the ith member, which is specified by the initial 

phase ( ) ( )
3 3( (0), (0))i iX X [ ( ) ( )

1 1( (0), (0))i iQ Q ]. Changing variables from t to ( )
3

iX  in eqn (D.4a) and 

from t to ( )
1

iQ in eqn (D.4b), we get 
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( )

23

( )
13

( ) ( ) ( )
3 3 3( )

1

1
( , ) [ ]

i

i

X t i i
x X t

i

j X t dX X X
t




  
 




  (D.5a) 

 
( )

21

( )
11

( ) ( ) ( )
1 1 1( )

1

1
( , ) [ ]

i

i

Q t i i

Q t
i

j Q t dQ Q Q
t




  
 




  (D.5b) 

For a given trajectory i the integration in eqn (D.5a) yields 

 
( )

23

( )
13

( ) ( )
3 1 3 2

( ) ( ) ( ) ( ) ( )
3 3 3 1 3 2( )

( ) ( )
3 1 3 2

0,  if  is outside the interval [ ( ), ( )]

[ ] 1, if ( ) ( )

1, if ( ) ( )

i

i

i i

X t i i i i

X t
i i

X X t X t

dX X X X t X X t

X t X X t






   
  

   (D.6a) 

Because 1
3 ;1[ ] 0x

 W , the following conditions hold: if 3 2 3 1( ) ( )X t X t , then 1 2 1 1( ) ( )Q t Q t ; if 

3 2 3 1( ) ( )X t X t , then 1 2 1 1( ) ( )Q t Q t . Thus, the integration in eqn (D.5b) gives

 
( )

21

( )
11

( ) ( )
1 1 1 2

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 2( )

( ) ( )
1 1 1 2

0,  if  is outside the interval [ ( ), ( )]

[ ] 1, if ( ) ( )

1, if ( ) ( )

i

i

i i

Q t i i i i

Q t
i i

Q Q t Q t

d Q Q Q Q t Q Q t

Q t Q Q t






   
  

   (D.6b) 

From eqns (D.4), (D.5) and (D.6) it follows that 
 1 3( , ) ( , )xj Q t j X t     (D.7) 

In the limit 0t   we identify the mean values 3 ( , )xj X t and 1( , )j Q t with the flux densities 

3 3( , )xj X X t  and 1
1 1 3 ;1( / [ ] , )xj Q Q X t  W .  That is  

 
3 30

1
1 1 3 ;10

( , ) lim ( , )

lim ( , ) ( / [ ] , )

x xt

xt

j X t j X t

j Q t j X t

 



 

 

   W
  (D.8) 

We conclude from eqns (106) and (D.8) that c = 1.  
 
If, on the other hand, it were the case that 1

3 ;1[ ] 0x
 W , the following conditions would hold: if 

3 2 3 1( ) ( )X t X t , then 1 2 1 1( ) ( )Q t Q t ; if 3 2 3 1( ) ( )X t X t , then 1 2 1 1( ) ( )Q t Q t . In this case the 

integration in eqn (D.5b) would yield 
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21

( )
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( ) ( )
1 1 1 2

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 2( )

( ) ( )
1 1 1 2

0,  if  is outside the interval [ ( ), ( )]

[ ] 1, if ( ) ( )

1, if ( ) ( )

i

i

i i

Q t i i i i

Q t
i i

Q Q t Q t

d Q Q Q Q t Q Q t

Q t Q Q t






    
  

   (D.9) 

Then we would deduce from eqns (D.4), (D.5), (D.6a) and (D.9) that  
 1 3( , ) ( , )xj Q t j X t      (D.10)  

and therefore, following the argument above that leads to eqn (D.8), that 1c   .   
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FIGURES  
 

 
Fig. 1: Schematic view of 2H  in direction of y axis with nuclei on z axis at positions aR  and 

bR with respect to NCM at origin. Spherical coordinates of electron with respect to NCM are r, 

  , and   (not shown). 
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Fig. 2: Nuclear flux density (NFD) of nucleus a with respect to NCM versus time for prototype 
(vibrating, aligned 2H  in the electronic ground state 2

g
  ). Five curves correspond to 

representative points on z axis. NFDs at closest (0.5a0) and farthest (2.5a0) points of observation 
are negligible on scale of plot. Insets are enlargements showing detail in intervals around specific 
events desribed in text (note changes of scale).   
 
 

 
 
Fig. 3: Z-component of electronic flux density versus time for prototype (vibrating, aligned 2H  

in the electronic ground state 2
g
  ). Five curves correspond to same points of observation 

specified in Fig. 2. Insets focus on detail over special domains, as in Fig. 2. 
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Fig. 4: Vector plots of electronic flux density for prototype (vibrating, aligned 2H  in electronic 

ground state 2
g
  ) at several times within interval encompassed by left insets of Figs. 2 and 3. 

Each plot compares scaled coupled channels result (blue) with numerically exact benchmark 
(red). Contour plots of benchmark electronic probability density are also shown (contour lines: 
0.025, 0.030, and 0.035 a0

-3). 
 
 

 
 
Fig. 5: Vector plot of benchmark electronic flux density for prototype (vibrating, aligned 2H  in 

the electronic ground state 2
g
  ) at time 222.6 fs within interval encompassed by right insets of 

Figs. 2 and 3. Contour plots of electronic probability density are also shown (contour lines: 
0.025, 0.030, 0.035 a0

-3).  
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Fig. 6: Comparison of electronic flux densities (EFDs) obtained by “beyond BOA” 
approximation with results of benchmark for prototype (vibrating, aligned 2H  in electronic 

ground state 2
g
  ). (a, b) Contour plots showing spatial-temporal evolution of EFDs in time 

interval that overlaps left insets in Figs. 2 and 3. (c,d) Spatial distributions at two times 
[indicated by vertical lines in panels (a) and (b); beyond BOA (red line), benchmark (black line)] 
: 22.2fst  , which corresponds to a classical turning point (c); 28.8fst  , halfway between 
classical turning points (d). Note the different scales in (c) and (d).     
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Fig. 7: Contour plots of vibrational (vib) dissociative (dis) and interfering (int) contributions to 
radial nuclear flux density of nucleus a (NFD) and electronic flux density (EFD) with respect to 
NCM for “quantum bubble” (isotropic 2H  in electronic ground state 2

g
 ). To improve  visibility 

of dissociative component at large distance  EFD ( e ( , )j r t ) and NFD ( ( , )aj R t ) are multiplied 

by 24 r  and 24 R , respectively. 
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Fig. 8: Tunnelling isomerization of B4. 
 

 
Fig. 9: Symmetry-adapted canonical molecular orbitals (CMOs) of B4. Yellow and blue colors 
correspond to positive and negative lobes, respectively. Top row: CMOs of rhombic reactant (R), 
in order of increasing orbital energies, from four core CMOs ( k = 1, 2, 3, 4) to six valence 
CMOs ( k = 5,6,7,8,9,10). Nuclear configuration is fixed at potential minimum for R. Bottom 
row: COMs of rhombic product (P) with nuclear configuration fixed at potential minimum for P, 
in order which correlates with CMOs of R. 
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Fig 10: Differences e,NCM BOA

( ) x (eqns (117c)) and ( 1 1( )Q (eqn (103c) of electronic [ (b), 

(c), (d)] and nuclear (a) probability densities of product and reactant (top), and corresponding 
main directions of concerted electronic and nuclear fluxes during tunnelling isomerization of B4 
(bottom). 
 

 
 
Fig. 11: Nine symmetry-adapted coordinates Q1,…,Q9 for internal nuclear motions of B4, 
together with coordinates Sx, Sy, Sz for nuclear center of mass of B4. Arrows indicate direction of 
motion of individual nuclei; + and - signs indicate motion either out of, or into, plane of page, 
respectively. 
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Fig. 12: (a) Two-dimensional (2D) contour plot of PES, showing intrinsic reaction coordinate 
(IRC) of B4 in red. Coordinates Q1 and Q3 are illustrated in Fig. 11. (b) Potential curve for 1D 
model, plotted versus main direction Q1 ( or versus Cartesian coordinate X3 of nucleus 3). Also 
shown are differences between probability densities of product P and reactant R for nucleus 3 
(blue) and for an electron in 1s core orbital (red) versus X3. Superimposed arrows in (b) indicate 
same directions of concerted fluxes (CENFs) from negative domains of density differences to 
positive ones. (c) Nuclear flux (blue) and flux of an electron in associated 1s core orbital (red) 
for nucleus 3. 
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FIGURE 13: Time evolution of probability densities (left) and fluxes (right) of nuclei (top), core 
electrons (middle) and valence electrons (bottom) during tunnelling isomerization of B4. 
Horizontal arrows in bottom right panel indicate fluxes of valence electrons, which alternate in 
direction in the four quadrants. Vertical arrows (bottom) labeled 1, 2, 3, and 4 indicate angular 
positions of nuclei B1, B2, B3, and B4 (cyclic). 
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Fig. 14: Difference between one-electron probability densities of product P and reactant R for 
electrons in localized core orbitals (top) and main directions of electronic fluxes associated with 
the reaction R P indicated by blue arrows (bottom). Positive and negative domains of 
electronic probability density difference are indicated by red and blue colors, respectively. 
Arrows represent electronic flux from centers of negative domains to centers of positive domains 
of the difference. Solid lines represent nuclear frames of rhombic R (blue-green) and P (red). 
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Fig 15: Difference e,NCM; val,1D, BOA

( )   between angular    components of one-electron 

densities of valence electrons for product P and reactant R (top), and corresponding angular flux 

density e,NCM; val,1D, R,bBOA
( , / 4)j t   during tunnelling isomerization of B4 (bottom). Vertical 

arrows indicate positions of nuclei 1, 2, 3, 4 (cyclic). Horizontal arrows   and   indicate 
anticlockwise and clockwise main directions of angular fluxes of valence electrons.  
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Fig. 16: (a) Bird's eye view of Cope rearrangement of semibullvalene ( SBV). (b)  Superposition 
of structures of reactant R (grey) and product P (black) for scenario with C1-C5 bond parallel 
with  x-axis. The x-z plane is Cs symmetry plane. Inset shows main direction of nuclear flux 
during tunnelling from R to P, exemplarily for carbon nucleus C4. The vector (red) shows shift 

C4 C4 e . 
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Fig. 17: Mobile for carbon nuclei C1,....,C8 and attached  protons H1,...,H8 of SBV. 
 
 

 
 
 Fig. 18: (a) Double well potential for Cope rearrangement of SBV. Horizontal line indicating 
mean energy of lowest tunneling doublet serves as base-line for continuous curve, which 
represents difference of nuclear densities of product P (right) and reactant R (left). Variable   
(abscissa)  assumes special values λ= -.5, 0.0, and .5 at bottom of potential well for R,  at 
potential barrier, and at bottom of potential well for P,  respectively. (b) Contour plot for time 
evolution of nuclear probability density from R at t = 0 to P at t = τ/2 and back to R at t = τ, 
during coherent tunneling. Tunneling time τ = 1940 s is taken from ref. 123. (c) Contour plot of 
corresponding nuclear flux density, with maximum value at time t = τ/4,  at potential barrier. 
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Fig.19: (a) Angular probability densities of pericyclic electrons that contribute to changes in 
Lewis structures of SBV (see Fig. 16) upon Cope rearrangement in the domain of coherent 
tunnelling from reactant (R, blue) to product (P, green), and their difference (P-R, red). Vertical 
arrows with cyclic labels 1,2,.....,8,1 indicate angular positions of nuclear centers of mass of CH 
bonds halfway between R and P. (b) Corresponding angular flux density of pericyclic electrons.  
Horizontal arrows (----> and <---)  indicate clockwise and counterclockwise fluxes. (c) Lewis 
structure of R with curved arrows showing alternating ( "pincer-wise") angular fluxes of 
pericyclic electrons. Numbers at arrows specify maximum numbers of pericyclic electrons 
transferred by these fluxes.  
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Fig. 20: Contour plots of time evolution of angular electronic probability densities (left) and flux 
densities (right) during Cope rearrangement of SBV in tunnelling domain. Vertical and 
horizontal arrows  correspond to those shown in Fig. 19.  
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