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the coupled dynamics. This potential arises out of the exact fac-

torization framework where a time-dependent Schrödinger equa-

tion (TDSE) for the nuclei alone can be formulated and applica-

tions of the approach to real systems are emerging49. The poten-

tials appearing in this equation capture exactly all coupling to the

electronic system as well as any external fields, and the result-

ing nuclear wavefunction reproduces the exact nuclear dynamics.

The scalar potential is denoted the TDPES, and in many situa-

tions, including all one-dimensional problems, the TDPES is the

only potential acting on the nuclear subsystem50,51; its gradient

therefore yields the exact force on the nuclei. For this reason, it

is important to gain an understanding of its structure, to address

both points (i) and (ii) above. Therefore, our aim in this paper is

to find the exact TDPES for the problem of laser-induced electron

localization in a one-dimensional model of H+
2 , compare its struc-

ture with potential surfaces more traditionally used for strong-

field dynamics, and study classical nuclear dynamics on the ex-

act TDPES with a view to developing mixed quantum-classical

schemes based on the exact factorization.

Previous work52–54 has analysed the structure of the exact

TDPES for a case of field-free dynamics, non-adiabatic charge-

transfer in the Shin-Metiu model55, finding that much intuition

is gained by analysing it in term of the Born-Oppenheimer (BO)

potential energy surfaces (BOPESs), and that such an analysis en-

ables connections to be made with traditional approximate meth-

ods for coupled electron-ion dynamics, such as surface-hopping.

Further, it was found that evolving an ensemble of classical nu-

clear trajectories on the exact TDPES accurately reproduces the

exact nuclear dynamics54.

We will show here that analogous conclusions can be drawn

for the laser-induced electron localization problem: an ensemble

of classical nuclear trajectories evolving on the exact TDPES ac-

curately reproduces the exact nuclear dynamics, and analysis in

terms of the QSPESs, which play the role of the BOPESs when

strong fields are present, is helpful. The TDPES naturally sepa-

rates into a gauge-independent part and a gauge-dependent part.

We show that the density-weighted average of the QSPESs ap-

proximates the gauge-independent component, which is rather

oscillatory and the force on the nuclei resulting from its gradient

is incorrect. Once the gauge-dependent component of the TDPES

is included, the oscillations smoothen out: together, they yield

the correct force on the nuclei. Further, we find that, once local-

ization begins to set in, the gradient of the exact TDPES at the

location of the mean nuclear position, tracks that of one QSPES

and then switches to the other, resembling the picture provided

by the semiclassical surface-hopping approach13,37,38.

A multiple trajectory Ehrenfest dynamics simulation shows that

although the nuclear dynamics is reasonably reproduced, an in-

correct electron localization asymmetry is obtained. The error

can be related to the incorrect BO projections of the electronic

wavefunction. The fact that the Ehrenfest dynamics yields in-

accurate electron dynamics can be anticipated from our recent

work on the exact electronic-TDPES56: in this complementary

picture, instead of asking what is the exact potential acting on

nuclei in an exact TDSE for nuclei, one asks what is the exact

potential acting on electrons in an exact TDSE for the electronic

subsystem. We found56 that the exact electronic-TDPES is sig-

nificantly different from the potential acting on electrons in the

usual mixed quantum-classical schemes – including Ehrenfest as

well as surface-hopping schemes – yielding significant errors in

the prediction of the electron localization asymmetry. The re-

sults of the present paper suggest that, instead, mixed quantum-

classical schemes based on evolving multiple classical trajectories

on the exact TDPES (or good approximations to it) will be a useful

method to simulate strong field processes.

This paper is organized as follows. In section 2, we review two

different concepts of potential energy surfaces for TD processes

in laser fields: the QSPES and the exact TDPES. In section 3 we

compare the features of these potentials for electron localization

dynamics in the dissociation of a model H+
2 molecule induced

by time-delayed coherent ultra shortlaser pulses. We show the

exact TDPES gives the correct force acting on nuclei, so evolv-

ing multiple classical trajectories on it reproduces the correct nu-

clear wavepacket dynamics. The force obtained from surface-

hopping between QSPESs can approximately reproduce such an

exact force once localization begins to set in. We also compute

multiple trajectory Ehrenfest dynamics and reveal how it fails to

reproduce electron localization dynamics while it reasonably re-

produces the nuclear dynamics. In section 4 we summarize the

results and remark on the future directions.

2 Theory

2.1 Quasi-static potential energy surface

In this section we first review the concept of the QSPES

introduced for the description of molecules in strong-

fields. The QSPES has been thoroughly discussed in earlier

works13,36–38,57–63 , but we here give a discussion particularly

relevant for the electron localization dynamics problem in the

dissociation of H+
2 .

For this problem, the essential physics is contained in the two

lowest field-free electronic states of the BO Hamiltonian, i.e.,

the 1sσg and 2pσu states, and the full molecular wavefunction

Ψ(R,r, t) of the system can be expressed as

Ψ(R,r, t) = χg(R, t)φ
g
R(r)+χu(R, t)φ

u
R(r) . (1)

Here χg(R, t) and χu(R, t) describe nuclear wavefunctions that ex-

ist in the 1sσg and 2pσu states respectively, functions of the in-

ternuclear distance R and time t, and φ
g
R(r) and φ u

R(r) describe

the 1sσg and 2pσu electronic wavefunction respectively, which

parametrically depend on R. Since φ
g
R(r) and φ u

R(r) are bond-

ing and anti-bonding combination of 1s atomic orbitals, a coher-

ent superposition of them provides the localized electronic states

φ
left,right
R (r) = 1√

2
(φ

g
R(r)± φ u

R(r)) that have the electron on either

the left or the right proton. These states form a convenient basis

in which to monitor the electron localization asymmetry. In the

experiment, interactions of the molecule with the time-delayed

infra-red laser field in the course of the dissociation provides a

coupling of φ
g
R(r) and φ u

R(r), creating a coherent superposition

state, and, instead of Eq. 1, it is instructive to write:

Ψ(R,r, t) = χleft(R, t)φ
left
R (r)+χright(R, t)φ

right
R (r) (2)
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where χleft(R, t) and χright(R, t) are defined as the nuclear wave-

functions that exist in connection with φ left
R (r) and φ

right
R (r). Mea-

surements of ion fragment asymmetries left or right along the

polarization axis directly relate to χleft(R, t) and χright(R, t).

While the field-free states above are useful to analyse the asym-

metry, to understand the time-development of the localization it

is helpful to consider a third, time-dependent, basis, the TD qua-

sistatic states, φ
QS(i)
R (r, t), also known as phase-adiabatic states.

These states are defined as instantaneous eigenstates of the in-

stantaneous electronic Hamiltonian Ĥ int
R (r, t), defined by

Ĥ int
R (r, t) = ĤBO

R (r)+ v̂laser(r, t), (3)

i.e.,

Ĥ int
R (r, t)φ

QS(i)
R (r, t) = εQS(i)(R, t)φ

QS(i)
R (r, t) (4)

where εQS(i)(R, t) are the quasistatic potential energy surfaces

(QSPESs). Within our two-state model we may write

φ
QS(i)
R (r, t) = c

(i)
g (R, t)φ

g
R(r)+ c

(i)
u (R, t)φ u

R(r), (5)

so that the εQS(i)(R, t) of Eq. (4) are given by the eigenvalue equa-

tion:
(

〈φ g
R|Ĥ int

R |φ g
R〉 〈φ g

R|Ĥ int
R |φ u

R〉
〈φ u

R|Ĥ int
R |φ g

R〉 〈φ u
R|Ĥ int

R |φ u
R〉

)(

c
(i)
g

c
(i)
u

)

= εQS(i)

(

c
(i)
g

c
(i)
u

)

.

(6)

Therefore we can express the QSPESs in terms of the BOPESs

εBO(i)(R) as

εQS(1,2)(R, t) =εBO(1,2)(R)cos2 θ(R, t)+ εBO(2,1)(R)sin2 θ(R, t)

±〈φ g
R|v̂laser|φ u

R〉sin2θ(R, t)

(7)

and the electronic quasi-static eigenstates in terms of the BO

states,

φ
QS(1)
R (r, t) = cosθ(R, t)φ

g
R(r)+ sinθ(R, t)φ u

R(r)

φ
QS(2)
R (r, t) = sinθ(R, t)φ

g
R(r)− cosθ(R, t)φ u

R(r),

(8)

where the TD mixing parameter θ(R, t) is given by

tan2θ(R, t) =
2〈φ g

R|v̂laser|φ u
R〉

εBO(1)(R)− εBO(2)(R)
. (9)

The molecular wavefunction expressed in terms of quasi-static

states is

Ψ(R,r, t) = χQS
1 (R, t)φ

QS(1)
R (r, t)+χQS

2 (R, t)φ
QS(2)
R (r, t). (10)

Note that the nuclear wavefunctions χQS
1 (R, t) and χQS

2 (R, t) that

are connected to the quasi-static states φ
QS(1)
R (r, t) and φ

QS(2)
R (r, t)

can be expressed in terms of χleft(R, t) and χright(R, t) as

χQS
1 (R, t) =

1√
2
[χleft(R, t)(cosθ + sinθ)

+χright(R, t)(cosθ − sinθ)]

χQS
2 (R, t) =

1√
2
[χleft(R, t)(−cosθ + sinθ)

+χright(R, t)(cosθ + sinθ)].

(11)

which can be used to extract the electron localization from

χQS
1 (R, t) and χQS

2 (R, t).

A semi-classical surface-hopping model based on QSPESs has

recently been utilized to understand and reproduce the electron

localization dynamics and asymmetry13,37,38 in H+
2 . In this ap-

proach, an ensemble of classical nuclear trajectories evolve on

one QSPES or the other QSPES, making instantaneous hops be-

tween them as determined by a Landau-Zener formula. It was

shown that the electron localization sets in a region where the

dynamics is intermediate between adiabatic and diabatic: the

ensemble of nuclear trajectories traverses several laser-induced

avoided crossings between the QSPESs. This semi-classical

method gives asymmetry parameters in reasonably good overall

agreement with that obtained from the full TDSE although the

details differ. The agreement lends some hope to the use of this

semiclassical scheme to simulate coupled electron-ion dynamics

in control problems of more complicated systems; however, at

the same time a further understanding of the errors in the de-

tails is desirable. We will analyse this approach by comparing the

QSPESs with the exact TDPES, which we will review in the next

section.

2.2 Exact time-dependent potential energy surface

In Ref.47,48, it was shown that the full molecular wavefunction

Ψ(r,R, t) which solves the TDSE

ĤΨ(r,R, t) = i∂tΨ(r,R, t) (12)

can be exactly factorized to the single product

Ψ(r,R, t) = χ(R, t)ΦR(r, t) (13)

of the nuclear wavefunction χ(R, t) and the electronic wavefunc-

tion ΦR(r, t) that parametrically depends on the nuclear positions

R and satisfies the partial normalization condition

∫

dr|ΦR(r, t)|2 = 1 ∀R, t. (14)

Here, the complete molecular Hamiltonian is

Ĥ = T̂n(R)+V̂ n
ext(R, t)+ ĤBO(r,R)+ v̂e

ext(r, t), (15)

and ĤBO(r,R) is the BO electronic Hamiltonian,

ĤBO = T̂e(r)+Ŵee(r)+Ŵen(r,R)+Ŵnn(R). (16)

1–10 | 3
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Note that T̂n = −∑
Nn

α=1
∇2

α
2Mα

and T̂e = −∑
Ne

j=1

∇2
j

2m are the nuclear

and electronic kinetic energy operators, Ŵee, Ŵen and Ŵnn are

the electron-electron, electron-nuclear and nuclear-nuclear inter-

action, and V̂ n
ext(R, t) and v̂e

ext(r, t) are time-dependent (TD) ex-

ternal potentials acting on the nuclei and electrons, respectively.

Throughout this paper R and r collectively represent the nuclear

and electronic coordinates respectively and h̄ = 1.

Returning to Eq. (13), the stationary variations of the quan-

tum mechanical action with respect to ΦR(r, t) and χ(R, t) under

the condition (14) lead to the following equations of motion for

χ(R, t) and ΦR(r, t):

(

ĤBO(r,R)+ v̂e
ext(r, t)+Ûcoup

en [ΦR,χ]− ε(R, t)
)

ΦR(r, t)

= i∂tΦR(r, t)

(17)

[

Nn

∑
α=1

[

−i∇α +Aα (R, t)
]2

2Mα
+V̂ n

ext(R, t)+ ε(R, t)

]

χ(R, t)

= i∂t χ(R, t).

(18)

Here, ε(R, t) is the exact nuclear TDPES

ε(R, t) =
〈

ΦR(t)
∣

∣

∣
ĤBO + v̂e

ext(r, t)+Ûcoup
en − i∂t

∣

∣

∣
ΦR(t)

〉

r
, (19)

Û
coup
en [ΦR,χ] is the “electron-nuclear coupling operator”,

Ûcoup
en [ΦR,χ] =

Nn

∑
α=1

1

Mα

[

[

−i∇α −Aα (R, t)
]2

2
(20)

+

(−i∇α χ

χ
+Aα (R, t)

)

(

−i∇α −Aα (R, t)
)

]

,

and Aα

(

R, t
)

is the TD vector potential potential,

Aα

(

R, t
)

=
〈

ΦR(t)
∣

∣

∣
− i∇α ΦR(t)

〉

r
. (21)

The symbol 〈 · 〉r indicates an integration over electronic coordi-

nates only. Note that the PNC makes the factorization (13) unique

up to within a (R, t)-dependent gauge transformation,

χ(R, t)→ χ̃(R, t) = e−iθ(R,t)χ(R, t)

ΦR(r, t)→ Φ̃R(r, t) = eiθ(R,t)ΦR(r, t)
(22)

and Eqs. (17) and (18) are form invariant under this transforma-

tion while the scalar potential and the vector potential transform

as

ε̃(R, t) = ε(R, t)+∂tθ(R, t) (23)

Ãα (R, t) = Aα (R, t)+∇α θ(R, t). (24)

The equation for the exact nuclear wavefunction, Eq. (18), is

Schrödinger-like, and the TD vector potential (21) and TD scalar

potential (19) that appear in it, exactly govern the nuclear dy-

namics. It is important to note that χ(R, t) can be interpreted as

the exact nuclear wave-function since it leads to an N-body nu-

clear density, Γ(R, t) = |χ(R, t)|2, and an N-body current density,

Jα (R, t) = 1
Mα

[

Im(χ∗(R, t)∇α χ(R, t))+Γ(R, t)Aα (R, t)
]

, which re-

produce the true nuclear N-body density and current density48

obtained from the full wave-function Ψ(r,R, t).

In our previous work the shape of this exact TDPES has been

useful to interpret dynamics for both a strong field process

(strong-field dissociation of H+
2 )47,48 as well as for field-free dy-

namics of non-adiabatic charge-transfer52–54. In particular, in the

field-free case, a detailed study of the form of its gauge-dependent

and gauge-independent parts proved instructive to understand

its effect on the nuclear dynamics, and the structure to be ex-

pected for general field-free problems. Importantly, in a mixed

quantum-classical description, the gradient of this exact TDPES

gives uniquely the correct force on the nuclei, and it was shown,

in the field-free case, that an ensemble of classical trajectories

evolving on the exact TDPES accurately reproduces the exact nu-

clear wavepacket dynamics. We now consider a detailed study of

the form of the exact TDPES for the present case of dynamics in

external fields, with the aims of addressing three questions. First,

does running classical nuclear dynamics on the exact TDPES re-

produce the dynamics of laser-induced electron localization? Sec-

ond, how are the QSPESs related to the exact TDPES? Third, can

we see hints of the semiclassical surface-hopping method in the

exact TDPES similar to the case of field-free non-adiabatic charge

transfer dynamics?

3 Results and discussion

3.1 Theoretical model

We employ a one-dimensional model of the H+
2 molecule to study

electron localization dynamics achieved by time-delayed coherent

ultra short laser pulses7,8,13. In the experiment, first an ultravi-

olet (UV) pulse excites H+
2 to the dissociative 2pσu state while a

second, time-delayed, infrared (IR) pulse induces electron trans-

fer between the dissociating atoms. In our model, we start the

dynamics after the excitation by the UV pulse: the wavepacket

starts at t = 0 on the first excited state (2pσu state) of H+
2 as a

Frank-Condon projection of the wavefunction of the ground state,

and then is exposed to the IR laser pulse. The full Hamiltonian of

the system is given by

Ĥ(R,z, t) = T̂n(R)+ Ĥ int
R (z, t)

= T̂n(R)+ T̂e(z)+Ŵnn(R)+Ŵen(z,R)+ v̂laser(z, t)

(25)

where R is the internuclear distance and z is the electronic co-

ordinate as measured from the nuclear center of mass. The ki-

netic energy terms are T̂n(R) = − 1
2µn

∂ 2

∂R2 and, T̂e(z) = − 1
2µe

∂ 2

∂ z2 ,

respectively, where the reduced mass of the nuclei is given by

µn = MH/2, and reduced electronic mass is given by µe =
2MH

2MH+1

(MH is the proton mass). The interactions are soft-Coulomb:

Ŵnn(R) =
1√

0.03+R2
, and Ŵen(z,R) = − 1

√

1.0+(z− R
2
)2
− 1
√

1.0+(z+ R
2
)2

(and Ŵee = 0). The IR pulse is described within the dipole

approximation and length gauge, as v̂e
ext(z, t) = E(t)qez, where

E(t) = E0 exp

[

−
(

t−∆t
τ

)2
]

cos(ω(t −∆t)), and the reduced charge

4 | 1–10
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qe = 2MH+2
2MH+1 . The wavelength is 800 nm and the peak intensity

I0 = E2
0 = 3.0× 1012W/cm2. The pulse duration is τ = 4.8 f s and

∆t is the time delay between the UV and IR pulses. Here we show

the results of ∆t = 7 fs.

We propagate the full TDSE

Ĥ(z,R, t)Ψ(z,R, t) = i∂tΨ(z,R, t) (26)

numerically exactly to obtain the full molecular wavefunction

Ψ(z,R, t), and from it we calculate the probabilities of directional

localization of the electron, P±, which are defined as P+(−) =
∫

z>(<)0 dz
∫

dR|Ψ(z,R, t)|2. These are shown as the green solid (P−)

and red dashed (P+) lines in Fig. 1b. It is evident from this figure

that considerable electron localization occurs, with the electron

density predominantly localized on the left (negative z-axis).
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Fig. 1 (a) 4.8 fs FWHM 800 nm laser pulse. (b) Electron localization

probabilities along the negative (green solid line) and the positive z-axis

(red dashed line) as a function of time. (c) Population dynamics during

dissociation on the BO state φ
g
R(z) (green solid) and φ u

R(z) (red dashed).

(d) Population dynamics during dissociation on the 1st quasi-static state

φ
QS(1)
R (z, t) (green solid) and 2nd quasi-static state φ

QS(2)
R (z, t) (red

dashed). (e) Quasi-static potential energy surfaces εQS(1)(R, t) (green

solid) and εQS(2)(R, t) (red dashed) for a nuclear trajectory 〈R〉(t) that

tracks the expectation value of the internuclear distance. The blue curve

shows the transition probability given by a Landau-Zener formula (Eq.

18 of Ref. 13).

Furthermore, we calculate the population dynamics of the BO

states φ
g
R(z) (green solid) and φ u

R(z) (red dashed) (Fig. 1c) during

dissociation, as well as the population dynamics on the 1st quasi-

static state φ
QS(1)
R (z, t) (green solid) and 2nd quasi-static state

φ
QS(2)
R (z, t) (red dashed) (Fig. 1d); the relative simplicity of the

latter demonstrate the usefulness of the QS basis for laser-induced

processes. We then plot the QSPESs εQS(1)(〈R(t)〉, t) (green solid)

and εQS(2)(〈R(t)〉, t) (red dashed) evaluated at a nuclear trajec-

tory 〈R(t)〉 that tracks the expectation value of the internuclear

distance. These results coincide qualitatively with the previous

results reported by Kelkensberg et al.13 Panels b, d, and e, sug-

gest that the electron localization is determined by the passage

of the dissociating molecule through a regime where the laser-

molecule interaction is neither diabatic nor adiabatic. As dis-

cussed in the previous section, the semiclassical scheme, with the

avoided crossings between the QSPES inducing the trajectories to

hop between them, reproduces the general behavior. Next, we

will compare the exact TDPES with the QSPES to understand the

relation between the two, shed some light on the surface-hopping

scheme, and find the exact force on classical nuclei.

3.2 Exact TDPES vs. QSPES

First we show the exact TDPES for this process in Fig. 2. We cal-

culate the TDPES in the gauge where the vector potential A(R, t) is

zero48, so the TDPES ε(R, t) is the only potential acting on the nu-

clear subsystem. It is instructive to express the TDPES as the sum

of the gauge-independent term εgi(R, t) and the gauge-dependent

term εgd(R, t) as done in previous studies48,52 :

ε(R, t) = εgi(R, t)+ εgd(R, t) (27)

where

εgi(R, t) = 〈ΦR(t)| ĤBO + v̂laser +Ûcoup
en |ΦR(t)〉z (28)

and

εgd(R, t) = 〈ΦR(t)|− i∂t |ΦR(t)〉z . (29)

In Fig. 2, ε(R, t)(black solid), εgi(R, t)(blue solid) and

εgd(R, t)(orange solid) are plotted at nine different times, along

with the two lowest BOPESs, εBO(1)(R) and εBO(2)(R). (Note

that the TDPES ε(R, t)(black solid) and its GD component

εgd(R, t)(orange solid) have been rigidly shifted along the energy

axis).

We also plot the exact nuclear density |χ(R, t)|2 (green solid)

and the nuclear density reconstructed from evolving an ensemble

of 800 classical trajectories on the exact TDPES (red dashed)54

at each time. The closeness of these last two curves shows that

a mixed quantum-classical scheme for the electron localization

process is appropriate and that the exact TDPES ε(R, t) gives the

correct force acting on classical nuclei in such a scheme.

In previous work52–54, step-like features of εgi(R, t) and

εgd(R, t) in the field-free non-adiabatic process in the vicinity

of the avoided crossing have been shown. In particular, af-

ter passage through the avoided crossing, where the nuclear

wavepacket had spatially separated on two BOPESs, the GI com-

ponent tracked one BO surface or the other, with a step between

them, while the GD component was piecewise flat, but with a step

in the same region with opposite sign. The net TDPES was over-

all more smooth than either of the components. Here, we find

again very interesting features of εgi(R, t) and εgd(R, t). First note

that both εgi(R, t) and εgd(R, t) shows many small hills and valleys

after the laser-induced nonadiabatic transitions begin, but with
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Fig. 2 Snapshot of the exact TDPES ε(R, t) (black solid) , its

gauge-invariant part εgi(R, t) (blue solid) and gauge-dependent part

εgd(R, t) (orange solid) at indicated times along with two lowest BOPESs

(black dashed). Furthermore, the exact nuclear density |χ(R, t)|2 (green

solid) and the nuclear density reconstructed from the multiple trajectory

dynamics on the exact TDPES (red dashed) for each time are also

plotted.

opposite slopes to each other, so that these structures largely can-

cel each other when the exact TDPES ε(R, t) is constructed (much

like the near-cancellation of the steps in the field-free case). Like

the field-free case, both the GI and GD terms are important to

consider to predict the correct nuclear dynamics. Second, in the

present strong-field case, unlike the field-free examples studied

in52–54, εgi(R, t) does not piecewise track one BOPES or the other.

However, it does track a density-weighted QSPES, as we will show

next.

In Fig. 3, we show ε(R, t)(black solid) (which is again rigidly

shifted along the energy axis) and the gauge-invariant part

εgi(R, t) (blue solid) together with the QSPESs εQS(1)(R, t) (green

solid) and εQS(2)(R, t) (red solid). We find that the oscillations

in the gauge-invariant part of exact TDPES εgi(R, t) (blue solid)

tend to step between the two QSPESs: |χQS
1 (R, t)|2 and |χQS

2 (R, t)|2
are also plotted in Fig. 3, and we see that εgi(R, t) tends towards

the QSPES whose population is dominant, i.e. when |χQS
1 (R, t)|2

is larger than |χQS
2 (R, t)|2 εgi(R, t) approaches to εQS(1)(R, t) and

when |χQS
2 (R, t)|2 is larger than |χQS

1 (R, t)|2 εgi(R, t) approaches to

εQS(2)(R, t). In fact, εgi(R, t) lies practically on top of the weighted

average of the quasi-static surfaces εQS
ave(R, t):

εQS
ave(R, t) =

|χQS
1 (R, t)|2

|χQS
1 (R, t)|2 + |χQS

2 (R, t)|2
εQS(1)(R, t)

+
|χQS

2 (R, t)|2

|χQS
1 (R, t)|2 + |χQS

2 (R, t)|2
εQS(2)(R, t)

(30)
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Fig. 3 Snapshots of the exact TDPES ε(R, t)(black solid), the

gauge-invariant part of the exact TDPES εgi(R, t) (blue solid), QSPESs

εQS(1)(R, t) (green solid) and εQS(2)(R, t) (red solid), and the weighted

average of the QSPESs εQS
ave(R, t) (light blue solid) at indicated times.

|χQS
1 (R, t)|2 (green), |χQS

2 (R, t)|2 (red) and |χ(R, t)|2 (orange) are also

plotted.

This is plotted with light blue line in Fig. 3. Therefore

the weighted-average of the QSPESs approximates the gauge-

invariant part of exact TDPES εgi(R, t), but not the full exact TD-

PES ε(R, t). In fact, this is quite analogous to the previous results

on the field-free passage through an avoided crossing52–54: there,

at the times considered, the density-weighted average collapsed

to one BO surface or the other except in the intermediate (step)

region, because the spatial separation of the parts of the density

projected onto different BO surfaces meant that in the field-free

analog to Eq. 30, the prefactors of each term was either one or

zero. Here it is evident that the density does not spatially separate

(Fig. 3), i.e. the projections on to the QSPESs overlap. One can

make entirely analogous statements in both cases: the density-

weighted average of the BOPES approximates the gauge-invariant

part of exact TDPES εgi(R, t) in the field-free case, and the density-

weighted average of the QSPES approximates the gauge-invariant

part of exact TDPES εgi(R, t) in the presence of strong fields.

To confirm the relationship between εgi(R, t) and εQS
ave(R, t), we

consider the expansion of the complete wavefunction with the

two lowest quasi-static states (Eq. 10). Then the exact electronic
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conditional wavefunction ΦR(z, t) is expressed as:

ΦR(z, t) =
χQS

1 (R, t)

χ(R, t)
φ

QS(1)
R (z, t)+

χQS
2 (R, t)

χ(R, t)
φ

QS(2)
R (z, t). (31)

Then we realize:

〈ΦR(z, t)|ĤBO + v̂laser|ΦR(z, t)〉z

=
|χQS

1 (R, t)|2
|χ(R, t)|2 εQS(1)+

|χQS
2 (R, t)|2
|χ(R, t)|2 εQS(2)

= εQS
ave(R, t).

(32)

Since εgi(R, t) = 〈ΦR(z, t)|ĤBO + v̂laser|ΦR(z, t)〉z +
1

2M 〈ΦR(z, t)|(−i ∂
∂R

−A(R, t))2|ΦR(z, t)〉z, we can conclude

εgi(R, t)≈ εQS
ave(R, t), (33)

because O(M−1) term gives a much smaller contribution.

To reproduce the correct dynamics, however the effect of

εgd(R, t) is crucial to include, as in the field-free case studied be-

fore54. In the gauge we have chosen A(R, t) = 0, but we note that

if instead we choose the gauge where εgd(R, t) = 0 then the vec-

tor potential A(R, t) will be non-zero, and will be responsible for

the role of effectively reducing the oscillatory structure in the GI

term.

In Fig. 4, we plot the gradient of the different potentials com-

puted on the trajectory of mean nuclear distance 〈R〉(t), as a more

direct probe of the force on the nuclei. The black line, which is

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 4  6  8  10  12  14

F
or

ce
 (

a.
u.

)

Time (fs)

Fig. 4 Time evolution of the gradient of each TDPES at position 〈R(t)〉.
Green line: ∂

∂R
εQS(1)(〈R(t)〉); Red line: ∂

∂R
εQS(2)(〈R(t)〉); Blue line:

∂
∂R

εgi(〈R(t)〉); Light blue line: ∂
∂R

εQS
ave(〈R(t)〉); Black line: ∂

∂R
ε(〈R(t)〉).

the gradient of the exact TDPES ∂
∂R

ε(〈R(t)〉), gives the exact force

on the nuclei. First we immediately notice that the gradient of

the weighted average of the two QSPES ∂
∂R

εQS
ave(〈R(t)〉) (light blue

line) (equivalently, the GI component (blue line)) is completely

different from the exact force. A semi-classical simulation on the

weighted average of the two QSPES would not give the correct

nuclear dynamics. We observe instead that, as the localization

sets in, the exact force ∂
∂R

ε(〈R(t)〉) coincides with the gradient of

one or the other QSPES (red or green). This supports the idea

of semiclassical surface-hopping between QSPES13,37,38 at least

after the localization begins to set in (time ∼6 fs): the exact force

on the nuclei is given by the gradient of the exact TDPES, and,

when evaluated at the mean nuclear position, coincides with the

force from one QSPES or the other, making transitions between

them at their avoided crossings. This explains why the semiclas-

sical simulations of Ref.13 had a reasonable agreement with the

exact results. Furthermore the figure shows the important role of

the gauge-dependent part εgd(R, t); without this term, the force

on the nuclei would be more oscillatory and quite different (blue

line in the figure). We note that if instead we choose the gauge

where εgd(R, t) = 0 then the vector potential A(R, t) will be respon-

sible for the role of effectively reducing the oscillatory structure

in the GI term. As stated above, when we choose the gauge where

εgd(R, t) = 0, then the vector potential A(R, t) plays the role of it

according to their relationship: Ã(R, t) =
∫ t

0 dt ′
(

−∂Rεgd(R, t
′)
)

54.

3.3 Multiple trajectory Ehrenfest dynamics

Given that there are several avoided crossings during the local-

ization dynamics, one might ask how well a mean-field surface

to propagate the electrons would work. To this end, we run a

multiple-trajectory Ehrenfest calculation ∗, and compare the elec-

tron and nuclear densities with the exact ones.

In the upper panel of Fig. 5, we plot the conditional electron

density |ΦR(z, t)|2 obtained from the exact calculation at indicated

times. In the lower panel, we plot its squared expansion coef-

ficients in the Born-Oppenheimer expansion |Cg(R, t)|2 (green)

and |Cu(R, t)|2 (red) (ΦR(z, t) = Cg(R, t)Φ
g
R(z) + Cu(R, t)Φ

u
R(z)),

along with the nuclear density (black). In Fig. 6, we plot

the electron density |Φ(z, t|Rcl(t))|2 obtained from the 800-

trajectory Ehrenfest dynamics calculation at the indicated times.

The lower panel shows the squared expansion coefficients

in the Born-Oppenheimer expansion |Cg(Rcl(t))|2 (green) and

|Cu(Rcl(t))|2 (red) of the electronic wave function Φ(z, t|Rcl(t))

obtained from multiple trajectory Ehrenfest dynamics calculation

(Φ(z, t|Rcl(t)) =Cg(Rcl(t))Φ
g
R(z)+Cu(Rcl(t))Φ

u
R(z)). We also show

the nuclear densities reconstructed from the distribution of clas-

sical trajectories obtained from multiple trajectory Ehrenfest dy-

namics calculation (black circle line). Note that the 800 Ehrenfest

trajectories cover the configuration space only partially. Hence,

the reconstructed quantities equivalent to the fully quantum me-

chanical quantities can only be represented in a certain range in

the configuration space that the trajectories cover at each instance

of time. In Fig. 6, at t = 4.8 fs only 4.9a.u.< R < 6.6a.u. is covered

while at t = 12.0 fs, the covered range is 7.5a.u.< R < 15a.u.

∗A set of 800 trajectories is propagated according to

µn

d

dt
vcl(t) =−

∫

dzΦ(z, t|Rcl(t))(
d

dR
Ĥ int

R )Φ(z, t|Rcl(t)) (34)

and

i
∂

∂ t
Φ(z, t|Rcl(t)) = Ĥ int

R (z, t)Φ(z, t|Rcl(t)), (35)

where the initial conditions are sampled from the phase-space distribution corre-

sponding to |χ(R, t = 0)|2.
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Fig. 5 Upper panel: Conditional electron density |ΦR(z, t)|2 obtained

from the exact calculation at the indicated times. Lower panel: Squared

expansion coefficients of the Born-Oppenheimer expansion |Cg(R, t)|2
(green) and |Cu(R, t)|2 (red) of the exact conditional electronic wave

function ΦR(z, t) (ΦR(z, t) =Cg(R, t)Φ
g
R(z)+Cu(R, t)Φ

u
R(z)) at the indicated

times. The exact nuclear density is also plotted (black).

Comparison of the top panels of Fig. 5 and Fig. 6 shows that the

multiple-trajectory Ehrenfest dynamics captures the overall struc-

ture of the conditional electronic density, however the projections

onto the BO states shown in the lower panels reveal there are

substantial differences between them after several non-adiabatic

transitions occur (at t = 12.0 fs). The difference is large especially

for the regions where the nuclear density is small (R < 10a.u. and

R > 12a.u.), but there are also noticeable differences where the

nuclear density is peaked. For example, at t = 12.0 fs at R≈ 11a.u.,

|Cg(Rcl(t))|2 and |Cu(Rcl(t))|2 shown in the lower panel of Fig. 6,

are each close to 0.5, while the exact |Cg(R, t)|2 and |Cu(R, t)|2
shown in the lower panel of Fig. 5 are closer to 0.6 and 0.4, re-

spectively. From the expressions of the BO g and u states in terms

of the left and right basis (Sec. 2.1), we can see that the local-

ization asymmetry predicted by Ehrenfest is close to 1:0 while

the full quantum calculation predicts 0.8:0.2. Indeed this is ver-

ified by the calculation of the asymmetry of Ref.56. Further,

throughout the width of the nuclear wavepacket, the Ehrenfest

projections remain close to 0.5, while the exact projections fall

away. The differences in the conditional wavefunction and the

BO projections are even greater where the nuclear density is small

(R = 7.5 ∼ 10 and R = 12 ∼ 15).

In recent work, a new coupled-trajectory mixed quantum-

classical approach based on the exactly factorized TDSE (Eqs (17)

and (18)), has been presented64, in which the equations take

an Ehrenfest-like form but with important corrections that over-

come limitations of Ehrenfest. In the field-free problem of non-

adiabatic charge-transfer studied in that work52–54,64–67, failure

of multiple-trajectory Ehrenfest dynamics is expected given the

fact that the nuclear density bifurcates spatially, and the correc-

tions terms of Ref.64 accurately captured the branching of the

nuclear wavepacket as well as electronic decoherence. In the

t = 4.8 fs
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.)
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 0.2

 0.3

 0.4
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 0.2

 0.4
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|C
i(R
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Fig. 6 Upper panel: Electron density |Φ(z, t|Rcl(t))|2 obtained from

multiple trajectory Ehrenfest dynamics calculation at the indicated times

(plotted for all trajectories Rcl(t))). Lower panel: Squared expansion

coefficients of the Born-Oppenheimer expansion |Cg(Rcl(t))|2 (green)

and |Cu(Rcl(t))|2 (red) of the electronic wave function Φ(z, t|Rcl(t))

obtained from multiple trajectory Ehrenfest dynamics calculation

(Φ(z, t|Rcl(t)) =Cg(Rcl(t))Φ
g
R(z)+Cu(Rcl(t))Φ

u
R(z)) at the indiacted times.

Nuclear density reconstructed from the distribution of classical

trajectories are also plotted (black circle line).

present case, however, the nuclear density does not split and is

rather localized in space and the nuclear dynamics is overall well

described by the Ehrenfest method. The nuclear density is very

small where the difference in the conditional electron density is

large (R = 7.5 ∼ 10 and R = 12 ∼ 15), thus, these differences do

not affect the dynamics very much. But, still the errors in the

electronic dynamics are noticeable, as discussed above in the BO

projections and their implied localization asymmetry. This is con-

sistent with the difference between the electronic potential in the

Ehrenfest method and the exact potential (e-TDPES) acting on the

electronic system, as defined within the inverse factorization56,68.

4 Conclusions and Outlook

The TDPES and vector potential arising from the exact factoriza-

tion of the molecular wavefunction exactly account for the cou-

pling to the electronic subsystem as well as coupling to external

fields and so it is important to understand their structure, and

to relate this to the QSPES which is traditionally used, in order

to be able to develop accurate practical mixed quantum-classical

methods for strong-field dynamics. In this paper, we have stud-

ied the topical phenomenon of laser-induced electron localization

in the dissociation of H+
2 , choosing a gauge where the TDPES is

only potential acting on the nuclear system. We found that the

gauge-independent component of the TDPES has a mean-field-

like character very close to the density-weighted average of the

QSPESs and yields an oscillatory force on the nuclei. The gauge-

dependent component of the TDPES smoothens the oscillations

of the gauge-independent component and together they lead to

the correct force.

We demonstrated that running an ensemble of classical nuclear
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trajectories on this exact TDPES accurately reproduces the exact

nuclear dynamics. We found that the force obtained by consid-

ering surface-hopping transitions between QSPESs at the laser-

induced avoided crossing approximates this exact force, after the

localization begins to set in. We showed that errors in multiple-

trajectory Ehrenfest dynamics are less significant for the nuclear

dynamics than for the electronic dynamics explored in Ref.56,

where it was shown that Ehrenfest yields an incorrect electron

localization asymmetry. It is worth noting that the potential act-

ing on the electrons in Ehrenfest dynamics and in surface-hopping

schemes lack important step and peak features that the exact po-

tential acting on the electronic system (the e-TDPES) has. There-

fore the results of this study show that to reproduce the laser-

induced electron localization dynamics accurately by means of

a mixed quantum-classical dynamics scheme, we have to go be-

yond the traditional methods such as surface-hopping or Ehren-

fest methods. Our results here encourage the development of

mixed quantum-classical schemes based on Eqs (17) and (18)64

to simulate strong-field processes.
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The exact nuclear time-dependent potential energy surface for laser-induced electron
localization is studied with a view to developing a mixed quantum-classical dynamics
method for strong-field processes.
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