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Smoluchowski equation; in Section “Case-study calculations” we

show the application of the method to some specific familiar diffu-

sion problems, and we make a comparison with another method,

a simple finite difference (FD) scheme. After we have validated

the new method we apply it to a chemical case-study represented

by the diffusive torsion dynamic of some simple molecules. Fi-

nally, the Section “Conclusions” is dedicated to some discussion

and perspectives. A short review of DVR theory is proposed in

“Appendix A”, and the FD scheme employed in this work is re-

ported in “Appendix B”.

2 Theory

2.1 DVR of complicated operators

DVR’s are representations in bases of continuous functions

which are in some sense localized “on a grid” in coordinate space.

They are usually obtained by transformation from a truncated

global basis, i.e. to construct a DVR, a finite basis of “global” or-

thonormal functions (typically orthogonal polynomials or Fourier

basis) is transformed to another orthonormal basis set (the DVR)

in which each basis function is “localized” about one point of a

coordinate space grid {xi}. The mathematical theory that under-

lies DVR and how they are constructed is well reported in the

classical works of Light, Bačić and coworkers11,13,14. In order to

not make heavier the reading, we have summarized this theory in

Appendix A, where we address the interested Reader which might

be unfamiliar with the general theory of DVR.

The essential feature of DVR is that we have a set of N basis

functions {θi(x)} with the properties

θi(x j) =
√

w′j δi j (1)

for a set of N points x j and weights w′j (w′j ≡
√

w(x j)
w j

, cf. eqn (56)

in Appendix A), and

〈θi|θ j〉=
∫ b

a
dxθi(x)θ j(x) = δi j (2)

for an interval [a,b] that contains all of the x j.

DVRs are generally used with the approximation that the matrix

representation of a general function of the coordinate is diagonal

and the diagonal matrix elements are simply the values of the

function at the DVR points (see eqn (57) in Appendix A).

For simple operators as dn

dxn , the DVR matrix D
(n)DVR (with el-

ements D
(n)DVR
i j = 〈θi| dn

dxn |θ j〉) is determined from transformation

matrices and exact matrix representations of mono-dimensional

operators in the original “delocalized” polynomial basis set. Of

course, changing the global starting basis set (e.g. Legendre, La-

guerre, Hermite polynomials, Fourier basis, etc. . . ) will result in

different D
(n)DVR. For n = 1,2 see refs.5,12. However, for compli-

cated operators, e.g. Ξ = d
dx F(x) d

dx , with F(x) a rational function,

for which matrix elements of terms or factors with derivatives

must be calculated numerically, defining a DVR is harder.

A DVR can be defined from a finite basis representation (FBR)

where matrix elements of terms or factors in the complicated op-

erator are computed by quadrature, but this step undermines the

simplicity and convenience of the DVR. One may bypass quadra-

ture by replacing the matrix representation of the whole operator

with a product of matrix representations, making use of approxi-

mate resolution of the identity. This approach is usually referred

to as product approximation and it reads:

〈θi|Ξ|θ j〉=
N

∑
k,l=1

〈θi|
d

dx
|θk〉〈θk|F(x)|θl〉〈θl |

d

dx
|θ j〉 (3)

or in matrix form

ΞΞΞDVR = D
(1)DVR

F
DVR

D
(1)DVR (4)

where F
DVR is diagonal, (FDVR)i j = F(xi)δi j. In some instances

this approximation can spoil the Hermiticity of the operator; this

will be seen in the next Section.

2.2 DVR applied to Smoluchowski equation

In the high-friction regime (also called overdamped regime)

the Fokker-Planck equation simplifies into the Smoluchowski

equation which, in one spatial dimension x, reads

∂

∂ t
p(x, t) =

∂

∂x
D(x) peq(x)

∂

∂x
p−1

eq (x) p(x, t) (5)

Here, D(x) is a space-dependent diffusion coefficient and p(x, t)

is the probability density of finding a value of x at time t, with

stationary limit limt→+∞ p(x, t) = peq(x). In this case

peq(x) =
e−βV (x)

Z
(6)

is the canonical (Boltzmann) distribution, for the potential V (x);

with β = 1/kBT the Boltzmann factor and Z =
∫

dxe−βV (x) the

partition function. Eqn (5) can be written as

∂

∂ t
p(x, t) =−Γ p(x, t) (7)

where

Γ =− ∂

∂x
D(x) peq(x)

∂

∂x
p−1

eq (x) (8)

is the diffusion operator. In particular, in this work, we shall take

in consideration only bound potentials, i.e. V (x) goes to infinity at

the endpoints of the domain, such that it’s always possible to de-

fine peq(x). Consequently we shall treat only cases with reflective

or periodic boundary conditions.

The diffusion operator Γ is not Hermitian, so we will consider

the symmetrized form of the operator. To this scope we mul-

tiply both members of eqn (7) by p
−1/2
eq (x); defining p̃(x, t) =

p
−1/2
eq (x) p(x, t)

∂

∂ t
p̃(x, t) =−Γ̃ p̃(x, t) (9)

and

Γ̃ = p
−1/2
eq (x)Γ p

1/2
eq (x)

= −p
−1/2
eq (x)

∂

∂x
D(x) peq(x)

∂

∂x
p
−1/2
eq (x) (10)

Now the eigenvalues {λi} associated to this Hermitian operator

are all real and the fact that diffusion D(x) is a positive function,
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assures that they are all positive. They regulate the time evolu-

tion of p(x, t), describing the correct relaxation till the equilibrium

state for a given initial distribution p(x,0). In particular, the pres-

ence of a unique null eigenvalue λ0 = 0 guarantees the existence

of the equilibrium state while the positivity of the others guaran-

tees to reach it; in fact λ0 is associated to the eigenfunction p
1/2
eq (x)

since Γ̃ p
1/2
eq (x) = 0. The eigenvalues {λi} have physical dimension

of rates (inverse of time), and in the case of diffusive dynamics

under the influence of a potential V (x) that presents sufficiently

deep wells separated by an energy gap, we can associate to small

λi values “jump” processes between wells (i.e. slow activated pro-

cesses where it is required to overpass the energy gap); high λi

values can be associated, instead, to fluctuation processes inside

the wells (fast processes). This aspect will be recalled in Section

3.2, when we treat the bistable potential.

At this point we can construct Γ̃ΓΓ
DVR

matrix using an ordinary

product approximation (as seen in Section 2.1); considering for

brevity M(x) = D(x) peq(x)

Γ̃ΓΓ
DVR

=−P
−1/2DVR
eq D

(1)DVR
M

DVR
D
(1)DVR

P
−1/2DVR
eq (11)

As already mentioned, in some instances use of the product ap-

proximation can spoil the Hermiticity of the operator and of

course, this problem may arise also in many dimensions. In this

case we can see that depending on the chosen DVR basis func-

tions, if D
(1)DVR is not anti-Hermitian, Γ̃ΓΓ

DVR
will not be Hermi-

tian. In order to obtain an Hermitian DVR of the symmetrized dif-

fusion operator by invoking the product approximation one must

write Γ̃ΓΓ
DVR

in the explicitly Hermitian form7

Γ̌ = p
−1/2
eq (x)

(
∂

∂x

)†

M(x)
∂

∂x
p
−1/2
eq (x) (12)

where ( ∂
∂x
)† =

←
∂
∂x

and the arrow denotes differentiation to the left.

With this last expedient we have guaranteed Hermiticity to the

operator, and in DVR it will be:

Γ̌ΓΓ
DVR

= P
−1/2DVR
eq (D(1)DVR)†

M
DVR

D
(1)DVR

P
−1/2DVR
eq (13)

On the other hand, even if this procedure looks easy and straight-

forward, at the computational level it may cause some problems.

In particular, when dealing with bound potentials (as in our case),

the high values of V (x) at the endpoints and inside the x domain

(if present) generate numerical instability with great ease, due to

the computation of peq(x) ∝ exp(−βV (x)). It is more convenient

to consider the alternative form of the symmetrized operator

Γ̃ =−D(x)

[
∂ 2

∂x2
+

1

2

∂ 2V (x)

∂x2
− 1

4

(
∂V (x)

∂x

)2
]

−∂D(x)

∂x

∂

∂x
− 1

2

∂D(x)

∂x

∂V (x)

∂x
(14)

obtained from eqn (10) using eqn (6) and setting out derivatives.

Employing again the product approximation is straightforward,

since the derivatives of the potential and diffusion are simple

functions of x and consequently their DVR matrices are diagonal.

One has only to carry about DVR of derivative operators terms,

D
(1)DVR and D

(2)DVR in this case. The great advantage of using

this way, instead of eqn (13), is that one can manage great val-

ues of V (x) with no numerical problems, but the drawback is that

both D
(1)DVR and D

(2)DVR must be Hermitian in order to have

Γ̃ΓΓ
DVR

to be Hermitian as well. This requirement is fulfilled using

sinc-DVR (that is constructed in turn on Fourier basis, see Subsec-

tion “sinc-DVR” in Appendix A)5,6, but not using other DVRs12.

Following Colbert and Miller5, we consider probability densi-

ties p(x, t) that are defined on a grid consisting of N− 1 equally

spaced grid points {xi} on the range [a,b]

xi = a+ i
(b−a)

N
, i = 1, . . . ,N−1 (15)

In this case the weights coincide simply with ∆x = b−a
N , the grid

spacing and the corresponding DVR-functions are sinc functions

θi(x) =
1√
∆x

sinc

[
π (x− xi)

∆x

]
=
√

∆x
sin(π (x− xi)/∆x)

π (x− xi)
(16)

These functions are “localized” on the grid points; indeed they

are equal to 1√
∆x

for x = xi and zero for x = x j, j 6= i.

In the case of reflective boundary conditions the associated N−1

(FBR) functions for a uniform grid are the particle-in-a-box eigen-

functions

φm(x) =

√
2

b−a
sin

[
mπ(x−a)

b−a

]
, m = 1, . . . ,N−1 (17)

where the range has to be taken in the mathematical limit a→
−∞,b→ +∞,N → +∞. The DVR elements of the two derivative

operators are given by5,6

(D(1))i j =

{
0 i = j

1
∆x

(−1)i− j

i− j i 6= j
(18)

(D(2))i j =

{
− 1

3
π2

∆x2 i = j

− 2
∆x2

(−1)i− j

(i− j)2 i 6= j
(19)

On the other hand, in the case of periodic boundary conditions in

the range [0,2π], the appropriate basis functions are

φm(x) =
eimx

√
2π

, m = 0,±1,±2, . . . ,±N (20)

and the 2N +1 grid points are

xi = i
2π

2N +1
, i = 1, . . . ,2N +1 (21)

The most complicated step of this procedure is the evaluation

of the first derivative operator. Although the matrix elements

are readily derived and evaluated using procedures analogous to

those presented by Colbert and Miller, to the best of our knowl-

edge, they have not yet been reported. However, with similar

derivations as in ref.5

(D(1))i j =





0 i = j

1
2N+1

1
2

N sin
2π(N+1)(i+ j)

2N+1
− 1

2
(N+1)sin

2πN(i+ j)
2N+1

sin2 π(i+ j)
2N+1

i 6= j
(22)
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(D(2))i j =





−N(N+1)
3 i = j

− (−1)i− j cos[π(i− j)/(2N+1)]

2sin2[π(i− j)/(2N+1)]
i 6= j

(23)

Using these expressions, once the bound potential V (x) and the

diffusion coefficient D(x) are given, Γ̃ΓΓ
DVR

is easily constructed

using product approximation on eqn (14). Then, eigenvalues and

eigenfunctions are calculated from the numerical diagonalization

of Γ̃ΓΓ
DVR

. Given the initial distribution p(x,0), the profile p(x, t)

is built expanding upon DVR functions calculated at DVR points

{xi} for which θi’s are equal to 1√
∆x

, cf. eqns (1,16).

3 Case-study calculations

In this Section, we apply the methodology sketched in the pre-

ceding section to some diffusive test problems described with

Smoluchowski equation, considering different potentials and the

effect of a constant or variable diffusion coefficient. Our objec-

tive is to determine the eigenvalues (λ DVR in the following) of

the DVR diffusion operator matrix Γ̃ΓΓ
DVR

, calculated using sinc-

DVR with product approximation on eqn (14) as shown in the

previous Section. In particular we shall focus on three different

kinds of potentials, namely the analytic case of harmonic poten-

tial and the well known case of bistable potential with equivalent

and nonequivalent minima that is usually adopted in the mod-

elization of numerous chemical problems. In order to illustrate

the validity of the method we concentrate on the eigenvalue con-

vergence, i.e. how many grid points (Npoints in the following) are

necessary for sinc-DVR to provide accurate first eigenvalues in or-

der to have a reliable description of the system. We compare them

with analytic results (where possible) or with values calculated

by other methods, in particular, a simple finite difference (FD)

scheme (reported in Appendix B), λ FD in the following. We re-

mark that for reflective boundary conditions Npoints ≡ N−1 while

for periodic ones Npoints ≡ 2N +1 (see Section 2.2); from now on

the potential V (x) is expressed in kBT units.

3.1 Harmonic potential

It is always convenient to make reference to analytic cases

when a new method is tested. One of these is the monodimen-

sional diffusion problem over a parabolic potential, shown in Fig-

ure 1, with a constant diffusion coefficient D(x) = D, also known

as Ornstein-Uhlenbeck process15,16

V (x) =
1

2
kx2 (24)

Here, x is defined over the entire real axis and k denotes the force

constant; the axes origin is chosen such as to coincide with the

potential minimum. Physically this case can be used to describe

the local oscillatory dynamic of molecules in a certain phase (e.g.

a liquid crystal that is fluctuating inside a smectic phase). Bound-

ary conditions are reflective and eigenvalues are simply17

λm = mkD, m = 0,1,2, . . . (25)

with the null eigenvalue λ0 associated to the stationary solution

Fig. 1 Plot of the harmonic potential used in our calculations, eqn (24).

peq(x) =
e−V (x)

∫+∞
−∞ dx e−V (x)

=

√
k

2π
e−

kx2

2 (26)

The x range for calculations is chosen following the proposal of

Colbert and Miller5, that is, introducing an energy cutoff Vcutoff

for the potential energy and discarding grid points for which:

V (xi)>Vcutoff (27)

i.e. where the probability density p(x, t) would be negligibly small.

Practically, we accomplish this by choosing a range for which the

gap: potential at the endpoints/potential at the global minima is

less than 50 kBT units. Convergence of the calculation can also

be checked by increasing the energy cutoff, but for the sake of

simplicity and since we have chosen a large enough Vcutoff, this

will not be discussed.

In Table 1 we report the convergence of the first ten nonzero

eigenvalues calculated with DVR method, given in diffusion co-

efficient units (that is equivalent to have taken D = 1, i.e. D is

a scaling factor for the eigenvalues) and shown up to five signif-

icant figures, for k = 1.0 and x range [−10.0,10.0]. We compare

them with the ones calculated using the FD scheme. As it can be

easily seen, the convergence is more rapid using DVR instead of

FD; in particular for Npoints > 26 we are just at convergence, while

for FD, more than 65 and more than 210 grid points are required

in order to have respectively λ FD
1 and λ FD

10 converged up to five

significant figures.

3.2 Bistable potential

Another suitable model to test the DVR method, is the well

known bistable potential, that has the general shape sketched in

Figure 2: two minima a and c respectively, separated by a poten-

tial maximum b and bound at the endpoints. There are several

examples of bistable systems, those analyzed most often in the

literature being the laser, the tunnel diode18, and more generally

activated reactions, e.g. hindered rotations.

As anticipated in Section 2.2, when the barrier that separates

the two minima is sufficiently high, the diffusion process from

a to c and vice versa is said to be activated. In this situation,
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Table 1 Convergence of the first ten nonzero eigenvalues, given in diffusion coefficient units and shown up to five significant figures, for the harmonic

potential, eqn (24), with k = 1.0 and x range [−10.0,10.0], calculated with DVR method and FD scheme, respectively, λ DVR and λ FD.

Npoints λ DVR
1 λ DVR

2 λ DVR
3 λ DVR

4 λ DVR
5 λ DVR

6 λ DVR
7 λ DVR

8 λ DVR
9 λ DVR

10

6 0.63371 4.4689 4.5375 12.655 12.677
8 0.76420 2.9013 3.0612 7.8742 7.9163 15.303 15.323

10 0.92271 2.2799 2.6542 5.6605 5.7480 10.624 10.658 17.280 17.300
12 0.98723 2.0638 2.7630 4.6092 4.8203 8.1653 8.2305 12.892 12.923 18.909
14 0.99876 2.0094 2.9385 4.1662 4.6719 6.8699 7.0204 10.406 10.463 14.835
16 0.99992 2.0008 2.9928 4.0288 4.8753 6.2616 6.6567 9.0108 9.1386 12.437
18 1.0000 2.0000 2.9995 4.0028 4.9829 6.0493 6.8302 8.3163 8.6640 11.037
20 1.0000 2.0000 3.0000 4.0002 4.9988 6.0051 6.9750 8.0608 8.8133 10.323
22 1.0000 2.0000 3.0000 4.0000 5.0000 6.0003 6.9983 8.0061 8.9731 10.060
24 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 6.9999 8.0003 8.9983 10.006
26 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.000
28 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.000
30a 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.000

Npoints λ FD
1 λ FD

2 λ FD
3 λ FD

4 λ FD
5 λ FD

6 λ FD
7 λ FD

8 λ FD
9 λ FD

10

6 0.72186 93.365 93.365 24150 24150
8 0.69747 7.9693 7.9708 181.03 181.03 4120.2 4120.2

10 0.80433 3.1002 3.1203 22.513 22.513 166.29 166.29 1228.7 1228.7
12 0.91504 2.1594 2.2633 8.2333 8.2333 32.869 32.869 131.78 131.78 528.49
14 0.96955 1.9344 2.2284 4.9808 4.9821 13.544 13.544 37.479 37.479 103.94
16 0.98603 1.9112 2.4633 3.9550 3.9730 8.2174 8.2174 17.758 17.758 38.701
18 0.99180 1.9350 2.7130 3.6684 3.7885 6.2576 6.2581 11.289 11.289 20.764
20 0.99470 1.9569 2.8430 3.6731 4.0490 5.5100 5.5196 8.6252 8.6252 13.955
22 0.99640 1.9708 2.8989 3.7574 4.4227 5.3311 5.4241 7.4555 7.4561 10.880
24 0.99747 1.9796 2.9299 3.8302 4.6483 5.4200 5.7815 7.0293 7.0429 9.4068
26 0.99817 1.9852 2.9496 3.8786 4.7570 5.5702 6.2318 7.0302 7.1653 8.7705
28 0.99864 1.9891 2.9628 3.9108 4.8229 5.6873 6.4848 7.2247 7.6825 8.6494
30 0.99897 1.9917 2.9719 3.9328 4.8672 5.7670 6.6225 7.4226 8.1307 8.8386

a For Npoints = 30 convergence up to 5 significant figures is reached till λ15.

Fig. 2 Sketch of a generic bistable potential; b individuates the

maximum that separates the two minima a,c.

the lowest nonzero eigenvalue λ1 is associated with the “jump”

process between the two wells and its value is generally separated

by several orders of magnitude from the the others. When the

barrier height increase, λ1 gets smaller, showing an Arrhenius law

behaviour, and in this limit it can be identified as19

λ1 = rac + rca (28)

where rac and rca are the escape rates from well a towards well c

and vice versa. Kramers in his pioneering work20 has shown that

for the reaction dynamics in a bistable potential, with constant

diffusion coefficient (D(x) = D), these rates can be approximated

as

rK
ac =

√
V (2)(a) |V (2)(b)|

2π
e−

V (b)−V (a)
D (29)

where the vertical bars indicate the absolute value and V (n) in-

dicates the nth-order derivative
dnV (x)

dxn . To calculate rca one has

simply to exchange a with c in the previous equation.

This asymptotic result has been refined many years later by Ed-

holm and Leimar21 who calculated an improved expression for

the escape rate

rE
ac = rK

ac

[
1−D

(
1

8

V (4)(b)

[V (2)(b)]
2
− 1

8

V (4)(a)

[V (2)(a)]
2
+

5

24

[V (3)(b)]
2

|V (2)(b)|3

+
5

24

[V (3)(a)]
2

[V (2)(a)]
3

)
+O([V (b)−V (a)]2)

]

(30)

which gives a better approximation to eqn (29). This result is

important for a first comparison between the calculated λ DVR
1

and λ FD
1 , for different functional forms of the bistable potential

(see below), where analytic expressions are not available for the

eigenvalues.

In the following we take in consideration the two different cases

of symmetric and non-symmetric bistable potentials in order to

provide a more complete picture; for the last case we discuss also

the situation of a non-constant diffusion coefficient.
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Symmetric case

A symmetric potential (V (x)=V (−x)) is characterized by equiv-

alent minima V (a) = V (c), and with a constant diffusion coeffi-

cient D we also have that rac = rca. By calling V (b)−V (a) = V0

the energy barrier height, we take in consideration two different

functional forms for V (x), respectively

V (x) =V0 (x
2−1)

2
(31)

for which we apply reflective boundary conditions and

V (x) = α cosx+2α cos2x (32)

for which we apply periodic boundary conditions. In the last

equation α is a parameter and the energy barrier will be V0(α).

Just to mention, the potential in eqn (31) is also known as the

quartic potential or “Landau-Ginzburg potential” and is a popular

model for bistable systems19. On the other hand, the potential of

eqn (32) can be used to describe the diffusive problem involving

a torsional angle. The potentials and the parameters used in our

calculations are reported in Figure 3 where the profiles are shifted

to the origin in order to have a direct comparison of the barrier

heights.

In Table 2 we report the convergence of the first three nonzero

eigenvalues calculated with the DVR method, given in diffusion

coefficient units and shown up to five significant figures, for dif-

ferent values of the barrier heights V0, and V0(α). We compare

our results with those issuing from a FD calculation and with the

λ1’s obtained with the Edholm’s approximation

λ E
1 = 2rE

ac (33)

using eqn (30). We want to stress that eqns (28, 29, 30) are only

good approximations to λ1 and one should not take λ E
1 as the true

value to be reached. Finally, for the periodic potential eqn (32)

we also report the first three nonzero eigenvalues obtained using

the orthonormal representation (OR) method with a Fourier ba-

sis, for which the matrix elements of the diffusion operator are

analytical.

As anticipated above, λ1’s always differs by several orders of mag-

nitude from λ2’s and λ3’s and this gap increases as V0 becomes

larger, implying different time scales for the diffusive relaxation

processes.

Secondly, in all cases, λ1’s converge collectively to values slightly

different from λ E
1 , confirming the fact that these last ones should

not be taken as exact reference values. Finally, we see that for

the two cases of lowest energy barriers, λ FD
1 converge up to five

significant figures more slowly than λ DVR
1 , while the same cannot

be said doubling V0. However, in all instances, for the other two

eigenvalues (λ2,λ3) FD shows a very slow convergence compared

to DVR, and in order to have the first three nonzero eigenvalues

all equal to DVR ones, up to the fifth significant figure, we have

to use a huge number of grid points. Indeed, in order of potential

appearance as in Table 2, we need respectively more than 450,

1500, 750 and 1500 grid points to reach convergence with FD to

the same values calculated with DVR; which need fewer points.

So, as an example, for the quartic potential with V0 = 10.0 using

(a) (b)

Fig. 3 Plot of the quartic potential, eqn (31) (panel a), and of the

periodic potential, eqn (32) (panel b). Both profiles are shifted with

respect to the origin in order to emphasize the energy barriers involved,

V0 and V0(α) respectively.

FD we need 1500 grid points in order to have λ FD
i (i= 1,2,3) equal

to the ones calculated with DVR; this shows the slow convergence

of FD as opposed to DVR. These simple examples (together with

the harmomic potential) show how DVR can be used to reproduce

accurately the eigenvalue spectrum of the diffusion operator and

consequently to describe the correct relaxation dynamics till the

equilibrium with a low computational effort.

Non-symmetric case

Finally we consider a non-symmetric bistable potential with

nonequivalent minima V (a) 6= V (c), and with non-constant dif-

fusion coefficient. In particular we analyze a periodic potential of

the form

V (x) = α1 cosx+2α1 cos2x−α2 sinx (34)

with fixed parameters α1 = 2.0, α2 = 1.5, shown in Figure 4. This

potential could describe the energetics of a torsional angle that

identifies, for example, the relative orientation between two parts

of a molecule and it has been shown how to compute well sound

variable diffusion coefficients for this kind of situations22. Start-

ing from constant diffusion coefficient, it is clear that a change in

the coefficient would produce only a scaling of the eigenvalues (as

stated previously); in particular, as D increases, the friction that

damps the motion while keeping it alive at the same time23 gets

smaller, and the eigenvalues get increased accelerating the re-

laxation dynamics; of course, the opposite behaviour is observed

when D decreases. However, when the diffusion coefficient is no

longer constant, it is difficult to predict a priori its effect on the

eigenvalues; to this purpose, here we treat four different cases

D(x) =±cosx+ c (35)

and

D(x) =±sinx+ c (36)

with fixed shift c = 2.0. These four functions are chosen in order

to see the effect of locally increasing the diffusion around respec-

tively the two endpoints and around the maximum, eqn (35); and

respectively around the left and right minima of the potential, eqn

(36).

In Table 3 we report the first three converged eigenvalues for

the non-symmetric bistable potential eqn (34) with different dif-

fusion coefficients eqns (35,36), calculated with the DVR method.
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Table 2 Convergence of the first three nonzero eigenvalues, given in diffusion coefficient units and shown up to five significant figures, for the bistable

potentials, eqns (31,32), for different values of V0, and V0(α), calculated with DVR method and FD scheme. Comparison is also shown for Edholm λ E
1 ,

calculated with eqn (33). The last entries for λ DVR
i for each potential are the converged values, also reached by FD but using more points (see text).

Npoints λ DVR
1 λ FD

1 λ E
1 λ DVR

2 λ FD
2 λ DVR

3 λ FD
3

V0 = 5.0a 5.6113×10−2

20 7.9016×10−2 5.5459×10−2 16.448 16.462 26.287 25.943
25 5.5693×10−2 5.5491×10−2 16.445 16.460 26.282 26.082
30 5.5505×10−2 5.5501×10−2 16.445 16.457 26.283 26.146
35 5.5523×10−2 5.5506×10−2 16.445 16.454 26.283 26.184
40 5.5523×10−2 5.5510×10−2 16.445 16.452 26.283 26.208

V0 = 10.0a 7.8683×10−4

35 4.8909×10−4 7.8357×10−4 36.170 36.325 58.181 59.439
40 7.7788×10−4 7.8357×10−4 36.170 36.297 58.181 59.165
45 7.8386×10−4 7.8357×10−4 36.170 36.275 58.181 58.970
50 7.8368×10−4 7.8357×10−4 36.170 36.257 58.181 58.826
55 7.8368×10−4 7.8357×10−4 36.170 36.244 58.181 58.717

α = 2.0,
V0 = 6.125b,c 9.6862×10−3

21 1.1167×10−2 9.6731×10−3 10.426 10.624 12.867 12.952
25 9.7230×10−3 9.6744×10−3 10.426 10.572 12.871 12.940
31 9.6771×10−3 9.6753×10−3 10.426 10.524 12.871 12.922
35 9.6772×10−3 9.6757×10−3 10.426 10.504 12.871 12.913
41 9.6772×10−3 9.6761×10−3 10.426 10.484 12.871 12.903

α = 4.0,
V0 = 12.25b,d 4.3806×10−5

35 4.8442×10−5 4.3487×10−5 25.244 25.418 28.800 28.938

41 4.3282×10−5 4.3487×10−5 25.244 25.393 28.800 28.931

45 4.3462×10−5 4.3487×10−5 25.244 25.376 28.800 28.920

51 4.3484×10−5 4.3487×10−5 25.244 25.353 28.800 28.903

55 4.3487×10−5 4.3487×10−5 25.244 25.341 28.800 28.892

61 4.3487×10−5 4.3487×10−5 25.244 25.341 28.800 28.892

a The selected x range is [−2.0,2.0].
b The selected x range is [0,2π].
c Using orthonormal representation method with a Fourier basis, at convergence: λ OR

1 = 9.6772×10−3,λ OR
2 = 10.426,λ OR

3 = 12.871.
d Using orthonormal representation method with a Fourier basis, at convergence: λ OR

1 = 4.3487×10−5,λ OR
2 = 25.244,λ OR

3 = 28.800.
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Also FD converges to the same DVR values, but more slowly; in-

deed to reach convergence with constant diffusion (first entry in

Table 3) we just need 35 grid points with DVR method, while

more than 800 grid points are required using FD. In the case of

variable diffusion function (last four entries in Table 3) we just

need 45 grid points with DVR method, while more than 1300 grid

points are required using FD to reach the same λ DVR
i (i = 1,2,3).

Fig. 4 Plot of the non-symmetric potential, eqn (34); a,c individuate the

two minima separated by the energy barriers V0,ac = 7.4670 and

V0,ca = 4.3543 kBT units going respectively from a to c, and vice versa.

Table 3 First three converged eigenvalues calculated with DVR method

and shown up to five significant figures, for the non-symmetric bistable

potential eqn (34) with different diffusion functions eqns (35,36).

Diffusion function λ DVR
1 λ DVR

2 λ DVR
3

D(x) = Da 1.9435×10−2 9.8592 13.418
D(x) = cosx+2.0 2.1135×10−2 12.467 20.132
D(x) =−cosx+2.0 5.6454×10−2 17.145 23.545
D(x) = sinx+2.0 3.5715×10−2 11.949 19.751
D(x) =−sinx+2.0 4.0402×10−2 15.321 22.124

a For a constant diffusion, we can use eqns (28,30) to calculate esti-
mated rE

ac = 1.1381×10−3,rE
ca = 2.0473×10−2,λ E

1 = 2.1611×10−2.

Taking as reference the constant diffusion case (first entry), we

can see that increasing the diffusion around the maximum (third

entry) has the effect to give the greatest acceleration, i.e. great-

est eigenvalues, compared to the others. One can qualitatively

imagine that increasing the diffusion (and so, lowering friction)

around the maximum has the same effect of directly lowering the

energy barrier, by the way, we remark that further insights would

be only speculative at this point.

Finally, in Figure 5 (panel a) we report the relaxing profile

till the equilibrium state, built using 101 DVR points at each

time propagation step with constant diffusion and a gaussian ini-

tial distribution centered at x = 4.5 and with standard deviation

σ = 0.05. It can be noted the initial rapid broadening of the profile

p(x, t) due to the fast “fluctuation” processes inside the potential

well; these are related to large eigenvalues. As time progresses,

the other deeper minimum starts to become populated; this slow

population movement between wells is a low activated process

related to λ1. Finally the profile reaches the equilibrium distribu-

tion, that matches perfectly the analytic one (see panel b).

(a) (b)

Fig. 5 (a) Surface plot for the relaxation profile p(x, t) of the

non-symmetric diffusive problem eqn (34) with constant diffusion and an

initial gaussian distribution centered at x = 4.5 and σ = 0.05. The profile

is calculated using 101 DVR grid points at each step of time

propagation; this last is expressed in decimal logarithm units. (b)

Analytic equilibrium distribution peq(x) for the non-symmetric problem

(black line), and extrapolated from relaxation profile (red dots).

3.3 A chemical case-study

As a final example, in order to show the applicability of DVR

method to case-studies of chemical interest we consider here the

specific case of conformational dynamics of n-butane and three

dihaloethanes, in particular 1-chloro-2-fluoroethane, 1-bromo-2-

fluoroethane, 1-bromo-2-chloroethane (from now on respectively

abbreviated as CFE, BFE, BCE). We treat the dynamic as a dif-

fusive motion upon the torsion angle γ of the central C–C bond,

taken as the only variable for this problem. For each molecule

we solve the Smoluchowski equation using DVR method (as seen

before) and we calculate the rate constants for gauche ←→ trans

transitions given in diffusion coefficient units.

The internal dynamic is regulated by the conformational ener-

getics that in this case is represented by the torsion potential V (γ),

generally different for each molecule and by the friction, of vis-

cous nature, that damps the motion. With regard to the friction,

that determines the torsion diffusion coefficient, here we shall as-

sume a constant diffusion D. This approximation is valid till we

have small molecules in which the two external rotating groups

don’t have big size. As seen before, as long as D will not have a

specific value, it will be only a scaling factor.

The torsion potential for the considered molecules is expressed as

V (γ) = α1 cosγ +α2 cos2γ +α3 cos3γ (37)

a tristable potential, where each well corresponds to a particular

molecule conformation, namely the two equivalent gauche and

the trans (from now on respectively abbreviated as g+,g− and t);

see Figure 6, where the profiles has been shifted to the origin.

The potential parameters αi are taken from ref.24 for n-butane

and ref.25 for dihaloethanes; they are all reported in Table 4 in

kBT units, where T = 298 K.

In Table 4 we also report the first three converged eigenvalues

calculated with the DVR method (the convergence is reached us-

ing only 41 grid points), given in diffusion coefficient units and

shown up to five significant figures, for the examined molecules.
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Fig. 6 Plot of the torsion potential V (γ), eqn (37), for the examined

molecules; profiles are shifted with respect to the origin in order to

emphasize the energy barriers involved. The parameters employed to

build the profiles are reported in Table 4.

Table 4 Potential parameters (in kBT units, T = 298 K) used for the

potential profiles V (γ) shown in Figure 6, taken from refs. 24,25 and first

three converged eigenvalues given in diffusion coefficient units

calculated with DVR method and shown up to five significant figures.

Molecule α1 α2 α3 λ DVR
1 λ DVR

2 λ DVR
3

n-butane 1.285 0.266 2.708 0.060936 0.073656 15.508
CFE 1.402 0.811 2.997 0.035881 0.062864 16.585
BFE 1.419 0.481 2.601 0.073566 0.10030 14.379
BCE 3.377 1.562 3.006 0.13863 0.17044 15.306

These eigenvalues have the same values of the ones obtained us-

ing OR method with a Fourier basis, for which the matrix ele-

ments of the diffusion operator are once again analytical.

It can be readily noticed the presence of two lowest eigenvalues

λ DVR
1 and λ DVR

2 related (in a not straightforward way) to slow

“jump” processes and clearly separated by λ DVR
3 by two/three or-

ders of magnitude. In all these cases the jump processes are four

(the direct transition g+→ g− is kinetically forbidden because of

the too high energy barrier involved, and here it will not be con-

sidered), even if only two are distinguished, namely t → g± and

g± → t, due to the impossibility to discriminate between g+ and

g−.

Now the problem is how to relate these two lowest eigenval-

ues with the rate constants kt→g± and kg±→t associated to the

“jump” transitions between potential wells. For the chemist used

to think in terms of activated processes, indeed, these rate con-

stants are precisely the ones to assume relevance and to consti-

tute phenomenological parameters to be determined from exper-

imental data (or from molecular dynamics simulation of these

systems). In phenomenological terms, the transitions between

the two gauche and the trans conformation are described adopt-

ing a first order kinetic scheme for the site populations evolution.

By generic n-th “site” we mean the “potential well” inside which

there is the n-th minimum of the potential profile (n ≡ t,g± in

our case); the population of this site is naturally defined integrat-

ing the nonequilibrium distribution p(γ, t) inside the site domain

delimited by the neighbours maxima γn− and γn+

Pn(t) :=
∫ γn+

γn−
dγ p(γ, t) (38)

in particular, the equilibrium populations are given by

Peq,n =
∫ γn+

γn−
dγ peq(γ) (39)

The kinetic model regulates the relaxation Pn(t)→ Peq,n starting

from generic initial conditions. As anticipated before, for our spe-

cific case we adopt the following scheme based on four elemen-

tary steps (two by two one the inverse of the other one)

g+
kg+→t−−−→ t

t
kt→g+−−−→ g+

g−
kg−→t−−−→ t

t
kt→g−−−−→ g− (40)

with kg+→t = kg−→t and kt→g+ = kt→g− since the symmetry of the

potential and considering the principle of microscopic reversibil-

ity

kg±→t Peq,g± = kt→g± Peq,t (41)

in order to guarantee the reaching of the correct equilibrium

state.

The crucial point is to find a meeting point between the dis-

cretized description (kinetic approach for the transitions between

the “sites”) and the continuous one (diffusive model for γ). In-

tuitively the two descriptions are interfaced if a neat separation

between the time scales of fast processes (fluctuations inside the

wells) and slow processes exists (jumps between wells).

This problem has been formally faced by Moro and Nordio26,27

using “localized site functions” and since it falls outside the main

purpose of this work, here we shall give directly the final result

for our cases, namely

kt→g± = λ1
Peq,g±

Peq,t

kt→g± = λ2 Peq,g± (42)

The two values of kt→g± would be certainly different, but it can

be shown that their difference decrease as the barriers between

minima get increased. Consequently the best estimate that we

can produce is the arithmetic average of the two rate values

kt→g± =
1

2

(
λ1

Peq,g±

Peq,t
+λ2 Peq,g±

)
(43)

while the rate constant for the back transitions kg±→t is calculated

using microscopic reversibility, eqn (41).

In Table 5 we report the equilibrium populations calculated by

numerical integration of eqn (39) and the rate constants given in

diffusion coefficient units for the examined molecules, calculated

with eqns (41,43) and using λ DVR
1 ,λ DVR

2 reported in Table 4.
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Table 5 Equilibrium populations calculated by numerical integration of

eqn (39) and rate constants given in diffusion coefficient units calculated

with eqns (41,43), using λ DVR
1 ,λ DVR

2 reported in Table 4.

Molecule Peq,t
a Peq,g±

a kt→g± kg±→t

n-butane 0.682 0.159 0.0130 0.0556
CFE 0.529 0.235 0.0154 0.0346
BFE 0.615 0.174 0.0186 0.0694
BCE 0.818 0.0911 0.0155 0.139

a Populations are normalized, in fact Peq,t +2Peq,g± = 1.

4 Conclusions

We have presented in this work how to setup a reliable frame-

work to solve the monodimensional Smoluchowski equation mak-

ing use of sinc-DVR methods in conjunction with product approxi-

mation. We have demonstrated the efficiency of the approach cal-

culating the eigenvalues of the diffusion operator for some simple

and familiar test-cases and reaching convergence with the use of

few grid points. The reliability of the results has been assessed

through the comparison with a simple finite difference scheme,

which has shown in some cases much poorer performances with

respect to DVR. Another strength point of the DVR pseudospectral

method is its simplicity, especially concerning code implementa-

tion.

We really believe that both the difficulties encountered with a sim-

ple FD scheme, where the convergence is reached more slowly,

or orthonormal representation, where analytic matrix elements

are not always available, can effectively be overcame by use of a

discrete variable representation coupled with product approxima-

tion. Moreover, there are very encouraging perspectives concern-

ing the application of this approach to multidimensional prob-

lems (where FD becomes often unfeasible), or more complicated

Smoluchowski equations that contain other coordinate dependent

terms, e.g. a reactive term.

Indeed, in multidimensional problems if the diffusion operator

has no mixed second derivatives and if a direct product basis

is used for the multidimensional system, the basis for each di-

mension may be separately transformed to the DVR. The result-

ing DVR matrix for the diffusion operator will be very sparse5,

simplifying and speeding-up its construction and diagonalization.

For more complicated diffusion operators, direct product DVR’s

in conjunction with product approximation are still highly advan-

tageous leading to straightforward simplifications of the matrix

representation of the operator7,11. Despite the simplicity of these

approaches, it is difficult to predict a priori the numerical limit

of the same. We believe that a repeated use of product approxi-

mation will spoil the eigenvalues convergence; by the way, further

insights and work has to be done in order to validate this assump-

tion.

As a final consideration, in order to have a proper modelization

of the diffusion function D(x) it is necessary to construct reliable

hydrodynamical models, a task that it not always straightforward.

However, even if this argument was not central to this work, we

mention that our future investigations would cover also these im-

portant aspects, starting from the past works that has been done

in this field22,28,29, in order to have sound variable diffusion func-

tions, even for multidimensional problems (where diffusion be-

comes a tensor). Once reliable informations upon diffusion are

achieved (in conjunction with the energetics of the system under

study) one can complete the picture of the diffusive problem, e.g.

calculating absolute kinetic constants for the molecules examined

in Section 3.3 and comparing them with their estimates available

in literature.

Acknowledgement

The authors are very grateful to Dimitrios Skouteris (Scuola

Normale Superiore) and Diego Frezzato (University of Padova)

for useful and fruitful discussions.

Appendix A - General theory of DVR

The theory that underlies DVR finds its mathematical roots

upon the theory of Gaussian quadratures which is in turn inti-

mately linked with the theory of orthogonal polynomials, even

if it is possible to construct DVR starting from other orthogonal

functions, like the sinc-DVR built from the Fourier basis (see be-

low). Consider a set of polynomials ρ(x) orthogonal with respect

to a weight function w(x)≥ 0 on the interval [a,b] (where a and b

may be ±∞), with a scalar product defined as:

〈ρm|ρn〉=
∫ b

a
dxw(x)ρm(x)ρn(x) = δmn (44)

The integral

I[ f ] =
∫ b

a
dxw(x) f (x) (45)

may be written as

I[ f ] = 〈ρ0| f 〉 (46)

with ρ0(x)≡ 1. An N-point quadrature approximation to the inte-

gral is defined by N points {x1, . . . ,xN} and weights {w1, . . . ,wN}

I[ f ] =
N

∑
i=1

wi f (xi) (47)

and is exact for the first 2N orthogonal polynomials ρ0, . . . ,ρ2N−1.

This is possible since there are precisely 2N parameters (xi,wi)

that may be chosen. We want to eliminate the weight function

from the definition of the scalar product, and in order to do so we

introduce the functions

φn(x) =
√

w(x)ρn−1(x), n = 1, . . . ,N (48)

where we have absorbed the square root of the weight func-

tion. Then the orthonormality relations are given exactly by the

quadrature

〈φm|φn〉=
∫ b

a
dxφ∗m(x)φn(x) = δmn =

N

∑
i=1

wi

w(xi)
φ∗m(xi)φn(xi) (49)

and since the Gaussian quadrature is exact for polynomials of de-

gree 2N− 1 we also find that the quadrature approximations of

the matrix elements

Xmn = 〈φm|x|φn〉=
N

∑
i=1

wi

w(xi)
φ∗m(xi)xi φn(xi) (50)
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are exact. If now we define the elements of the transformation

matrix U as

Uim =

√
wi

w(xi)
φm(xi) (51)

we can easily see that U is a unitary matrix

(U†
U)mn =

N

∑
i=1

U∗imUin =
N

∑
i=1

wi

w(xi)
φ∗m(xi)φn(xi) = δmn (52)

and that eqn (50) can be rewritten in matrix form as

X = U
†

X
DVR

U (53)

where X
DVR is a diagonal matrix of DVR points {xi}. Since U is

unitary, eqn (53) also states that DVR points can be found diago-

nalizing the coordinate matrix X:

UXU
† = X

DVR (54)

Thus the Gaussian quadrature points are the DVR points and U is

the transformation between the so called Finite Basis Representa-

tion (FBR) and DVR. The idea of a DVR, is to apply the unitary

transformation to the basis {φ1(x), . . . ,φn(x)}

θi(x) =
N

∑
i=1

U∗imφm(x) (55)

in order to have basis functions localized on grid points xi

θi(x j) =
N

∑
i=1

U∗imφm(x j) =
N

∑
i=1

√
w(x j)

w j
U∗imU jm =

√
w(x j)

w j
δi j (56)

Thus, any multiplicative operator (e.g. G(x) here) will be diagonal

in this basis if quadrature approximation is used

(GDVR) jk = 〈θ j|G(x)|θk〉=
N

∑
i=1

wi

w(xi)
θ∗j (xi)G(xi)θk(xi) = G(xi)δ jk

(57)

It is clear that different kind of operators, such as derivative op-

erators ( d
dx ,

d2

dx2 , . . .), will not be diagonal in a DVR and it will be

necessary to find their representation in the chosen DVR basis,

(D
DVR in the text).

sinc-DVR

This DVR is constructed starting from Fourier basis; following

Tannor10 we show the similarity between this DVR and the ones

built from a set of orthogonal polynomials. We consider the band

limited Fourier orthogonal basis functions, i.e. functions that have

no component of |k| beyond K, and in the infinite x space range

the basis functions are of the form

φk(x) =
eikx

√
2π

, −K ≤ k ≤ K , −∞ < x < ∞ (58)

The orthogonality relation is now expressed as

〈φk′ |φk〉=
∫ ∞

−∞
dxφ∗k′(x)φk(x) =

∫ ∞

−∞
dx

ei(k−k′)x

2π
= δ (k− k′)

=
∞

∑
j=−∞

∆xφ∗k′(x j)φk(x j) =
∞

∑
j=−∞

Φ∗k′(x j)Φk(x j) (59)

Taking ∆x = 2π
2K , x j = j∆x = jπ

K , the basis orthogonality relation is

exact for

Φk(x j) =
eikx j

√
2K

(60)

In order to construct the DVR basis we perform a Fourier trans-

form on the basis set, obtaining a basis that is complete for all

band limited functions

∫ K

−K
dk Φ∗k(x j)φk(x) = θ j(x) =

∫ K

−K
dk

e−ikx j

√
2K

eikx

√
2π

=
sin(K(x− x j))√

πK(x− x j)
=

√
K

π
sinc[K(x− x j)] (61)

It is readily seen that each sinc function is centered on a different

grid point for a uniform grid, x j = j∆x, with ∆x = π
K ; cf. eqn (16)

in the text. Another simple derivation of this sinc-DVR starting

with particle-in-a-box basis eqn (17) is presented in Appendix A

of ref.5.

Appendix B - Finite difference scheme

The monodimensional Smoluchowski equation (eqn (5) in the

text) can be compacted introducing the probability flux J(x, t) as

∂

∂ t
p(x, t) =−∂J(x, t)

∂x
(62)

with
∂J(x, t)

∂x
=−D(x) peq(x)

∂

∂x
p−1

eq (x) p(x, t) (63)

Given that x varies between the endpoints xmin and xmax, we par-

tition the domain [xmin,xmax] into N intervals (here N ≡ Npoints in

the text), each one labeled by the central point xn belonging to the

same interval and by its endpoints, respectively x−n ≡ x+n−1 (left)

and x+n ≡ x−n+1 (right). The intervals length is chosen to be the

same; i.e. ∆x = xmin−xmax

N . Eqn (62) evaluated in the generic point

xn can be approximated as incremental ratio

∂

∂ t
p(xn, t) =−

∂J(xn, t)

∂x
≃− J(x+n , t)− J(x−n , t)

∆x
(64)

It is possible to set out the fluxes evaluated at the n-th interval

endpoints using eqn (63) and approximating again the derivative

as incremental ratio. Collecting the factors and introducing the

column vector P(t) with elements Pn(t) = p(xn, t) (n = 1,2, . . . ,N)

one obtains the following matrix relation

Ṗ(t) =−ΓΓΓ(t)P(t) (65)
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where ΓΓΓ(t) is a tridiagonal matrix with elements

Γn,m(t) =





δm,n
p−1

eq (xn)

∆x2 [D(x+n ) peq(x
+
n )+D(x−n ) peq(x

−
n )]

−δm,n+1
p−1

eq (xn+1)

∆x2 D(x+n ) peq(x
+
n )

−δm,n−1
p−1

eq (xn−1)

∆x2 D(x−n ) peq(x
−
n )

(66)

To complete the procedure it is necessary to set the proper bound-

ary conditions on fluxes in correspondence with the domain end-

points xmin,xmax ≡ x−1 ,x
+
N . For reflective boundary conditions, the

flux at the endpoints must vanish

J(x−1 , t) = 0 and J(x+N , t) = 0 (67)

at any t. This implies that

Γ1,1(t) =
p−1

eq (x1)

∆x2
D(x+1 ) peq(x

+
1 )

ΓN,N(t) =
p−1

eq (xN)

∆x2
D(x−N ) peq(x

−
N ) (68)

On the other hand, for periodic boundary conditions, it must be

J(x−1 , t) = J(x+N , t) (69)

at any t. This implies that

Γ1,1(t) =
p−1

eq (x1)

∆x2
[D(x+1 ) peq(x

+
1 )+D(x−1 ) peq(x

−
1 )]

Γ1,N(t) = −
p−1

eq (xN)

∆x2
D(x−1 ) peq(x

−
1 )

ΓN,1(t) = −
p−1

eq (x1)

∆x2
D(x+N ) peq(x

+
N )

ΓN,N(t) =
p−1

eq (xN)

∆x2
[D(x+N ) peq(x

+
N )+D(x−N ) peq(x

−
N )] (70)

Finally the eigenvalues λ FD’s are found by diagonalizing ΓΓΓ.
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