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A Simple Model of Burst Nucleation

Alexandr Baronov, Kevin Bufkin, Dan W. Shaw, Brad L. Johnson, David L. Patrick
Advanced Materials Science and Engineering Center,
Western Washington University, Bellingham, WA 98225

We introduce a comprehensive quantitative treatment for burst nucleation (BN), a kinetic path-
way toward self-assembly or crystallization defined by an extended post-supersaturation induction
period, followed by a burst of nucleation, and finally the growth of existing stable assemblages ab-
sent the formation of new ones, based on a hybrid mean field rate equation model incorporating
thermodynamic treatment of the saturated solvent from classical nucleation theory. A key element
is the incorporation of a concentration-dependent critical nucleus size, determined self-consistently
along with the various subcritical cluster population densities. The model is applied to an example
experimental study of crystallization in tetracene films prepared by organic vapor-liquid-solid de-
position, where good agreement is observed with several aspects of the experiment using a single,
physically well-defined adjustable parameter. The model predicts many important features of the
experiment, and can be generalized to describe other self-organizing systems exhibiting BN kinetics.

PACS numbers: 68.55.A-, 81.05.Fb, 81.10.Aj, 81.15.Aa

Many self-organizing systems provided with an on-
going supply of fresh growth units are found to un-
dergo burst nucleation (BN), characterized by an ex-
tensive post-supersaturation induction time, followed by
a transient burst of nucleation, then continued growth
of existing nuclei absent the formation of many new
ones. BN has been observed in situations as diverse
as setting concrete[1], infection-induced cellular lysis[2],
the preparation of synthetic nanoparticles[3, 4], and
vapor-liquid-solid deposition.[5, 6] In systems exhibit-
ing BN kinetics, nucleation and growth are separated in
time, and hence can be performed under different ex-
perimental conditions; this distinguishes BN from other
modes of monomer aggregation[7], and can be exploited,
for example, to produce nanostructures incorporating
heterointerfaces.[8] Since nucleation is limited to a rela-
tively short period of time, BN is perhaps the most widely
invoked mechanism for understanding size distributions
in the preparation of monodisperse nanoparticles.[9-11]

The underlying mechanisms responsible for BN may be
varied, and system-dependent. For example, in a closed
system containing a finite number of heterogeneous nu-
cleation sites, such as foreign particles, heterogeneous nu-
cleation may be transitory, lasting only until all such sites
have been titrated by nuclei.[12] In systems subjected
to mechanical agitation, so-called secondary nucleation
can result from the growth of daughter fragments de-
tached from parent crystals, a mechanism which can lead
to a rapid but brief increase in the apparent nucleation
rate.[13, 14] Another mechanism, proposed for certain
metal nanoparticle syntheses,[15] postulates a two-step
process combining slow, continuous nucleation with fast
autocatalytic surface growth. The large difference in rate
constants for the two steps leads to BN.[16]

In contrast, here we are interested in homogeneous
nucleation within a system fed by a continuous supply
of fresh monomers with negligible heterogeneous or sec-

ondary nucleation, perhaps the simplest situation pro-
ducing BN behavior. Such a scenario was originally stud-
ied by LaMer and Denegar (LD)[17], whose classic ex-
planation for BN kinetics remains by far the most widely
cited and studied one. LD postulated a time-dependent
rise and fall of the monomer concentration n, where a flux
F of new monomers is continuously provided from an ex-
ternal reservoir: F'(t) > 0. The main features of the LD
picture are illustrated in Figure (1). During the induc-
tion regime n increases as a result of the flux, rising until
a critical supersaturation n* is reached and crystalliza-
tion commences. Drivers of n can include the chemical
decomposition of monomer-generating precursors in so-
lution as studied originally by LaMer and Dinegar, the
flux of growth units from the vapor onto a surface as
studied here, or a continuous change of temperature in
a closed system, such as in a batch crystallizer, where

>
r o
>~
r

monomer concentration, n
N 0U09 18jsnjo 8jqejs

time, t

FIG. 1. The LaMer-Dinegar model of delayed burst nucle-
ation. I = induction regime, N = nucleation regime, G =
growth regime. n* and n*** are the monomer concentrations
where nucleation begins and at saturation, respectively. MSZ
is the metastable zone where growth of existing stable clus-
ters, absent nucleation, occurs. (Color online)

it is the monomer chemical potential, rather than con-
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centration, that is driven. The formation and growth of
stable nuclei in the subsequent nucleation regime rapidly
outstrips the flux, depleting the monomer concentration
until a steady-state condition within the metastable zone
n°¥ < n < n* is reached, where n*® is the monomer
concentration at saturation; this halts further nucleation
but permits growth of existing nuclei. The LD model
applies to early-stage growth, excluding coarsening pro-
cesses such as Ostwald ripening or further aggregation
among supercritical clusters.[18]

Despite its important role in understanding the origins
of BN in a wide range of systems, few quantitative for-
mulations of the LD mechanism have been proposed, and
direct comparison to experiments under unambiguous LD
conditions are rare.[19] Recently, Privman and coworkers
introduced a model combining classical nucleation the-
ory (CNT) with a rate equation treatment for monomer
and supercritical cluster aggregation to study burst nu-
cleation and cluster size distributions in the formation
of monodisperse colloids.[20, 21] However, the model be-
gins with a large supersaturation, masking details of the
induction regime, and the total number of monomers in
the system is conserved, i.e. F(t) = 0.

In this paper we introduce a semi-empirical hybrid
kinetic-thermodynamic approach to modeling BN under
LD conditions (F'(t) > 0, and no subsequent coarsening
processes) wherein a traditional rate equation structure
is modified to include the effects of cluster surface energy
and monomer concentration in dynamically determining
the critical nucleus size and also explicitly incorporating
the rates for attachment and detachment of subcritical
clusters via exchange with a surrounding solvent. The
purpose is to provide a simple, effective quantitative de-
scription of BN that explicitly elucidates the key global
mechanisms applicable to a range of systems and growth
habits (i.e. independent of crystal shape/morphology
and diffusion-, reaction-, or attachment-limited growth
kinetics; these details can be included in the present
model, but we focus instead on the foundational elements
of BN[22]).

The key new feature of the present treatment
is the self-consistent incorporation of a monomer-
concentration-dependent critical nucleus size. We
demonstrate that the critical size plays a catalytic role,
activating the nucleation mechanism (explicitly governed
by the coupled rate equations), and after nucleation is
initiated, the subsequent reduction of monomer concen-
tration causes the critical size to abruptly increase, ter-
minating nucleation on short time scales. As formulated,
the model is the simplest embodiment of the LD theory
capturing all microscopic processes, and the first quan-
titative model of the full LD mechanism. It reduces ex-
actly to a standard mean field rate equation (MFRE)
model in the (fixed) small critical nucleus size limit but
produces good agreement with classical nucleation the-
ory (CNT) in the prediction of the critical nucleus size,
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thereby bridging the two paradigmatic frameworks. We
apply our model to analyze early stage nucleation and
growth in tetracene films prepared by organic vapor-
liquid-solid (VLS) deposition, under conditions wherein
Ostwald ripening and supercritical cluster aggregation
are both negligible, producing archetypal LD kinetics.
We find good quantitative agreement using a single, phys-
ically well-defined adjustable parameter.

The proposed model is constructed around a simpli-
fied MFRE set incorporating terms accounting for the
elementary processes of monomer flux, diffusion, and
aggregation.[23, 24] The treatment is limited to two bulk
populations:[25, 26] the concentration of sub-critical clus-
ters n, which is dominated by monomers, and super-
critical (thermodynamically stable) clusters N[27]. The
two-population approximation reduces the model to the
simplest components capable of encompassing the es-
sential mechanisms in a mathematically tractable and
complete fashion-thermodynamically-driven critical nu-
cleation and (mean-field) population dynamics. The ki-
netics of the two populations are governed by coupled
rate equations, vis.

d
d—’z = F — KP(i*,n)n — KnN (1)
AN

Here K is a collision and capture kernel for diffusing
species and P(i*,n) is the concentration of aggregates
(at monomer concentration n) of size i*, with ¢* defined
as one monomer less than the critical stable cluster size.
The mathematical forms of Equations (1) and (2) repre-
sent the processes of monomer addition, loss of subcrit-
ical clusters via the collision and capture of a monomer
with/by a cluster of size i* (with a corresponding gain in
the stable cluster density via the same process) and the
loss of subcritical density via the collision (and possible
capture) of sub-critical clusters with stable clusters. The
capture of a monomer by a stable island is assumed irre-
versible. Most important, the connection of the kinetics
to the thermodynamics is accounted for in the construc-
tion of the functions K and P.

To construct the distribution P(i*,n) we begin with
the free energy of a cluster of size ¢ at concentration
n:[28-30]

AG;i(n) = —(i — 1)kTIn (%) +droa? <i2/3 _ 1) (3)
Here n® is the monomer equilibrium (saturation) con-
centration, k is the Boltzmann constant, T is the ab-
solute temperature, a is the monomer radius (assuming
spherical monomers), and o is the cluster surface en-
ergy. The first term derives from the entropy of dispersed
monomers in the solvent. The second term is the surface
energy associated with the creation of a cluster of size 1,
which is assumed for the sake of simplicity to be spheri-
cal with a size-independent surface energy|[31]. Assuming
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rapid attachment/detachment kinetics, the concentration

of sub-critical clusters is a thermalized distribution, vis.

—AGi(n)]
kT

P(i,n) = nexp [ and therefore

P(i,n) =n (:)1 exp [_4”“2]2,2 POl

which then leads immediately to the relationship for
P(i*,n) (Equation (4) has been constructed directly from
the main ideas of CNT, and is closely related to the so-
called Walton relation.[32] The difference, in this case, is
centered around the monomer concentration-dependent
parameter ¢*, which is developed below).

We adopt the form of the collision kernel K as a mod-
ified Smoluchowski function[33] for the rate of collision
between diffusing monomers and spherical clusters of size
i*: K ~ ~y4mai*'/3D. Here D is the monomer diffusion
coefficient and +y is the condensation coefficient, equal to
the monomer capture probability given a collision has
occurred. This (mean-field) parameter incorporates the
microscopic rate constants governing the association and
dissociation of monomers to and from the cluster surface.

Lastly, the critical size ¢* itself is determined via max-
imization of the free energy (3) with respect to cluster
size, and in this case we find

N 8roa? ’ 5
) = <3len(n/n5“t)> 5)
The resulting model predicts the signature features of
BN: In the initial stages of flux delivery, the monomer
concentration is only slightly greater than the equilib-
rium concentration, and therefore i* is very large (see
equation (5). Large i* leads to the condition P(i*,n) ~ 0,
and the rate equations reduce to dN/dt ~ 0, (no nucle-
ation, and thus N = 0) and dn/dt ~ F, giving n(t) = Ft.
Together these conditions describe the induction regime
with its linear increase in monomer concentration. Sim-
ilarly, as mentioned above, following nucleation of sta-
ble clusters the monomer concentration drops rapidly,
as diffusing monomers are significantly more likely to
encounter a stable cluster than to randomly aggregate
into a cluster of size ¢* — 1, and therefore the critical
size will again increase sharply and inhibit the terms in-
volving P(i*,n) ~ 0, and nucleation ceases. Following
nucleation, then, the stable cluster density is constant
(N = N,), and the rate equation for the subcritical den-
sity is given by dn/dt ~ F — KNyn. If we make the
simplifying assumption that the critical nucleus size is a
large constant (large enough to warrant the approxima-
tion P(i*,n) ~ 0), then K = K, (a constant), and the
rate equation admits solutions given by

_"_Cequth (6)

n(t)zKN
qiVq

where ¢ is an integration constant. Equation (6) is the
predicted form of the LD monomer curve in the growth
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regime, which asymptotically approaches F/(K,N,) in
the metastable zone.

We utilize the assumption that the size distribution of
subcritical clusters is dominated by the monomers; this
then assumes the formation/dissolution rate of subcriti-
cal clusters is high, and is supported by the form of the
concentration distribution given by Equation (4). In ad-
dition, for ¢* = 1, P = n directly, in agreement with
established MFRE models for i* = 1.[26] Hence the rate
equations (1) and (2) reduce to the familiar form for the
irreversible deposition-diffusion-aggregation model in the
limit ¢* = 1, with modifications of the diffusion coeffi-
cient to include capture probability via the Smoluchowski
equation.

We apply the model to study BN in the formation of
pm-sized crystals of the organic semiconductor tetracene,
grown in a solvent of bis(2-ethylhexyl)sebecate (BES). A
steady rate of monomer addition was achieved by supply-
ing growth units to a thin solvent layer from the vapor,
which resulted in the formation of small crystals whose
appearance and growth were quantified via direct, in-situ
observation using videomicroscopy. The method is an
all-organic analog to the vapor-liquid-solid (VLS) tech-
nique of crystal growth introduced by Wagner and Ellis
for inorganic materials in liquid metal alloy droplets[34—
37], but employs an organic[38—41], ionic liquid[42—44],
or liquid crystalline[45] solvent combined with an organic
precursor delivered via the vapor phase. As the solvent
layer becomes saturated, crystals form in a quasi- two-
dimensional liquid environment, but they tend to stay in
fixed positions, similar to island growth on bare surfaces.
Film formation thus combines elements of physical vapor
deposition and solution-phase crystal growth.

microscope
window
N
| ]
liquid substrate
solvent
layer o \| axisymmetric
(H) stagnation
‘n‘ c point flow
carrier
gas

FIG. 2. Schematic of the experimental apparatus. Sublimate
exited a heated source cell through a pinhole opening and
was carried by a stream of N2 out a tapered nozzle toward
the substrate. A shutter between the nozzle and substrate
(not shown) controlled deposition. Film growth was moni-
tored in situ through a transparent window with polarized
optical microscopy. The geometry of the impinging jet pro-
duces axisymmetric stagnation point flow. (Color online)

Tetracene vapor was deposited into a 1.9 + 0.3um
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thick layer of BES spread onto a supporting Indium-
Tin-oxide-coated (ITO) glass substrate. BES is a clear
and colorless hydrophobic liquid with a low vapor pres-
sure at room temperature and good spreading properties
on ITO-coated glass. Solvent layer thickness was deter-
mined by interferometry. Deposition was performed in
a sealed chamber under 1 atm. of N5. Tetracene vapor
generated in a heated crucible was swept into flowing ni-
trogen and directed at the substrate by a tapered nozzle,
producing a laminar axisymmetric impinging flow giv-
ing nearly uniform deposition over an area ~ lem? in
size (Figure 2). A movable shutter was used to start the
experiment. The gas flow serves to enhance deposition
efficiency by increasing mass transport across the static
boundary layer at the gas-liquid interface. A tapered
constriction at the nozzle’s terminus flattened the veloc-
ity profile from Poiselle-like to plug-like flow, so that the
variation in F over the analysis region was less than 10%.
Videos of film growth were captured in situ with polar-
ized optical microscopy. Further details are provided in
Ref. [47].

Figure (3) presents micrographs showing the develop-
ment of a tetracene film. Figure 3A, acquired ¢t = 5.3min

FIG. 3. (A-C) Polarized optical micrographs at various stages
of film development. (A) ¢ = 5.3min. after the start of de-
position, near the beginning of the nucleation regime; (B)
t = 6.8min., near the end of the nucleation regime; (C)
t = 16.3min., after nucleation had ceased and the growth
regime was well established. (D) Atomic force microscopy
image of a representative crystal. (Color online)

after the start of deposition, shows the beginning stages
of nucleation, where each visible bright object eventu-
ally grows into a distinct crystal. Figures 3B and 3C
correspond to the middle of the nucleation regime and
the growth regime, respectively. Crystals were generally
compact, with partially branched habits (Fig. 3D). Post-
deposition high resolution polarized optical micrographs
(Figure S4) demonstrate that each object in Figure 3 is
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a single monocrystal, and not an aggregate of smaller
crystals. Growth was observed to be quasi-two dimen-
sional, with lateral (in-plane) sizes approaching 100 m
by the end of the analysis period, but crystal thickness,
measured by atomic force microscopy after deposition
was complete, being only ~ 75nm. This thickness was
found to be about the same for all crystals measured,
regardless of their size (Fig. S1). Crystals grew with
random in-plane, but uniform out-of-plane orientation,
with the (001) plane parallel to the liquid surface, as de-
termined by x-ray diffraction (Fig. S2). Occasionally,
very small crystals would be observed to move if the sol-
vent layer was disturbed, but once they had grown to
several tens of microns in size they became essentially
immobile. This suggests that crystals were not initially
attached to the substrate, i.e. growth did not initiate
with heterogeneous nucleation at the ITO/solvent inter-
face. Crystals were also fully wetted by BES and there-
fore completely submerged in the solvent. Thus crystals
appeared to form in the solvent, as free-floating nuclei.
Once crystals had grown to a certain size, capillary forces
would have pressed them against the substrate, making
them immobile. Halting deposition by closing the shut-
ter led to the cessation of growth without further changes
in crystal size or shape over the timescale of the exper-
iment. Over a period of many hours Ostwald ripening
was observed to gradually occur, but the rate of this pro-
cess appeared negligible on the timescale of the analysis.
Together these results support the assumption that pro-
cesses of supercritical cluster aggregation and coarsening
can be neglected, leading to archetypal La Mer-Dinegar
BN kinetics.

The time evolution of the crystal concentration N (t)
determined by counting the number of visible crystals per
unit volume of solvent is shown in Figure 4A. Three dis-
tinct regimes may be identified: (i) An induction regime
between the onset of deposition and the first appear-
ance of crystals. Its duration depended on the deposi-
tion rate, being shorter for higher rates. It could also be
made shorter (but not equal to zero) by using BES that
was pre-saturated with tetracene[46] prior to the start of
deposition, demonstrating that the solution had to be-
come significantly supersaturated before crystals started
to form. Since the smallest crystal which could be de-
tected in the digital microscope images was ~ 10um?,
and during the nucleation regime crystals grew in size at
an average rate of ~ 250um?min~!, the induction time
was essentially equivalent to the first appearance of crys-
tals in the video images, which were acquired in 15 sec.
intervals. (ii) The induction regime was followed by a
nucleation regime during which new crystals formed and
existing crystals grew. The peak nucleation rate occurred
at ¢ = 8min. and dropped nearly to zero less than two
minutes later. In terms of 2D coverage, the projected
fractional surface area occupied by crystals was 0.006 at
the peak nucleation rate, increasing to 0.03 by the time
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nucleation ceased. Crystals were thus widely separated
relative to their initial sizes, consistent with independent
nucleation. (iii) The nucleation regime was followed by
a growth regime during which crystals increased in size
but no new crystals formed.

To enable quantitative comparison to the proposed
model, the time evolution of both the stable crystal den-
sity and the tetracene concentration are required. The
latter may be obtained as follows. Assuming uniform

mixing,[48] the concentration C(t) = Zz;l iP(i,n) of
dissolved tetracene in the solvent layer is found from the
mass balance between the integrated flux and the number

of molecules incorporated into crystals:

cw= | Pt — A(t)dop./d, ™)

where A(t) is the total crystal area per unit substrate
area, d. is the crystal thickness, ds is the solvent thick-
ness, and p. = 3.42 x 102”m 2 is the monomer number
density of crystalline tetracene.[49] The volumetric flux
F was determined by matching the arrival rate of new
tetracene from the gas phase with the incorporation rate
of tetracene into growing crystals during the steady-state
conditions occurring after nucleation had ceased and the
growth regime was well established: F = Gd.p./ds,
where G = dA/dt is the total areal crystal growth
rate per unit substrate area (in s~!) (in the present
case, G = 2.67 x 107°s71). Solvent layer and average
crystal thickness were measured by interferometry and
atomic force microscopy, respectively, and found to be
ds = 1.9um, and d. = 75nm (Figure S1). This gave
F = 9.5 x 102!m™3s7!. The monomer concentration
computed in this way is plotted in Figure (4A) (filled
circles) along with the resulting density of stable crystals
(open circles).

Overlaid in Figure (4A) (solid lines) are the model
results obtained by using parameters appropriate to
the tetracene experiment, vis: n, = C*%, along with
a = 4.11 x 1071%m,[49] 0 = 25mJm~2,[50] and D =
kT /6mea = 5.34 x 10~ 1Um2s71 (e = 0.01Pas is the sol-
vent viscosity, T = 300K is the temperature and k is
Boltzmann’s constant). The only unknown parameter is
the condensation coefficient, which was determined by
simultaneously fitting the experimental results in Figure
(4A) for both n(t) and N(t), giving v = 7 x 10~8. This
value of the condensation coefficient is reasonable, based
on its mean-field kinematic role as averaging the stochas-
tic rates of association and dissociation of clusters of all
sizes (including stable islands, which also suffer dissoci-
ation, but have a net average growth). In the current
application, nucleation and growth occur in a solvent so-
lution, greatly narrowing the gap between the attach-
ment and dissociation rate constants. When the rate
constants for attachment (k,) and dissociation (kq) obey
kq >> kq, the condensation coefficient is roughly equal
to the areal growth of stable islands per time per area;
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FIG. 4. (A) The concentration of precursors and stable crys-
tals as a function of time since the onset of deposition. Open
and solid points from experiment. Solid lines are model re-
sults (see text for parameters). (B) The model predictions
for the critical nucleus size +* and the precursor distribution
function P(i*,n). Note the demarkation of the nucleation
regime corresponding to simultaneous minimum in ¢* and on-
set/peak/decline of P(i*,n). (Color online)

when dissociation rates are appreciable, as in the present
case, the condensation coefficient is much smaller, as flux
rates and precursor concentrations greatly exceed areal
growth rates[51].

The model provides remarkable agreement with most
aspects of the experiment, including the existence of the
three signature regimes of BN, i.e. induction, nucleation,
and growth regimes, a high monomer concentration rela-
tive to the stable cluster concentration (n >> N), as well
as quantitative agreement in the nucleation onset time,
peak monomer concentration, and concentration of sta-
ble clusters. The main discrepancy is an underestimation
of the rate of decline in the monomer concentration at the
beginning of the growth regime. We speculate this may
be caused in part by shear thinning of the solvent layer
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during deposition under the impinging gas flow. Solvent
thinning-for a constant areal flux of monomers-results in
a higher volumetric-flux rate and a corresponding larger
monomer concentration in the experiment than would
be computed from the relationship C(t) above. The crit-
ical concentration (shown in Figure (4A)) is found to be
C* = 3.6 x 10**m™3, and the critical supersaturation
ratio S* = C*/C** = 9, based on the equilibrium satu-
ration concentration C*% = (4.2 4 0.6) x 10%3m 3, mea-
sured separately by UV-Vis absorption spectroscopy of a
bulk equilibrated BES solution saturated in tetracence.
The saturation ratio determined here is similar to that
reported for VLS growth in some inorganic systems,[52]
and further demonstrates that significant supersatura-
tion is required for crystal nucleation to occur. The
model prediction for n* via the value of n(t) at the on-
set of nucleation gives n* = 3.8 x 10**m ™3, in excellent
agreement with the observed C*.

The central significance of the model, and the primary
result of this paper, is illuminated via self-consistent cal-
culation of the critical size i* over the course of the ex-
periment. In Figure (4B), we show the model predictions
for the critical nucleus size *(t) and the corresponding
distribution P(i*,n) for the parameters of the experi-
ment. The important features of the model are evident:
at the onset of deposition the monomer concentration is
small, so ¢* is initially large. As the flux of new growth
units from the vapor increases n(t), i* decreases, reach-
ing a minimum 4% &~ 53 in the nucleation regime. Nucle-
ation occurs when the critical size decreases sufficiently
such that the distribution function P(i*,n) becomes ap-
preciable, triggering the coupling of equations (1) and
(2), which is the mechanism for the initiation of nucle-
ation. Thereafter monomers are increasingly consumed
by growing crystals, causing i* to rise again, and fur-
ther nucleation to cease. Also note in Figure (4B) that
the function P(i*,n), which, as pointed out, becomes ap-
preciable only in the nucleation regime, serves to define
both the onset and terminus of the nucleation regime.
Together these results highlight the importance of the
changing critical nucleus size in producing BN behavior.

The value of i}, given by the model can be compared
to the critical nucleus size predicted from classical nucle-
ation theory. For a spherical nucleus, the latter is given
by r. = (8/3)roa®/Au* = 1.63nm, where the Gibbs
potential energy difference Ap* between a monomer in
solution at concentration C* and in the crystalline state
is Ap* = kTIn(C*/C**) = 8.9 x 10721.J at T = 300K.
This corresponds to i,y = 62 monomers, in good agree-
ment with the value i}, reported above.

In addition, the model rate equations may be employed
to analyze the scaling of the equilibrium crystal density
with the flux. It has been shown previously that two-
component rate equation models with fixed ¢* predict
that the equilibrium crystal density should scale with
flux, according to N(F) ~ FX, where y = i*/(i* 4+ 2)[53].
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FIG. 5. The Log of the equilibrium crystal density vs. the
Log of the volumetric flux as predicted by the model, utilizing
parameters from the experimental fit of figure (4). The lines
is a linear fit, giving a scaling exponent of 0.98.(Color online)

More recently, it has been shown that in the presence of
an energy barrier inhibiting attachment of monomers at
crystal edges, the scaling of crystal density with flux may
be significantly altered, i.e. x ~ 2i*/(i* + 3)[54]. There-
fore, in the limit of large ¢*, the two predictions converge
to x = 1 and x =~ 2, respectively. In order to compare
the current model-which assumes an effective attachment
barrier (small condensation coefficient, via appreciable
attament/detachment rates)-we run a numerical exper-
iment for the equilibrium crystal density as a function
of flux, using the parameters from the tetracene/BES
experiment as a baseline. Figure (5) shows the model
prediction for the scaling of stable crystal density with
flux. The plot depicts the Log of crystal density vs.
the Log of the volumetric flux into the liquid solvent;
the resulting linear fit indicates a scaling exponent of
x = 0.98. If we adopt the critical nucleus size of ¢}, = 53
as above, we expect, in the absence of an attachment bar-
rier, x = 53/55 = 0.96. The agreement would indicate
that the rapid onset and rise of nucleation associated with
BN, in the current model, compensates for the detach-
ment rate effects of the solvent. It is worth noting that a
similar numerical result for the scaling of the equilibrium
crystal density with condensation coefficient predicts a
scaling of N =~ v~ %% or roughly inverse scaling-a sur-
prising result[55]. Lastly, we note that model predicts
a power-law scaling of the induction time with the con-
densation coefficient, vis. t;,q ~ y~93%, such that long
induction times are predicted when association and dis-
sociation rate constants are comparable, resulting in a
low probability of monomer sticking per collision.

In summary, we have studied the general phe-
nomenon of burst nucleation within a unified thermo-
dynamic/kinetic mean field rate equation framework,
wherein the combined effects of a monomer driving source
(here provided by a vapor-phase flux) and a solvent (forc-
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ing the monomer concentration to significantly exceed
the saturation concentration in order for nucleation to oc-
cur) modify the rate equations, giving qualitatively differ-
ent nucleation and growth behavior relative to standard
MFRE approaches. A key feature is the self-consistent
inclusion of a monomer-concentration-dependent critical
nucleus size, which controls the onset and duration of
the nucleation regime by activating the monomer capture
terms in the rate equations. This leads to a substantial
induction regime, a sharply-defined nucleation regime fol-
lowed by pure growth, as well as a large difference in the
equilibrium monomer and stable-crystal concentrations.
The model predicts a critical nucleus size consistent with
classical nucleation theory, but reduces to the standard
MFRE result in the limit ¢* = 1. As the first com-
prehensive quantitative formulation of LD kinetics, we
note the potential to extend the model to include differ-
ent drivers of the monomer concentration, reaction- or
diffusion-limited growth, and size- and shape-dependent
surface energy.
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