
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Symmetries of quantum transport with Rashba spin-orbit: Graphene
spintronics

Leonor Chico,∗a Andrea Latgé,b and Luis Breya
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The lack of some spatial symmetries in planar devices with Rashba spin-orbit interaction opens the possibility of producing spin
polarized electrical currents in absence of external magnetic field or magnetic impurities. We study how the direction of the spin
polarization of the current is related to spatial symmetries of the device. As an example of these relations we study numerically the
spin-resolved current in graphene nanoribbons. Different configurations are explored and analyzed to demonstrate that graphene
nanoflakes may be used as excellent spintronic devices in an all-electrical setup.

1 Introduction

One of the most important challenges in physics and materi-
als science is the exploration of novel systems and physical
mechanisms for spintronics, with the aim of designing high-
speed and low-power devices.1–4 In particular, the production
and detection of spin-polarized currents by electrical means is
a newly explored route towards this goal. Remarkably, spin-
dependent transport can be achieved in systems with spin-orbit
interaction (SOI) in the absence of ferromagnetic contacts or
external magnetic fields.5 The extrinsic Rashba SOI couples
the orbital motion and the spin of the electron under an exter-
nal electric field, allowing for the manipulation of spins with-
out breaking time reversal symmetry.6 The possibility to tune
SOI in Rashba systems is increasing the exploration of mate-
rials and devices which exploit this effect.

Devices and materials with Rashba SOI are intensely
studied for spintronic applications, such as transition metal
dichalcogenides, (TMC)7,8 surfaces or novel two-dimensional
(2D) nanosheets,9–11 and one-dimensional systems, i.e.,
nanowires.12,13 Theoretically, spin transport has been stud-
ied in semiconductor quantum wires with Rashba SOI and
magnetic field modulations,14–17 and there are theoretical pro-
posals for spin filters based in 2D graphene20 and graphene
nanoribbons with specific geometries.18,19 Indeed, the ex-
perimental ability to fabricate precise graphene nanoribbons
(GNRs) by bottom-up fabrication processes7,21 or by epitaxial
growth on silicon carbide22 signals these ribbons as poten-
tially fundamental building blocks in nanoelectronics and is
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undoubtedly one of the reasons to suggest them as spin-orbit-
based devices.

In pristine graphene the intrinsic SOI is negligible;23,24

however, other spin-orbit couplings induced by different
mechanisms such as hydrogenation, chemical functionaliza-
tion or proximity effect with materials with strong SOI,
have been theoretically proposed25–28 and experimentally re-
alized.29–33 The experimentally reported enhancement of SOI
in graphene due to weak hydrogenation,31 gold hybridiza-
tion,30 or proximity to WS2

32 is of three orders of magnitude
or larger, indicating the possible use of graphene in spintronic
devices. Recently, a giant spin-Hall effect has been experi-
mentally measured in graphene, due to the dramatic increase
of SOI produced by Cu atoms on graphene grown by chemical
vapor deposition, reporting SOI splittings around 20 meV.34

Intercalation of Au atoms in graphene grown on Ni has lead
to SOI splittings around 100 meV due to hybridization with
gold atoms.30 Calleja et al. report larger values when Pb is
intercalated between graphene and the Ir substrate.33 In addi-
tion, spin angle-resolved photoemission spectroscopy experi-
ments suggest that a large Rashba-type SOI can be tuned in
graphene by the application of an external electric field:35,36

in samples grown on Ni(111), splittings larger than 200 meV
have been reported.36 In nanotubes and curved graphene, hy-
bridization between π and σ bands induces a SOI effect larger
than in graphene,37 so folds and wrinkles may also increase
SOI in graphene systems.38 Therefore, altering graphene by
hybridization is an active route to achieve SOI values of inter-
est for spintronics.

In this work we show that the existence or absence of spin-
polarized currents in planar devices can be predicted based
on a combination of time reversal and spatial symmetries. We
give a global and comprehensive vision of the possible spin
polarization directions for planar geometries in Rashba sys-
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tems. As an interesting example, we discuss here the spin-
dependent conductance of different GNRs, which also present
electron-hole symmetry. We show that anti-zigzag and anti-
armchair GNRs with an electric-field-induced Rashba cou-
pling in the central region, can produce a spin-polarized cur-
rent in the direction perpendicular to the ribbon, without the
need of breaking time reversal symmetry. Furthermore, we
also demonstrate that spin-polarized currents in the transver-
sal direction can appear in any nanoribbon of constant width.

Indisputably, the discussed effects will be larger in other
materials, such as TMC7 or germanene and stannene nanorib-
bons,9 but we choose graphene as a prototype system to study
SOI effects, which can be modeled with a simple Hamilto-
nian,39 with the idea that symmetry reasoning is equally ap-
plicable to other materials which require a more sophisticated
calculation. Notwithstanding, given the giant SOI experimen-
tally reported in graphene,29–34 we propose the use of per-
fect graphene nanoribbons as magnetic-field-free spintronic
devices.

2 Geometry and definitions

We consider planar two-terminal devices as the one shown in
Fig. 1. The current flows between left (L) and right (R) con-
tacts along the longitudinal el-direction. The spin-orbit cou-
pling occurs in the central part of the device that is perturbed
by a Rashba-like SOI generated by an electric field applied
perpendicular to the ribbon; i.e., in the ep-direction. The uni-
tary vector et defines the transverse direction of the ribbon,
i.e., across its width. The conductance GLRσσ′(E) indicates the
probability that an electron in the left electrode with energy E
and spin pointing in the σ-direction reaches the right electrode
with spin pointing in the σ′-direction.

W

RL Conductor,(C)

�

el

et

ep

Fig. 1 (Color online) Schematic drawing of the device geometry.
Left (L) and right (R) contacts are pristine nanoribbons without SO
interaction. The conductor (C), shaded in red, is the central part of
the device with Rashba SOI, length `, and width W .

3 Symmetry considerations

In planar quasi-one-dimensional devices as those considered
here, one can expect the following spatial symmetries:
(i) C2 rotation around ep. Under C2, the spatial, momentum
and spin components change as (el, et, ep → −el,−et, ep),
(pl, pt, pp → −pl,−pt, pp), and (σl, σt, σp → −σl,−σt, σp).
Therefore, the conductance of the device is invariant under
these operations. This amounts to interchange the left and
right electrodes, and invert the spin direction along the el or
et directions, i.e., GLRσσ′ = GRLσ̄σ̄′ , where σ̄ indicates a spin
projection opposite to σ, and σ′=±σ. For the spin direction
perpendicular to the device, we get GLRσσ′ = GRLσσ′ .
(ii) Longitudinal mirror symmetry Ml. For Ml, the spa-
tial and momentum components transform as (el, et, ep →
el,−et, ep) and (pl, pt, pp → pl,−pt, pp), respectively. For
the spin components, recalling that the spin transforms as an
axial vector, we have (σl, σt, σp → −σl, σt,−σp). Thus,
this symmetry does not change the roles of the electrodes, but
changes the sign of the spin projection when the spin direction
is either el or ep, leading to the relation GLRσσ′ = GLRσ̄σ̄′ . No-
tice that this symmetry does not give any relationship for the
conductance when the spin direction is along et.
(iii) Transversal mirror symmetry Mt. Under Mt, the spa-
tial and momentum components transform as (el, et, ep →
−el, et, ep), (pl, pt, pp → −pl, pt, pp), whereas the spin
changes as (σl, σt, σp → σl,−σt,−σp). Therefore, the re-
lation GLRσσ′ = GRLσ̄σ̄′ is obtained when the spin is pointing in
the et or ep directions. Otherwise, for the spin pointing in the
longitudinal direction el, we obtain the relationGLRσσ′ = GRLσσ′ .

Table 1 Symmetries and the corresponding conductance relations
derived from them. First column: symmetries; second column: spin
projection directions; third column: spin-resolved conductance
relations. In this Table σ′=±σ.

Θ el, et, ep GLRσσ′ = GRLσ̄′σ̄

U el, et, ep GLRσσ′(E) = GRLσ′σ(−E)

Ml el, ep GLRσσ′ = GLRσ̄σ̄′

Mt

el GLRσσ′ = GRLσσ′

et, ep GLRσσ′ = GRLσ̄σ̄′

C2

el, et GLRσσ′ = GRLσ̄σ̄′

ep GLRσσ′ = GRLσσ′

2 | 1–8
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Besides spatial symmetries, in the absence of magnetic field
time reversal symmetry (Θ) holds, implying GLRσσ′ = GRLσ̄′σ̄ .
Finally, in presence of electron-hole symmetry (U ), the con-
ductance as a function of the energy E satisfies GLRσσ′(E) =
GRLσ′σ(−E). All these relations are gathered in Table 1. These
symmetry rules allow us to predict the possibility of obtain-
ing spin-polarized currents in any planar devices. For an inci-
dent unpolarized current from the left electrode, the spin po-
larization of the current in the right electrode in the s-direction
(s = l, t, p) is defined as

Ps = GLRss +GLRs̄s −GLRs̄s̄ −GLRss̄ . (1)

Therefore, from symmetry considerations we obtain that in
systems withMl symmetry the spin polarization of the current
in the el and ep spin-directions are zero, whereas in all the
other cases a spin polarized current can be obtained, albeit
with different intensities and for various reasons.

ZIGZAG ANTI-ZIGZAG

ARMCHAIR ANTI-ARMCHAIR

Ml

Ml

Mt Mt

C2

C2

Fig. 2 Schematic drawing of the four considered central conductors
and their relevant spatial symmetries.

4 Spin-polarized current in graphene nanorib-
bons

We consider the simplest possible geometry: a graphene
nanoribbon where the central region has a finite Rashba SOI.
The length of the conductor ` is given by 3accN for an arm-
chair (AC) GNR and by

√
3accN for a zigzag (ZZ) one, with

N being the number of longitudinal unit cells and acc the car-
bon bond length in graphene. The ribbon width, W , is defined
by the number of dimers (zigzag lines) across the width of the
armchair (zigzag) nanoribbon, given hereafter by M . As the
focus is on transport properties, in the case of AC termina-
tions we restrict the study to metallic ribbons, i.e., those with
M = 3q + 2, q being an integer.40

ZIGZAG

ARMCHAIR

(trivial)

ANTI-ZIGZAG

ANTI-ARMCHAIR

↑↑ �= ↓↓
↑↓ �= ↓↑

↑↑ = ↓↓
↑↓ �= ↓↑

↑↓ = ↓↑
↑↑ �= ↓↓

ep
ep

ep

et

ep

et

et

et

el

el

el

el

3
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FIG. 3. (Color online) Spin-resolved conductances as a func-
tion of the energy for an anti-armchair GNR of width M = 8
and SOI region of length N = 9.

tances for a M = 8 anti-armchair GNR with a SOI scat-
tering region of N = 9 unit cells.

It can be seen that GLR
↑↑ �= GLR

↓↓ , so there is a net
spin-polarized current, albeit small. In contrast, for the
anti-zigzag case these spin conductances are equal, but
the spin-flip ones are not. Fig. 4 shows the difference
between GLR

↑↓ and GLR
↓↑ for an anti-zigzag GNR of width

M = 9 with a SOI region of length N = 5.
This different behavior can be understood in terms of

the symmetries of the devices (leads plus conductor) sum-
marized in Fig. 2. On one hand, the anti-zigzag flake has
a C2 rotational symmetry around an axis perpendicular
to the plane of the nanoribbon (ep) which is not present
in the anti-armchair flake. On the other hand, the anti-
armchair flake presents a mirror plane in the transversal
direction, Mt. Let us start with the anti-zigzag case.
Under the C2 rotation, the transformations of spatial,
momentum, and spin components are (x, y → −x,−y),
(px, py → −px,−py) and (σx,σy → −σx,−σy), which
leaves the Hamiltonian invariant. Note that although
the spin projection in the z direction is unchanged under
C2, the L and R electrode roles are exchanged, therefore,
GLR

σσ� = GRL
σσ� . Besides, time reversal symmetry imposes

that

GLR
σσ� = GRL

−σ�−σ, (3)

so both expressions lead to GLR
↑↑ = GLR

↓↓ . However, as
there is no relation between the spin-flip conductances,
we can expect that GLR

↑↓ �= GLR
↓↑ for anti-zigzag GNRs

when the spin projection direction is ep.
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x

y

z

Ml : GLR
σσ� = GLR

−σ−σ�
x

y

z

⇒
�

↑↑ = ↓↓
↑↓ = ↓↑

U
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z

x

ARMCHAIR

Ml : GLR
σσ� = GLR

−σ−σ�
⇒

�
↑↑ = ↓↓
↑↓ = ↓↑U

x

y

z

P↑↓ = ↓↑
↑↑ �= ↓↓: GLR

σσ� = GRL
−σ−σ�

+T.R.

C2

Mt

↑↑ = ↓↓
↑↓ = ↓↑

↑↑ = ↓↓
↑↓ = ↓↑

z

x

y

Ml : GLR
σσ� = GLR

−σ−σ�
↑↑ = ↓↓
↑↓ = ↓↑ U

FIG. 4. (Color online) Difference in the spin-flip conductances
as a function of the energy for an anti-zigzag GNR of width
M = 9 and SOI region of length N = 5.

With respect to the anti-armchair case, the system is
invariant under the transversal mirror reflection Mt. For
the present choice of coordinates, this means that the
Hamiltonian should be invariant under the transforma-
tions (x → −x), (px → −px) and (σy,σz → −σy,−σz).
Therefore, the L and R electrodes are interchanged, as
for C2. Moreover, under this mirror reflection the spin
σz changes it sign, leading to GLR

σσ� = GRL
−σ−σ� . Combin-

ing this equation with the time-reversal symmetry rela-
tion (3), it holds that GLR

↑↓ = GLR
↓↑ , while for the spin-

conserving conductances one cannot establish any rela-
tionship As a result, for anti-armchair GNRs we expect
GLR

↑↑ �= GLR
↓↓ when z is parallel to ep.

C2 :

�
el, et → −el,−et

σl,σt → σ̄l,−σ̄t

Ml :

�
et → −et

σl,σp → −σl,−σp

Mt :

�
el → −el

σt,σp → −σt,−σp

Ml :

GLR
σσ� = GLR

−σ−σ� ⇒
�

GLR
↑↑ = GLR

↓↓
GLR

↑↓ = GLR
↓↑

GLR
σσ� = GLR

−σ−σ� ⇒
�

GLR
↑↑ = GLR

↓↓
GLR

↑↓ = GLR
↓↑

Ml : GLR
σσ� = GLR

σ̄σ̄� ⇒
�

↑↑ = ↓↓
↑↓ = ↓↑

4

(Ml) : GLR
σσ� = GLR

σσ� ⇒
�

↑↑ = ↓↓
↑↓ = ↓↑

C2, Mt : GLR
σσ� = GRL

σ̄σ̄� + T.R. ⇒
�

↑↑ = ↓↓
↑↓ �= ↓↑

(C2) : GLR
σσ� = GRL

σσ� + T.R. ⇒
�

↑↑ = ↓↓
↑↓ �= ↓↑

Mt : GLR
σσ� = GRL

σ̄σ̄� ⇒
�

↑↑ = ↓↓
↑↓ �= ↓↑

(Mt) : GLR
σσ� = GRL

σσ� ⇒
�

↑↑ = ↓↓
↑↓ �= ↓↑

hola

TABLE I. Symmetries of the graphene flakes.

C2 Ml Mt

el, et → −el,−et et → −et el → −el

σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.

4
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σσ� ⇒
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It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
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↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
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Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.
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el, et → −el,−et et → −et el → −el

σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.
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It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR
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−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
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↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
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↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR
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↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.
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σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.
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It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
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↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
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↓↑ . Fig. ?? shows that, indeed, the spin polar-
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inequality of GLR
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of the different spin-resolved conductances do not only
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quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR
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↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.
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FIG. 3. (Color online) Spin-resolved conductances as a func-
tion of the energy for an anti-armchair GNR of width M = 8
and SOI region of length N = 9.

tances for a M = 8 anti-armchair GNR with a SOI scat-
tering region of N = 9 unit cells.

It can be seen that GLR
↑↑ �= GLR

↓↓ , so there is a net
spin-polarized current, albeit small. In contrast, for the
anti-zigzag case these spin conductances are equal, but
the spin-flip ones are not. Fig. 4 shows the difference
between GLR

↑↓ and GLR
↓↑ for an anti-zigzag GNR of width

M = 9 with a SOI region of length N = 5.
This different behavior can be understood in terms of

the symmetries of the devices (leads plus conductor) sum-
marized in Fig. 2. On one hand, the anti-zigzag flake has
a C2 rotational symmetry around an axis perpendicular
to the plane of the nanoribbon (ep) which is not present
in the anti-armchair flake. On the other hand, the anti-
armchair flake presents a mirror plane in the transversal
direction, Mt. Let us start with the anti-zigzag case.
Under the C2 rotation, the transformations of spatial,
momentum, and spin components are (x, y → −x,−y),
(px, py → −px,−py) and (σx,σy → −σx,−σy), which
leaves the Hamiltonian invariant. Note that although
the spin projection in the z direction is unchanged under
C2, the L and R electrode roles are exchanged, therefore,
GLR

σσ� = GRL
σσ� . Besides, time reversal symmetry imposes

that

GLR
σσ� = GRL

−σ�−σ, (3)

so both expressions lead to GLR
↑↑ = GLR

↓↓ . However, as
there is no relation between the spin-flip conductances,
we can expect that GLR

↑↓ �= GLR
↓↑ for anti-zigzag GNRs

when the spin projection direction is ep.
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FIG. 4. (Color online) Difference in the spin-flip conductances
as a function of the energy for an anti-zigzag GNR of width
M = 9 and SOI region of length N = 5.

With respect to the anti-armchair case, the system is
invariant under the transversal mirror reflection Mt. For
the present choice of coordinates, this means that the
Hamiltonian should be invariant under the transforma-
tions (x → −x), (px → −px) and (σy,σz → −σy,−σz).
Therefore, the L and R electrodes are interchanged, as
for C2. Moreover, under this mirror reflection the spin
σz changes it sign, leading to GLR

σσ� = GRL
−σ−σ� . Combin-

ing this equation with the time-reversal symmetry rela-
tion (3), it holds that GLR

↑↓ = GLR
↓↑ , while for the spin-

conserving conductances one cannot establish any rela-
tionship As a result, for anti-armchair GNRs we expect
GLR

↑↑ �= GLR
↓↓ when z is parallel to ep.
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TABLE I. Symmetries of the graphene flakes.

C2 Ml Mt

el, et → −el,−et et → −et el → −el

σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.
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σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.
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σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the

spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to
the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
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σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the

spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to
the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
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σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR
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↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.
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TABLE I. Symmetries of the graphene flakes.

C2 Ml Mt

el, et → −el,−et et → −et el → −el

σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the

spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to
the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
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el, et → −el,−et et → −et el → −el

σl,σt → −σl,−σt σl,σp → −σl,−σp σl,σp → −σl,−σp

It is instructive to verify how the additional longitudi-
nal mirror symmetry Ml, present in symmetric armchair
and zigzag ribbons, leads to the absence of spin polar-
ization for this choice of quantization axis. In both cases
we have that the Hamiltonian should be invariant under
(y → −y), (py → −py) and (σx,σz → −σx,−σz). Now L
and R do not change under Ml, but σz changes its sign.
Therefore, GLR

σσ� = GLR
−σ−σ� , and this relation alone rules

out the possibility of a spin polarized current, for both
GLR

↑↑ = GLR
↓↓ and GLR

↑↓ = GLR
↓↑ derive from it.

Two observations should be made at this point.
Firstly, the symmetries of the systems point out a way to
enhance the spin polarized current: breaking the C2 sym-
metry (zigzag) and the Mt symmetry (armchair). This is
the approach followed by some authors, modeling semi-
conductor nanowires with Rashba SOI with an effective
model [? ], or symmetric zigzag ribbons combined with
different lengths [? ]. Secondly, note that the Ml symme-
try operation does not affect the spin in the transversal
direction, and besides it does not exchange the role of the
left and right electrode. This means that the presence of
this symmetry will not yield any relation for the conduc-
tance if we choose the quantization axis along the width
of the nanoribbon. So it is worthwhile to consider the
spin projection direction along et and, besides the anti-
zigzag and anti-armchair ribbons, revisit the symmetric
armchair and zigzag cases for this choice.

Spin projection along the width of the GNR (z �
et). Now we set the z quantization axis parallel to

the nanoribbon transversal direction et. We choose y
in the direction of the current and therefore the elec-
tric field is along the x direction. For the anti-zigzag
ribbon, under a C2 rotation with respect to the x axis
we have that (y, z → −y,−z), (py, pz → −py,−pz)
and (σy,σz → −σy,−σz). Thus, for the spin-resolved
conductances, we have that L and R leads interchange
their role and the spin projection also changes sign, and
GLR

σσ� = GRL
−σ−σ� . We have seen above that this rela-

tion combined with time-reversal symmetry implies that
GLR

↑↓ = GLR
↓↑ . Fig. ?? shows that, indeed, the spin polar-

ized current for this spin projection direction is due to the
inequality of GLR

↑↑ and GLR
↓↓ . Therefore, the symmetries

of the different spin-resolved conductances do not only
depend on the type of ribbon, but also on the choice of
quantization direction for the spin.

For the anti-armchair ribbon, the transversal mirror
symmetry yields the same expressions as for the previous
quantization axis, so again GLR

↑↓ = GLR
↓↑ . And once more,

for anti-symmetric ribbons, we have that GLR
↑↑ �= GLR

↓↓ .
Fig. 6 illustrates a particular case of this geometry.

As discussed above, when the spin projection direc-
tion is taken along et, the existence of the longitudinal
mirror symmetry does not lead to any condition on the
spin-resolved conductances. This means that for this
particular spin direction, polarized currents can be ob-
served even for symmetric zigzag and armchair nanorib-
bons. This assertion is verified in Fig. ??, which presents
the spin-resolved conductances for a symmetric armchair
ribbon, with a spin polarization similar to that of an
asymmetric ribbon of similar size. The difference in the
spin up and down conductances for a symmetric zigzag
ribbon is given in Fig. ??.

For all the ribbons explored, the spin polarization in
the transversal direction is largest, as it has been also re-
ported by other authors [? ]. This fact can be understood
by analyzing the expression of the SOI Rashba term in a
continuum model: without fixing any particular direction
for the magnitudes involved, HR ∝ (σ × k) · E. Thus,
it can be expected a maximum contribution when the
directions of the electric field E, the current direction k
and the spin are orthogonal, as it happens with the spin
projected in the transversal direction.

In summary, we have studied the transport properties
of nanoribbons with Rashba spin-orbit coupling, con-
sidering an electric field applied perpendicularly to the
graphene plane. We calculate spin-dependent transport
on achiral graphene nanoribbons, taking into account dif-
ferent spin polarization directions: parallel and transver-
sal to the electric field direction. We were able to predict
the existence or not of the spin polarization on the basis
of symmetry rules, including spatial mirror reflections,
rotation and time reversal symmetries. They are shown
to be crucial in the determination of such spin responses.
We consider that these findings will be quite useful for a
smart design of spin-dependent graphene devices.

↑↓ = ↓↑
↑↑ �= ↓↓

Fig. 3 Graphical summary of our results for graphene nanoribbon
flakes. For each case, the first column lists the spin direction; the
second column shows the corresponding spin-resolved conductance
relation with the spatial symmetry employed for its derivation,
indicating also whether time-reversal symmetry is needed (with a
clock icon) in order to obtain the final result shown in the third
column, i.e., which spin conductances are equal or not. Up and
down arrows are referred to the spin projection direction indicated in
the first column. In the last column the red (blue) color of the
rectangle surrounding the final spin conductance relations indicates
the possibility (impossibility) of getting spin-polarized transport.

Infinite zigzag GNRs have transversal mirror symmetry Mt

for any M , but this symmetry is not present in a rectangularly
cut finite-size flake of length N , such as those depicted in the
upper panels of Fig.2. The parity of M defines two kinds of
zigzag flakes: even-M zigzag GNRs that have a longitudinal
mirror symmetry Ml and odd-M zigzag GNRs which are in-
variant under C2. The M -odd zigzag ribbons are commonly
called anti-zigzag (AZZ), as shown in Fig. 2. For armchair
GNRs, the more symmetric configurations, with Ml, Mt and
C2 symmetries, happen for M odd. M -even AC GNRs only
have Mt, both in the infinite case and in the finite flake and
they are called anti-armchair (AAC) ribbons, see Fig. 2.

The application of the symmetry relations summarized in
Table 1 to the GNR flakes depicted in Fig. 2 tells us the possi-
bility of obtaining spin-polarized currents in graphene-based
devices. Fig. 3 shows the relation between the spin-resolved
conductances for different graphene flakes. Note that for Mt

and C2 symmetries, it is necessary to consider also time re-
versal symmetry Θ to obtain the relations between the spin-
polarized currents flowing in the same direction, as indicated
in Fig. 3. The same symmetry arguments can be easily gener-
alized along the lines described in this work to other graphene
flake geometries. However, the use of the symmetry relations
does not give us information on the magnitude of the spin po-
larization. In order to quantify the spin polarization it is neces-
sary to perform microscopic calculations taking into account
all the details of the discrete lattice and distinguishing between
different symmetries. To do that we use a tight-binding for-
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malism for computing the conductance of different GNRs.

4.1 Microscopic calculations

The Rashba spin-orbit interaction in graphene can be de-
scribed in the nearest-neighbor hopping tight-binding approx-
imation41,42. The total Hamiltonian is H = H0 +HR, where
H0 is the kinetic energy term, H0 = −t∑ c†iαcjα, with t be-
ing the nearest-neighbor hopping and ciα, c†iα the destruction
and creation operators for an electron with spin projection α
in site i and j, respectively. The Rashba SOI contribution is
given by

HR =
iλR
acc

∑

<i,j>
α,β

c†iα[(σ × dij) · ep]αβcjβ , (2)

with λR being the Rashba SOI strength that can be tuned by
the electric field intensity, σ are the Pauli spin matrices, dij
the position vector between sites i and j, α, β are the spin
projection indices. Due to the analytical expression for HR

(Eq. 2), a new symmetry occurs. If λR changes sign, the
spin polarizations on the longitudinal and transversal direc-
tions also change sign, whereas the polarization in the perpen-
dicular direction is unaffected, i.e., Ps(−λ) = −Ps(λ), (s =
t, l);Ps(−λ) = Ps(λ), (s = p). Notice that the sign of λR is
determined by the sense of the electric field which originates
it.

We consider a graphene device composed of a central flake
with Rashba SOI and two semiinfinite pristine nanoribbons of
the same width as the conductor, see Fig. 1. The conduc-
tance is computed in the Kubo approach by using the Green
function formalism43,44. The spin-resolved conductance is
given by GLRσσ′ = e2

h Tr[Γ
L
σG

r
σ,σ′ΓRσ′Gaσ′,σ] , where Ga(r)

σ,σ′ is
the advanced (retarded) Green function of the conductor and
Γ
L(R)
σ = i[

∑r
L(R),σ −

∑a
L(R),σ] is written in terms of the L

(R) lead selfenergies ΣaL(R),σ . In fact, an equivalent expres-
sion can be reached from a scattering approach, equivalent to
the Kubo formalism, which evidences more clearly that the
symmetry of the conductance matrix is the same as that of the
Hamiltonian of the system.45,46

4.2 Numerical results

In order to verify the previous symmetry analysis, we per-
form numerical calculations for several graphene nanoribbons
of similar widths and lengths, but for different symmetries and
spin polarization directions. The most common expression for
the Rashba Hamiltonian chooses z as the electric field direc-
tion, and therefore sets this as the spin quantization axis, even
though it is not the most favorable from both the quantitative
and the symmetry viewpoint. For some systems, such as TMC
(WSe2 and MoS2), it has been experimentally reported that

spin polarization can occur in this particular setup. Indeed, it
has been dubbed a ”Zeeman-type” spin splitting with an elec-
tric field, due to the fact that the spin and the external field are
in the same direction.7 We first analyze the results for this spin
polarization direction, and then concentrate on the best config-
uration for the obtention of a spin-polarized current, namely,
with the spin transversal to the current and the electric field.

4.2.1 Spin direction perpendicular to the plane of the
ribbon. When the spin direction is along ep, flakes AC
and ZZ which have Ml symmetry cannot present a net spin-
polarized current. We have checked numerically this result,
not shown here. On the contrary, the anti-armchair and anti-
zigzag GNRs do not show Ml symmetry, so they may have
a net spin-polarized current. Indeed, we have found in both
cases a finite spin-polarized transport; however, in this geom-
etry the effect is small, especially for the anti-zigzag flakes.
Therefore, for the sake of clarity of the spin-dependent con-
ductance plots, we use a large value of SOI for this configura-
tion, λR = 0.3t. Fig. 4 shows the spin-resolved conductances
for an AAC graphene nanoribbon with M = 8 and length
N = 6. The AAC flakes have Mt symmetry and therefore
GLR↑↓ = GLR↓↑ , so a net spin-polarized current occurs because
the spin-conserved conductances are different, GLR↑↑ 6= GLR↓↓ .

In contrast, as the AZZ case has C2 symmetry, the spin-
conserved conductances are equal and the spin polarization
occurs because GLR↑↓ 6= GLR↓↑ . Fig. 5 presents the spin-
resolved conductances for an AZZ ribbon of widthM = 9 and
length N = 5. The spin current is smaller in this case. We at-
tribute this to the fact that the infinite AZZ ribbon has also Mt

symmetry, absent in the flake, which would yield equal spin-
flip conductances. Therefore, in this case the spin-polarized
current is clearly a finite-size or scattering effect, due to the
boundary between the leads without Rashba and the flake with
SOI.

In these two instances we can observe another relation for
the conductances and polarization derived from both time re-
versal and electron-hole symmetries. It can be easily veri-
fied that the combination of Θ and U (see Table 1) yields
GLRσσ′(E) = GLRσ̄σ̄′(−E). In terms of the polarization, this
means Ps(E) = −Ps(−E). Figs. 4 (a) and 5 (b) are non-
trivial examples for the spin-conserved and spin-flip conduc-
tances, whereas Fig. 4 (c) shows this symmetry in terms of the
current polarization Pp(E).

Notice that there is a region around EF where the spin po-
larization is zero. It corresponds to the energy range with only
two bands in the energy spectrum, as it can be seen in panels
(d) of Figs. 4 and 5. In order to have a net spin current, more
than two bands should be available in the system.18 Using
wider ribbons lowers the energies of these additional bands.19

4.2.2 Spin projection parallel to the transversal direc-
tion of the nanoribbon. Now we discuss the case with spin
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Fig. 4 Spin-resolved conductances and spin polarization of the
current as a function of the energy for an 8-AAC GNR of length
N = 6 for spin direction perpendicular to the plane of the GNR and
λR = 0.3t. Panel (a) shows the spin-conserved and panel (b) the
spin-flip conductances. Panel (c): Resulting spin polarization of the
current as a function of the energy. In (d) we present the
corresponding band structure of the infinite ribbon with Rashba SOI
(thick blue lines) and without SOI (thin black lines). The top left
schematic drawing indicates the spin projection direction used for
this plot, shown with a thicker arrow.
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Fig. 5 Spin-resolved conductances and spin polarization of the
current as a function of the energy for a 9-AZZ GNR with length
N = 5 and spin direction perpendicular to the plane of the GNR and
λR = 0.3t. (a) Spin-conserved conductances, which are equal due
to C2 symmetry; (b) spin-flip conductances, which give rise to the
spin-polarized current. (c) Spin polarization of the current. (d) Band
structure of the corresponding infinite ribbon calculated with Rashba
SOI (thick blue lines) and without SO interaction. The top left
schematic drawing indicates the spin projection direction considered
for this plot, shown with a thicker arrow.
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projection parallel to the nanoribbon transversal direction et.
In this setup the spin-polarized conductance is the largest, so
this configuration is the most relevant from the experimental
viewpoint. This result can be inferred from the structure of
the Rashba Hamiltonian. In the continuum model the Rashba
term takes the form HR ∝ (σ × k) · E, being E the ap-
plied electric field. Thus, a maximum contribution can be
expected when the directions of the electric field E, the cur-
rent direction k and the spin are orthogonal, as it happens
when the spin is pointing in the transversal direction. For this
spin direction, the symmetries do not impose any condition to
the spin-conserved conductances in all considered cases, i.e.,
GLR↑↑ 6= GLR↓↓ . Actually, polarized currents are obtained in all
four GNRs studied.

Results for each one of the symmetries illustrated in Fig.
2, namely, zigzag (M = 8), armchair (M = 11), anti-zigzag
(M = 9) and anti-armchair (M = 8) GNRs are presented in
Fig. 6. The chosen ribbons have similar widths and the same
fixed length,N = 4. For this spin direction, et, the magnitude
of the polarized current is similar in the four cases. Moreover,
the spin polarization of the symmetric GNRs presents mag-
nitudes similar to those found in the asymmetric cases. This
result may be understood on the basis that Ml does not play
any role for this particular spin orientation. Also, it is evident
the relation Ps(E) = −Ps(−E), imposed by electron hole-
symmetry, as given in Table 1.

4.2.3 Final remarks. Finally, we would like to mention
that if the spin projection is taken along the longitudinal di-
rection, the effect is small, although not zero. The particular
conductance relations are also collected in the graphical sum-
mary presented in Fig. 3.

As our main focus in this work was the role of symmetry in
the spin-resolved conductances, we have chosen small flakes,
for which the effects are clearer. For longer flakes, the most
notable (and obvious) difference would be that the number of
conductance and polarization oscillations increases, due to the
appearance of more quasi-localized states.

It is interesting to mention that the set of symmetries dis-
cussed here also plays an important role on the size depen-
dence of the spin polarization. As discussed previously, in
some systems, the spin polarized currents arises because of a
finite-size effect, whereas in others it is not so. If the polar-
ization is due to a finite size effect, then we expect that its
maximum value will eventually decrease with size, but in any
case it should not grow on average. On the other hand, if the
polarization is due to a lack of symmetry present both in the
infinite and in the finite case, there should be a non-zero po-
larization for all sizes.

As an example we have chosen a 9-AZZ ribbon; the corre-
sponding flake has only C2 symmetry, but the infinite ribbon
has also Mt. For spin projection direction along ep, this im-

plies an extra relation in the spin-resolved conductance (see
Table 1) that yields a zero polarization current. However, for
spin projection direction along et, the relation is the same as
for C2, so we expect the polarized current to exist for grow-
ing size. These size dependences are illustrated in Figure 7,
where spin-polarized currents are shown for the two discussed
spin polarization directions and two flake lengths with Rashba
SOI. Besides the aforementioned oscillations due to the larger
size, it is notable the increase of the polarization of the current
presented in the bottom panel for the longer flake length.

As a general result, we have shown that for some partic-
ular graphene flakes (Fig. 2), the use of symmetries allows
us to elucidate which spin-resolved conductances are equal
and which are different. In the same way, although not pre-
sented here, we can also infer that GNRs with symmetric chi-
ral edges, as those obtained by opening carbon nanotubes, will
behave as AZZ ribbons, because of their C2 symmetry. With
respect to the size dependence, for wider ribbons the number
of bands increases, and the onset of spin polarized currents
happens for lower energies because of the availability of more
than two spin channels.
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Fig. 6 Left panels: Spin-resolved conductances as a function of the energy for an 8-ZZ, an 11-AC, a 9-AZZ and an 8-AAC graphene
nanoribbons of length N = 4, enumerated from top to bottom. In all cases the spin is projected in the transversal direction of the GNR,
indicated with a thicker arrow in the schematic drawing at the top. Right panels show the corresponding polarization currents Pt. The results
are obtained with λR = 0.1t.

5 Summary

We have studied the symmetries of the spin-resolved conduc-
tances in planar devices with Rashba SOI. The combination
of spatial mirror reflections and C2 rotation with time-reversal
symmetry leads to specific predictions with respect to the pos-
sibility of obtaining spin-polarized currents in such devices.
As an example, we compute the spin-dependent transport of
graphene nanoribbons with an applied electric field in finite
region. We have shown that spin-polarized currents can be
achieved if the spin polarization is measured in the transver-
sal direction of the ribbon for all the ribbon geometries. Fur-
thermore, we have analyzed all the basic symmetries and spin
directions, elucidating which configurations can yield a spin-
polarized current on the basis of symmetry. The intensity and
sign of the Rashba spin-orbit coupling may be modified by ex-
ternal electric field, opening the possibility of building an all-
electrical spin valve. Our findings can be useful for a smart
design of spintronic graphene devices, being of general appli-
cation to other materials with Rashba SOI.
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Fig. 7 Spin polarization currents as a function of the energy for
9-AZZ GNRs with different Rashba SOI strength, spin polarization
directions, and ribbon lengths: (a) N=5 and 20, λR=0.3t and spin
projected in the perpendicular direction (Pp) and (b) N=4 and 20,
λR=0.1t and spin projected in the transversal direction (Pt).
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