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Protein-ligand docking using fitness learning-based 

artificial bee colony with proximity stimuli 

Shota Uehara*, Kazuhiro J. Fujimoto* and Shigenori Tanaka*,  

Protein-ligand docking is an optimization problem which aims to identify the binding pose of a 

ligand with the lowest energy in the active site of a target protein. In this study, we employed a 

novel optimization algorithm called fitness learning-based artificial bee colony with proximity 

stimuli (FlABCps) for docking. Simulation results revealed that F lABCps improved the 

success rate of docking, compared to four state-of-the-art algorithms. The present results also 

showed superior docking performance of FlABCps, in particular for dealing with highly 

flexible ligands and proteins with a wide and shallow binding pocket.  

 

 

 

 

 

 

Introduction 

Protein-ligand docking plays an essential role for structure-

based drug design (SBDD), which aims to identify the binding 

structure of a ligand with the high affinity to a target protein 

using computer simulation. In lead identification, virtual 

screening based on docking simulation enables us to perform 

more efficient drug screening than experimental high 

throughput screening (HTS) in terms of cost and efficiency.1 

Also in lead optimization, successful docking leads to a 

rational molecular design based on the three-dimensional 

structure of a target protein and binding ligands.2 

Incorporating SBDD, a number of drugs have been 

successfully developed.3-5 

 Protein-ligand docking is regarded as an optimization 

problem, which identifies the binding pose of a ligand with the 

lowest energy in an active site of a target protein. Various 

scoring functions have been developed for an accurate 

calculation of binding affinity.6-8 Energy landscapes of the 

scoring functions are usually complicated and exhibit rugged 

funnel shape.9 Hence, successful docking simulations require 

an efficient optimization algorithm. Inefficient optimization 

algorithms often give solutions trapped in some local optimum 

points of a scoring function, which results in an incorrect 

binding pose of a ligand and a wrong estimation of the binding 

affinity. In particular, highly flexible ligands with many 

rotational bonds are known to be more difficult for the 

docking simulation, due to their large number of optimization 

parameters.10 

 Various optimization algorithms have been developed for 

the protein-ligand docking. Genetic algorithm (GA) based 

approaches are the most general, which are implemented, e.g., 

in GOLD11 and AutoDock12. In addition, some variants of 

particle swarm optimization (PSO)13 have been developed, 

such as SODOCK10 and PSO@AutoDock14. It was reported 

that the PSO based approaches improve the docking accuracy 

better than GA. Both GA and PSO quickly find the global 

optimum point for a simple problem, because of their high 

convergence ability. However, these algorithms potentially 

have the risk of premature convergence to some local 

optimum point, in particular for the multi-modal, non-convex 

or highly multi-dimensional problems.15,16 In this meaning, 

more efficient optimization algorithm is strongly required for 

protein-ligand docking. 

 In this study, we attempted to apply a novel optimization 

algorithm, called fitness learning-based artificial bee colony 

with proximity stimuli (FlABCps)17, to the protein-ligand 

docking. Artificial bee colony (ABC) algorithm18 is a simple 

and powerful optimization algorithm for the multi-

dimensional and multi-modal functions, inspired from 

intelligent behaviors of honey bee swarm. It has been reported 

that the ABC based algorithms give better results for various 

optimization problems than the conventional algorithms.19-21 

FlABCps is a variant of the ABC algorithm, extending its 

applicability to more complicated optimization problems like 

the protein-ligand docking.  

 The docking performance of FlABCps was examined in 

comparison with four state-of-the-arts algorithms: ABC, 

SODOCK, PSO and LGA. Lamarckian genetic algorithm 

(LGA)22 is a variant of GA, which is implemented in 

AutoDock as a default algorithm. The present results revealed 

that FlABCps improved the success rate of the docking 

compared to the other algorithms, in particular for highly 

flexible ligands with many optimization parameters. In 

addition, we analyzed the relationship between the structure of 

the binding pocket and the energy landscape of the scoring 

function.  This analysis clearly showed that FlABCps is a 
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suitable algorithm for dealing with receptor proteins which 

have a wide and shallow binding pocket. 

Methods 

Classical artificial bee colony algorithm 

The artificial bee colony (ABC) is a swarm based meta-

heuristic algorithm proposed by Karaboga et al.18 for 

numerical optimization problems. It was inspired from the 

intelligent foraging behavior of honey bees. ABC is composed 

of three kinds of honey bees: employed bees, onlooker bees 

and scout bees. First, an employed bee is assigned to a 

particular food source. She carries nectar to the hive and 

shares information on the nectar amount of the food source 

with onlooker bees waiting on the hive. Second, an onlooker 

bee chooses a rich food source, based on the nectar 

information. If one food source has much nectar amounts, a 

large number of onlooker bees are assigned to the source. 

Finally, a scout bee carries out random search for discovering 

new food sources.  

 

 
 

Fig. 1 Flowchart of the ABC algorithm. 

 

 In ABC, a colony of artificial honey bees (agents) search 

for rich food sources (good solutions to a given problem). The 

position of a food source represents a solution vector of the 

optimization problem, and a quality of the food source (nectar 

amount) is represented by a fitness value calculated with the 

scoring function. The number of food sources SN is equal to 

the number of employed bees or onlooker bees. The three 

kinds of bees search for a global optimum point in D-

dimensional real parameter space, where D corresponds to the 

number of optimization parameters (e.g., translation, 

orientation and conformation of ligand for the flexible protein-

ligand docking). A D-dimensional solution vector on a food 

source is described as 

 

𝜽𝑖
𝐶 = [𝜃𝑖,1

𝐶 , 𝜃𝑖,2
𝐶 , 𝜃𝑖,3

𝐶 , ⋯ , 𝜃𝑖,𝐷
𝐶 ],   (1) 

 

where i=1,2,…,SN is an index of food sources and 

C=0,1,…,MCN (maximum count number) is a current cycle 

number. In the beginning of optimization (C=0), each 

parameter of food sources is initialized with uniformly 

distributed random numbers restricted to certain ranges. A 

fitness value for a food source is then calculated as 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {
1 (1 + 𝑓𝑖)⁄ if  𝑓𝑖 ≥ 0  

1 + abs(𝑓𝑖) if 𝑓𝑖 < 0 ,
  (2) 

 

where fi is an actual value of scoring function F to be 

optimized (𝑓𝑖 = 𝐹(𝜽𝑖
𝐶)). Since we consider a minimization 

condition here, a food sources with a lower score of the 

scoring function have a higher fitness value. After the 

initialization, ABC performs the optimization process through 

cycles of three exploration steps by employed bees, onlooker 

bees and scout bees until the termination criteria are satisfied 

(Fig. 1). 

 In the employed bee phase, the employed bees seek a new 

food source around the assigned food sources, where a new 

food source is explored in the direction to another food source 

by perturbing a single optimization parameter as 

 

𝑣𝑖,𝑗
𝐶 = 𝜃𝑖,𝑗

𝐶 + 𝜙(𝜃𝑘,𝑗
𝐶 − 𝜃𝑖,𝑗

𝐶 ).    (3) 

 

Here, 𝑘 ∈ {1,2, … , 𝑆𝑁} is an index of randomly selected food 

source except for i. Similarly, 𝑗 ∈ {1,2, … , 𝐷}  is an index 

randomly selected from the D-dimensional parameters. 𝜙 is a 

random number in the range of [-1,1]. If a new food source 𝒗𝑖
𝐶  

has a higher fitness value than the current food source 𝜽𝑖
𝐶 , an 

employed bee updates 𝜽𝑖
𝐶  to 𝒗𝑖

𝐶 . After all the employed bees 

finish exploiting, they go back to the hive and share the 

information on the food sources (nectar amounts) with the 

onlooker bees waiting on the hive. 

 In the onlooker bee phase, the onlooker bees perform a 

probabilistic selection of food sources for exploiting. A 

probability of a food source to be selected is calculated with 

the fitness values, given by 

 

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑙
𝑆𝑁
𝑙=1

.     (4) 

 

Based on this probability, the onlooker bees perform the 

roulette wheel selection for the decision of the food source, so 

that a higher fitness food source is intensively explored by a 

large number of the onlooker bees. The onlooker bee searches 

for a new food source around the selected food source using 

eqn (3), and updates the current food source with the greedy 

selection in the same way as the employed bee. 

 In the scout bee phase, a food source which cannot be 

improved anymore is replaced by a new food source created 

with random numbers. To find these exhausted food sources, a 

trial counter ti is used at each ith food source. If the employed 

or onlooker bee is unable to improve the previous fitness value 

of the ith food source, ti is increased by unity. The trial 

counter ti is reset to zero when the ith food source is 

successfully improved. When ti reaches the maximum trial 

number, limit, the ith food source is replaced with random 

numbers and ti is reset to zero. In this way, the scout bees play 

an important role in keeping the diversity of population. 

FlABCps algorithm 

Fitness learning-based ABC with proximity stimuli 

(FlABCps) is a variant of ABC proposed by Swagatam et al.17 

They introduced three vital modifications to the classical ABC, 
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to achieve the superior performance for real-world 

optimization problems.  

 First, an improved positional modification scheme is 

introduced. This scheme is developed on the basis of the 

fitness learning mechanism and the directive component 

towards adjacent food sites. In the classical ABC, the 

positional modification given by eqn (3) is performed with a 

randomly selected food source 𝜽𝑘
𝐶 . Alternatively, elite food 

sources and neighbor food sources are used in FlABCps for 

the positional modification, which gives a superior balance of 

bee’s exploration between global search and local search.  

 Second, a multi-dimensional perturbation scheme is 

introduced to the positional modification. As mentioned above, 

the single parameter perturbation is used in the classical ABC, 

which sometimes leads to the slow convergence for highly 

multi-dimensional problems.23 On the other hands, all 

optimization parameters are updated in PSO and GA, which 

result in the premature convergence for the complicated 

problems (i.e., trapped solutions in some local optimum points 

of scoring function). In FlABCps, a subset of the D-

dimensional parameters is randomly selected for the positional 

modification, based on the Rechenberg’s 1/5th mutation rule24. 

It helps in efficient convergence of solutions, properly 

avoiding the premature convergence.   

 Third, proximity-based stimuli are employed for the food 

site selection by the onlooker bees. In the classical ABC, the 

onlooker bees perform the roulette wheel selection of food 

sources using the probability of eqn (4), which contributes to 

an intensive exploitation around a high fitness food sources. 

However, this selection scheme sometimes causes the 

overcrowding of the onlooker bees at the best-so-far food 

source, which results in the premature convergence. To 

circumvent this problem, FlABCps introduces a weighted 

probability based on the proximity-based stimuli. Since the 

weighted probability reflects the locality of the food sources, 

neighbor food sources around the high fitness food sources get 

more chances to be selected by the onlooker bees. 

 The performance of FlABCps was examined for two real-

world optimization problems including numerous local peaks, 

non-linearity, interdependence and bound constraints.17 As a 

result, FlABCps provided the best solutions among nine state-

of-the-arts optimization algorithms. A detailed description and 

pseudo-code of FlABCps are available in ESI†. 

Simulation set-up 

The docking performance of FlABCps was evaluated by 

comparison with four state-of-the-art algorithms: ABC, 

SODOCK, PSO and LGA. They were assessed under the 

identical conditions: (I) these examinations were performed in 

the framework of AutoDock4, (II) a flexibility of a ligand was 

described with translation, orientation and conformation, and a 

protein was treated as a rigid object, (III) 85 complexes in 

Astex diverse set25 was used for the evaluation of docking 

performances, (IV) a binding pocket was set with a cubic box 

(22.5 × 22.5 × 22.5Å3) centered at the crystal ligand, (V) the 

AutoDock energy function6 was used for scoring function and 

(VI) the maximum number of energy evaluations was set to 

2,500,000. The parameters for FlABCps were determined 

empirically, so that the population number SN and the 

maximum trial number limit were set to 500 and 200, 

respectively. Setting parameters for the five algorithms are 

shown in Table S2 (ESI†). 

Results and Discussion 

Docking accuracy of FlABCps 

Table 1 shows the results of the docking calculations obtained 

with FlABCps, ABC, SODOCK, PSO and LGA for 85 

complexes of Astex diverse set. The docking performances 

were examined in terms of the success rate of the pose 

prediction and the searching ability of the lowest energy. In 

addition, 85 complexes in Astex diverse set were divided into 

three groups according to the number of rotational bonds of 

ligands, which were used for examining the dependence of the 

docking accuracy on the number of optimization parameters. 

 

Table 1 Docking results by comparison of five algorithms for 85 complexes of Astex diverse set 

Nr
a Nc

b 
 Success rate [%]c  No. of winsd  

FlABCps ABC SODOCK PSO LGA FlABCps ABC SODOCK PSO LGA 

0~4 25 84.0 84.0 84.0 80.0 84.0 19 4 1 0 1 

5~7 31 87.1 80.6 83.9 64.5 77.4 23 3 1 2 2 

8~16 29 89.7 79.3 79.3 44.8 55.2 17 4 5 3 0 

Total 85 87.1 81.2 82.4 62.4 71.8 59 11 7 5 3 

aNr represents the number of rotational bonds for ligands. bNc represents the number of complexes. cThe rate of successful docking 

that RMSD from the crystal structure is less than 2Å. dThe number of wins in finding the lowest energy in the scoring function 

among the five algorithms. 

 

The success rate of the docking was evaluated with root mean 

square deviation (RMSD) of the predicted ligand pose from 

the crystal structure. The simulation results showed that 

FlABCps provided the best performance of all the five 

algorithms with the success rate of 87.1%. In general, the 

docking for highly flexible ligands is more difficult than that 

for less flexible ligands, due to their large number of 

optimization parameters.10 Even for such highly flexible 

ligands (Nr=8~16), FlABCps can successfully find the correct 

binding poses with 89.7%, whereas the other methods lowered 

their success rates. This result indicated that FlABCps might 

be extended to more complicated systems, such as the partially 

flexible protein docking including side-chain flexibility of 

proteins26 or the docking under explicit water molecules27.  

 The present results also showed that FlABCps gave the 

best results (i.e., the lowest energy) for the 59 complexes. 

Assuming that the scoring function can describe the correct 

binding energy, the lowest energy in the scoring function 

corresponds to the actual binding affinity between a ligand 

and a protein. Thus, FlABCps is found to give more accurate 

estimations of the binding affinity, compared with the other 

four algorithms. The classical ABC gave the success rate of 

81.2%, which was better than PSO and LGA. Thus, the basic 

strategy of ABC is superior to that of GA and PSO for the 
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protein-ligand docking. From these results, FlABCps is found 

to be a more suitable algorithm for solving the protein-ligand 

docking than the conventional algorithms. The detailed results 

of these simulations are given in Table S3 (ESI†). 

Structural analysis of the binding pocket of neprilysin 

Next, we analyzed the performance of FlABCps with respect 

to the binding pocket structure and the energy landscape of the 

scoring function. The performance of FlABCps was compared 

with LGA which is a major algorithm implemented in 

AutoDock. For this analysis, we used the crystal structure of 

neprilysin (pdb id: 1R1H) and its potent inhibitor N-[3-[(1-

aminoethyl)(hydroxy)phosphoryl]-2-(1,1'-biphenyl-4-

ylmethyl)propanoyl]alanine (BIR), because LGA could hardly 

find the correct binding pose of this ligand.  We performed 

1000 times of docking calculations with LGA and sampled 

1000 different docking poses of the ligand. As a result, two 

specific clusters named cluster-1 and cluster-2 were found on 

the basis of the structural similarity of their binding poses (Fig 

2A). The population of cluster-1 and cluster-2 totally accounts 

for 58% of all the sampled poses. The main difference 

between the two clusters was in the direction of two aromatic 

rings of the ligand (Fig. 2B).  

 

 
 

Fig. 2 (A) Superposition of 1000 sampled poses of BIR. Poses 

of cluster-1, cluster-2 and the others are shown in green, red 

and cyan, respectively. (B) Definitions of cluster-1 and 

cluster-2. White ribbon represents the backbone structure of 

neprilysin. Green colored pose is a representative structure of 

cluster-1 where the distance between the center of the 

aromatic ring of the ligand and VAL692 shown in blue is less 

than 6.5Å. Red colored pose is a representative structure of 

cluster-2 where the distance between the center of the 

aromatic ring of the ligand and GLY645 shown in orange is 

less than 6.5Å. 

 

 The 1000 sampled poses were also calculated with 

FlABCps, which resulted in the same two clusters as the LGA 

ones. Fig. 3 shows distributions of cluster-1 and cluster-2 with 

respect to the RMSD from the crystal structure of the ligand. 

The distributions obtained with FlABCps are completely 

different from those with LGA. In LGA, we found 10% 

population for cluster-1 and 48% population for cluster-2, 

whereas 40% population for cluster-1 and 9% population for 

cluster-2 were observed in FlABCps. In common, the docking 

pose with the RMSD less than 2Å is regarded as the 

successful reproduction of the crystal structure of the ligand. 

Therefore, the poses of cluster-1 correspond to the crystal 

structure (see Fig. 4). The lowest binding energies for cluster-

1 and cluster-2 were -15.53kcal/mol and -11.97kcal/mol, 

respectively. These results showed that FlABCps successfully 

found the correct binding poses at the global minimum (poses 

of cluster-1). In contrast, LGA gave the binging poses trapped 

in the local minimum of the scoring function (poses of cluster-

2). 

 

 
 

Fig. 3 Distribution of cluster-1 and cluster-2 with respect to 

the RMSD from the crystal structure of BIR: (A) 1000 

docking poses with LGA; (B) 1000 docking poses with 

FlABCps. Green and red colored bars refer to cluster-1 and 

cluster-2, respectively. 

 

 
 

Fig. 4 Molecular structures of the binding pocket of neprilysin 

and BIR. Blue colored pose is the crystal structure, green 

colored pose is a representative structure of cluster-1, and red 

colored pose is a representative structure of cluster-2. 

 

 Regarding the molecular structures, the neprilysin has two 

specific docking regions in its binding pocket: the wide and 

shallow region on which the poses of cluster-2 are located, 

and the narrow and deep region on which the poses of cluster-

1 and the crystal ligand are located (Fig. 4). In other words, 

the narrow and deep region corresponds to the global 

minimum, and the wide and shallow region corresponds to one 

of the local minima of the scoring function.  

 Next, we analyzed the energy landscape of the scoring 

function around the two clusters. Here, we used the RMSD 

from the crystal structure for simplicity. Fig. 5 shows the 

energy distributions of cluster-1 and cluster-2 with respect to 

the RMSD from the crystal structure. The energy distributions 

plotted on the RMSD space can approximate the multi-

dimensional energy landscape of the scoring function. In 

addition, the RMSD standard deviations of two clusters can be 
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regarded as the widths of the energy wells in the multi-

dimensional spaces. Supposing that these distributions refer to 

the normal distribution, the energy landscape can be 

approximated by a Gaussian function. If the centers of these 

energy wells are set to the individual lowest energy structures, 

these bell curves reflect the shapes of the multi-dimensional 

energy landscape around cluster-1 and cluster-2. The standard 

deviations of cluster-1 and cluster-2 from the individual 

lowest energy structures were 1.8Å and 2.9Å, respectively. 

Therefore, the poses of cluster-1 were located on the narrow 

and steep energy well of the global minimum, whereas the 

poses of cluster-2 were trapped in the wide and gradual energy 

well of the local minimum.  These results can be interpreted as 

follows. The neprilysin has the wide and shallow region in its 

binding pocket on which the poses of cluster-2 are located. 

Around this region, the scoring function gives the wide and 

gradual energy well of the local minimum. The conventional 

algorithms, including GA and PSO, usually show the high 

convergence ability for simple problems. However, they often 

give solutions trapped in some local minima, when dealing 

with multi-modal and multi-dimensional problems.15,16  Also 

in our simulation results, most of the LGA calculations gave 

the binding poses trapped in the local minimum (cluster-2). In 

contrast, FlABCps successfully found the correct binding 

poses existing in the global minimum (cluster-1), properly 

avoiding such a local minimum. Some kinds of proteins which 

have a wide and shallow binding pocket were supposed to 

provide a challenging task for in silico docking. This is 

because such kinds of proteins usually contain a large number 

of local minima on their energy landscape of the scoring 

function. FlABCps would be a suitable algorithm for such 

proteins with these features as kinases. 

 

 
 

Fig. 5 Scatter plots of the binding energies of cluster-1 and 

cluster-2 with respect to the RMSD from the crystal structure. 

Poses of cluster-1 are shown by green circles and those for 

cluster-2 are shown by red crosses. Solid lines in the 

individual clusters show Gaussian distributions of the RMSD 

from the pose with the lowest energy; standard deviation of 

cluster-1 is 1.8Å and that of cluster-2 is 2.9Å. 

 

 The scoring (objective) functions for protein-ligand 

docking are generally constructed by summation of 

interatomic potentials between all pairs of protein and ligand 

atoms.28 Eventually, these functions with numerous terms 

describe non-convex and multi-modal solution space, even if 

the pairwise interatomic potentials are simple convex 

functions. These kinds of objective functions are often used 

for optimization problems of molecular sciences in which any 

interatomic potentials are calculated. Nature-inspired 

metaheuristic optimization algorithms are then developed to 

solve such kinds of problems with non-convex or multi-modal 

functions that are not amenable to the approach via 

differentiations as in the steepest descent method. FlABCps is 

one of the most robust optimization algorithms for the 

problems containing a number of local minima and/or highly 

multi-dimensional solution space. 

Conclusions 

In this work, we introduced a novel optimization algorithm 

FlABCps for the protein-ligand docking. The performance of 

FlABCps was assessed in comparison with the four state-of-

the-art docking algorithms. Simulation results revealed that 

FlABCps gave significantly accurate docking poses of the 

ligands, compared with the other four algorithms. The results 

also showed that FlABCps provided the best performance for 

the highly flexible ligands with many optimization parameters. 

In addition, we analyzed the simulation results in terms of the 

energy landscape of the scoring function and the shape of the 

binding pocket of the receptor protein. Some kinds of proteins 

were supposed to be a challenging task for the docking, 

because they usually possess a large number of wide and 

gradual energy wells corresponding to the local minima in the 

scoring function. For these proteins, the conventional 

optimization algorithms can hardly find the correct binding 

pose of ligand. In contrast, FlABCps successfully find the 

correct binding poses, properly avoiding such local minima. 

Consequently, FlABCps would become an useful algorithm 

for more complicated optimization problems concerning in 

silico drug discovery. 

Notes and references 

Department of Computational Science, Graduate School of System 

Informatics, Kobe University, 1-1, Rokkodai, Nada, Kobe, Hyogo 657-

8501, Japan. E-mail: uehara@eniac.scitec.kobe-u.ac.jp, 

fujimoto@ruby.kobe-u.ac.jp, tanaka2@kobe-u.ac.jp;  

 

† Electronic Supplementary Information (ESI) available: a detailed 

description of the FlABCps algorithm, setting parameters of the five 

algorithms for docking simulation, complete results of docking 

experiments for astex diverse set. See DOI: 10.1039/b000000x/ 

 

1 A. N. Jain, Curr. Opin. Drug Discov. Devel., 2004, 7, 396–403. 

2 D. Joseph-McCarthy, J. C. Baber, E. Feyfant, D. C. Thompson and 

C. Humblet, Curr. Opin. Drug Discov. Devel., 2007, 10, 264–74. 

3 A. Wlodawer and J. Vondrasek, Annu. Rev. Biophys. Biomol. Struct., 

1998, 27, 249–84. 

4 G. Kryger, I. Silman and J. L. Sussman, Structure, 1999, 7, 297–

307. 

5 Y. S. Babu, P. Chand, S. Bantia, P. Kotian, A. Dehghani, Y. El-

Kattan, T. H. Lin, T. L. Hutchison, A. J. Elliott, C. D. Parker, S. L. 

Ananth, L. L. Horn, G. W. Laver and J. A. Montgomery, J. Med. 

Chem., 2000, 43, 3482–6. 

6 R. Huey, G. M. Morris, A. J. Olson and D. S. Goodsell, J. Comput. 

Chem., 2007, 28, 1145–52. 

7 R. Wang, L. Lai and S. Wang, J. Comput. Aided. Mol. Des., 2002, 

16, 11–26.  

Page 5 of 6 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

8 H. Gohlke, M. Hendlich and G. Klebe, J. Mol. Biol., 2000, 295, 

337–356. 

9 D. W. Miller and K. A. Dill, Protein Sci., 1997, 6, 2166–79.  

10 H.-M. Chen, B.-F. Liu, H.-L. Huang, S.-F. Hwang and S.-Y. Ho, J. 

Comput. Chem., 2007, 28, 612–23. 

11 G. Jones, P. Willett, R. C. Glen, a R. Leach and R. Taylor, J. Mol. 

Biol., 1997, 267, 727–48. 

12 G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, 

R. K. Belew and A. J. Olson, J. Comput. Chem., 1998, 19, 1639–

1662. 

13 C. Sammut and G. I. Webb, in Encyclopedia of Machine Learning, 

Springer US, NY, 2010, vol. 33, pp. 760-766. 

14 V. Namasivayam and R. Günther, Chem. Biol. Drug Des., 2007, 70, 

475–84. 

15 J. Andre, P. Siarry and T. Dognon, Adv. Eng. Softw., 2001, 32, 49–

60. 

16 B. Alatas, E. Akin and a. B. Ozer, Chaos, Solitons & Fractals, 2009, 

40, 1715–1734. 

17 S. Das, S. Biswas and S. Kundu, Appl. Soft Comput., 2013, 13, 

4676–4694. 

18 D. Karaboga and B. Basturk, J. Glob. Optim., 2007, 39, 459–471. 

19 R. Ma, X. Xu, L. Zhao, R. Cao and Q. Fang, Int. J. Biomath., 2013, 

06, 1350038. 

20 B. Akay, Appl. Soft Comput., 2013, 13, 3066–3091. 

21 D. Karaboga and C. Ozturk, Appl. Soft Comput., 2011, 11, 652–657. 

22 J. Fuhrmann, A. Rurainski, H.-P. Lenhof and D. Neumann, J. 

Comput. Chem., 2010, 31, 1911–8. 

23 B. Akay and D. Karaboga, Inf. Sci. (Ny)., 2012, 192, 120–142. 

24 B. Thomas, and B. F. David, in Handbook of Evolutionary 

Computation, ed. M. Zbigniew, Oxford University Press, Oxford, 

1997, pp. A2.3:6-A2.3:7. 

25 M. J. Hartshorn, M. L. Verdonk, G. Chessari, S. C. Brewerton, W. 

T. M. Mooij, P. N. Mortenson and C. W. Murray, J. Med. Chem., 

2007, 50, 726–41. 

26 M. I. Zavodszky and L. A. Kuhn, Protein Sci., 2005, 14, 1104–14. 

27 M. L. Verdonk, G. Chessari, J. C. Cole, M. J. Hartshorn, C. W. 

Murray, J. W. M. Nissink, R. D. Taylor and R. Taylor, J. Med. 

Chem., 2005, 48, 6504–15. 

28 S.-Y. Huang, S. Z. Grinter and X. Zou, Phys. Chem. Chem. Phys., 

2010, 12, 12899–12908. 

Page 6 of 6Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t


